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What is the Fermi surface of metals?

• “A surface in k-space separating empty and 
filled states at T=0” (free electron viewpoint)

• “A set of one or more compact 2-dimensional manifolds on 
which long-lived quasiparticle states can flow in response to 
applied fields” (a  “quantum geometric” viewpoint.)

• it forms at low temperatures and is measured by the de Haas-
van Alpen effect

• quasiparticle states are eigenstates of the one-particle Green’s 
function: this endows the manifold with a rich previously-
unnoticed geometry in Hilbert space as well as in k-space.

• The intrinsic “Anomalous Hall Effect” in ferromagnetic metals  is 
a consequence of this geometry.

or

I will describe the  second “intrinsic”  geometric viewpoint 
where previously unnoticed aspects of the Fermi surface 
“emerge”.   

 leads to the solution of a 110 year-old puzzle: the origin of 
the “Anomalous Hall effect” in ferromagnetic metals , now 
seen to be a quasiparticle Berry phase effect!



Fermi surface of a noble metal (silver):

conventional view as a surface in 
the Brillouin zone, periodically 
repeated in k-space 
De Haas-Van Alpen effect allows extremal 
cross-sections to be experimentally 
determined

(a)

(b)

Abstract view of the same surface 
(and orbits) as a compact manifold 
of quasiparticle states
(with genus g = 4,  
“open-orbit dimension” dG = 3).

Dimension of Bravais lattice of reciprocal 
lattice vectors G corresponding to k-space 
displacements associated with periodic open 
orbits on the manifold.



Ingredients of Fermi-liquid theory on a Fermi-surface manifold

Landau functions
coupling pairs of quasiparticle states

Fermi vector

direction of 
Fermi velocity 

k-space geometry

Fermi speed

quasiparticle 
magnetic moment

k-space metric

quasiparticle energy parameters

kinematic parameters
inelastic 
mean free path

renormalization 
factor

Hilbert-space metric
Berry gauge fields:
 Z(2) + SO(3)
 U(1){

Fermi surface
spin degeneracyNEW

Hilbert-space geometry

quasiparticle coordinate:
manifold coordinate
(d=2)

spin coherent-state 
direction



• This leads to a 5-dimensional symplectic 
(phase space) structure:

• 3 real space + 2 k-space

• 2 pairs + 1 “chiral” unpaired real space 
direction at each point on the Fermi-
surface manifold 

• the unpaired direction is the local Fermi 
velocity direction.

Quasiparticles “live” only on the Fermi surface.



if both spatial inversion 
and time-reversal symmetry 
are present*

Physical significance of “Hilbert space geometry”

• The Hilbert-space metric and the Berry gauge fields modify the 
ballistic behavior of  quasiparticles which are accelerated by quasi-
uniform electromagnetic fields, chemical potential and thermal 
gradients, strain fields, etc.

• Hilbert space geometric effects are completely omitted in a 
single-band approximation that also neglects spin-orbit coupling 
(like a one-band Hubbard model). 

Hilbert-space metric
Berry gauge fields:
 Z(2) + SO(3)
 U(1){

* assumes spin-orbit coupling

otherwise*



New Physics that emerges:

• (Intrinsic) Anomalous Hall Effect in Ferromagnetic 
metals: the recently-validated Karplus-Luttinger 
(1954) theory is now seen as a Fermi surface 
geometry effect! (FDMH, Phys. Rev. Lett. 93, 206602 (2004))

• “Composite Fermion” Fermi liquids at ν = 1/2m  
lowest Landau level filling also exhibit an AHE. 

found so far:



• for new effects, need at least TWO orbitals 
in the unit cell.

• Specify (a) Hamiltonian matrix elements on 
network AND (b) embedding of orbitals in 
real space continuum  (needed for coupling to slowly-
varying electromagnetic fields, thermal gradients, etc.)

gauge-invariant interactions 
(origin of frequency-

dependent self-energy)

Orbital c†i at 
position ri

(a)

(b)

network of 
electronic orbitals 
tied to positions of 
atomic nucleii



Matsubara single-electron (finite-temperature) Green’s function: 
(0 < τ < β is “imaginary time”)

c†i creates an electron in an orbital that is physically 
located at a real-space position ri

When τ =  β/2 (the largest imaginary-time 
separation), the Green’s function is Hermitian !

Text

0 β/2
β

τ



• Fundamental eigenproblem that will define the Fermi surface:

real
eigenvalues

orthogonal
eigenstates

in one-
particle 
Hilbert 
space

 Equilibrium 
property of an 
interacting 
many-particle 
system.



Bloch character of eigenstates:

•  Gij  depends only on H, but indices i,j 
range over all orbitals; replace by:

•  This now also depends on the real-space 
positions ri of the orbitals, but now indices 
i,j just range over orbitals in the unit cell 
(includes spin)

Full Bloch state
(embedding-dependent factorization)(property of Hamiltonian

alone)



Lehmann representation

• For interacting electrons, at finite T, Aij(ε, k ;T) is a 
positive-definite Hermitian matrix, but cannot be 
simultaneously diagonalized at different ε

• Gauge-invariant local density of states (seen in 
photoemission/absorbtion):

concentrated 
near ε =μ
at low T! 

ε ε

quasiparticle  peak

µ µ

high T low Tρ ρ



• For non-interacting electrons, diagonalizing Gij (k, ½β) is  
equivalent to diagonalizing the one-body Hamiltonian:

as T→0, this diverges if k 
is on the Fermi surface, 
but vanishes otherwise.

eigenvalue of the non-interacting system Green’s function

concentrated 
near ε =μ
at low T! 



Divergence of the eigenvalue of the Green’s function 
signals the formation and location of the Fermi surface

diverges at 
the Fermi 
surface as 
T→0

G(k)

kF

In Fermi  liquid 
theory, the 
eigenvalue becomes 
large at low T for k 
near kF, but 
eventually decreases 
again when the 
BCS transition to 
superconductivity 
occurs...



Scenario for a normal metal as it is cooled:
de

cr
ea

si
ng

 T

Tc

(a) “cold  spots” with a large eigenvalue of Gij(½β) (and 
a quasiparticle with a inelastic mean free path much 
longer than unit-cell dimensions) form in isolated regions 
of the Brillouin zone.

(b)  The“cold  spots” link up to form a connected region 
of long-lived quasiparticles.  Their mean free path is long 
enough for the surface to be measurable with the De 
Haas-Van Alpen effect.  This is a degenerate Fermi liquid.

(c)  The BCS transition to weak-coupling 
superconductivity destroys the Fermi surface by opening 
a gap.

In high-Tc materials, the transition to strong-coupling superconductivity may 
occur at stage (a) (are these “cold spots” the “Fermi arcs”?)



k-space Fermi-surface geometry:

• s = (s1,s2) is a 2-component curvilinear 
parameterization of the Fermi surface.

• kF(s) is a “dangerous variable”, only defined modulo 
a reciprocal vector G, and is not gauge invariant:

• nF(s) is the (unit vector) direction of motion of the 
quasiparticle in real space, if s is not changing with 
time.

Only this combination is 
physically-meaningful: (R is any 
periodic lattice translation)



Hilbert space geometry
• There is a natural definition of “distance” in 

Hilbert space:

• “Pure-state” limit Bures-Uhlmann distance 
between density matrices.  max  D =1 
(orthogonal states)

• satisfies symmetry, triangle inequality.

• Berry gauge invariant: D12 = 0 iff states are 
physically equivalent:

(U(1) gauge equivalence)



Manifold of quantum states
• Let g = (g1,g2,....,gd) (real) parameterize a d-

dimensional manifold, and |Ψ(g)〉be a state in a 

D-dimensional Hilbert space with d ≤2(N-1)

• The covariant derivative is:

U(1) Berry connection

Berry connection is a “vector potential” in g-space!



Riemannian metric structure (Provost and Vallee 1980)

• Positive Hermitian matrix (definite provided Gμν 
is non-singular, generic case)

• Gμν is a real symmetric metric tensor, derives 
from the Bures-Uhlmann distance.

•  

• Fμν = ∂μAν - ∂νAμ is the Berry Curvature 
(analog of magnetic flux density in g-space!)

analog of electromagnetic 
stress-energy  tensor?

special form 
for a 2-manifold



Berry curvature

•  (Berry 1984, Simon 1983, TKNN 1982) ; 
now much more familiar than the 
Riemannian metric structure.

• Berry curvature is analog of magnetic flux density 
(satisfies Gauss law)

• Berry connection is analog of magnetic vector potential

• First Chern invariant is analog of Dirac magnetic 
monopole quantization.....



U(1) Berry “gauge field” on the manifold

•  

F

AΣ
Γ=∂Σ

Berry’s phase for a closed directed path on the manifold 
can be  obtained from  the integral of the Berry curvature 
over any  oriented 2-manifold bounded by the path.

The integral of Berry curvature over a 
closed 2-submanifold M gives the integer 
“Chern number” topological invariant of 
M (“first Chern class”),

Berry 1984

F

M



Application to the Fermi surface

• “old”  (k-space) geometry” kF(s), nF(s).

• “new” (Hilbert space) geometry: Gμν(s), 
(Riemann metric),  plusAμ(s) (U(1) Abelian 
“gauge potential”) 

• if the Fermi surface is spin-split: this U(1) gauge potential becomes a 
topological Z(2) “gauge potential” if the Fermi surface is not spin split 
(both spatial inversion and time-reversal unbroken), but an additional 
SO(3) non-Abelian gauge potential Aiμ(s) appears if spin-orbit coupling 
is present.



relation to embedding in space

• On the Fermi surface, the metric Gμν(s), and 
Berry connection(s) Aμ(s) ( Aiμ(s)) are not 
quite the “standard” ones, because they 
characterize the geometry of its embedding of 
the electronic system in continuum space, as 
well as its Hamiltonian.

• (only the Topological invariants are independent 
of the embedding)



Hall effect in  metals:

Hall effect in ferromagnetic metals with B parallel 
to a magnetization in the z-direction, and isotropy
in the x-y plane:

The anomalous extra term is constant when Hz is 
large enough to eliminate domain structures.

What non-Lorentz force is providing the sideways 
deflection of the current?  Is it intrinsic, or due to 
scattering of electrons by impurities or local non-
uniformities in the magnetization?

isotropic (cubic) case
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Dissipationless Anomalous Hall Current in the Ferromagnetic Spinel CuCr2Se4−xBrx.
∗

Wei-Li Lee1, Satoshi Watauchi2†, V. L. Miller2, R. J. Cava2,3, and N. P. Ong1,3‡

1Department of Physics, 2Department of Chemistry,
3Princeton Materials Institute, Princeton University, New Jersey 08544, U.S.A.

(Dated: May 26, 2004)

In a ferromagnet, an applied electric field E invariably produces an anomalous Hall current JH

that flows perpendicular to the plane defined by E and M (the magnetization). For decades, the
question whether JH is dissipationless (independent of the scattering rate), has been keenly debated
without experimental resolution. In the ferromagnetic spinel CuCr2Se4−xBrx, the resistivity ρ (at
low temperature) may be increased 1000 fold by varying x(Br), without degrading the M. We
show that JH/E (normalized per carrier, at 5 K) remains unchanged throughout. In addition to
resolving the controversy experimentally, our finding has strong bearing on the generation and study
of spin-Hall currents in bulk samples.

A major unsettled question in the study of electron
transport in a ferromagnet is whether the anomalous
Hall current is dissipationless. In non-magnetic metals,
the familiar Hall current arises when electrons moving in
crossed electric (E) and magnetic (H) fields are deflected
by the Lorentz force. However, in a ferromagnet subject
to E alone, a large, spontaneous (anomalous) Hall cur-
rent JH appears transverse to E (in practice, a weak H
serves to align the magnetic domains) (1,2). Questions
regarding the origin of JH , and whether it is dissipation-
less, have been keenly debated for decades. They have
emerged anew because of fresh theoretical insights and
strong interest in spin currents for spin-based electron-
ics. Here we report measurements in the ferromagnet
CuCr2Se4−xBrx which establish that, despite a 100-fold
increase in the scattering rate from impurities, JH (per
carrier) remains constant, implying that it is indeed dis-
sipationless.

In 1954, Karplus and Luttinger (KL)(3,4) proposed a
purely quantum-mechanical origin for JH . An electron
in the conduction band of a crystal lattice spends part
of its time in nearby bands because of admixing caused
by the (intracell) position operator X. In the process, it
acquires a spin-dependent ‘anomalous velocity’ (5). KL
predicted that the Hall current is dissipationless: JH re-
mains constant even as the longitudinal current (J||E)
is degraded by scattering from added impurities. A con-
ventional mechanism was later proposed (6) whereby the
anomalous Hall effect (AHE) is caused instead by asym-
metric scattering of electrons by impurities (skew scat-
tering). Several authors (7,8,9) investigated the theoret-
ical ramifications of these competing models. The role
of impurities in the anomalous-velocity theory was clari-
fied by Berger’s side-jump model (7). A careful account-
ing of various contributions (including side-jump) to the

∗Science 303, 1647 (2004).
†Permanent address of S. W. : Center for Crystal Science and
Technology, University of Yamanashi, 7 Miyamae, Kofu, Ya-
manashi 400-8511, Japan
‡To whom correspondence should be addressed E-mail:
npo@princeton.edu

AHE in a semiconductor has been given by Nozières and
Lewiner (NL) who derive X = λk × S, with λ the en-
hanced spin-orbit parameter, k the carrier wavevector
and S its spin (9). In the dc limit, NL obtain the AHE
current

JH = 2ne2λE× S, (1)

where n is the carrier density and e the charge. As noted,
JH is linear in S but independent of the electron lifetime
τ .

In modern terms, the anomalous velocity term of KL
is related to the Berry phase (10), and has been applied
(11) to explain the AHE in Mn-doped GaAs (12). The
close connection of the AHE to the Berry phase has also
been explored in novel ferromagnets in which frustration
leads to spin chirality (13,14,15). In the field of spin-
tronics, several schemes have been proposed to produce
a fully polarized spin current in thin-film structures (16),
and in bulk p-doped GaAs (17). The AHE is intimately
related to these schemes, and our experimental results
have bearing on the spin-current problem.

In an AHE experiment (1), the observed Hall resistiv-
ity is comprised of two terms,

ρxy = R0B + ρ′xy, (2)

with B the induction field, R0 the ordinary Hall coef-
ficient, and ρ′xy the anomalous Hall resistivity. A di-
rect test of the dissipationless nature of JH is to check
whether the anomalous Hall conductivity σ′

H (defined as
ρ′xy/ρ2) changes as impurities are added to increase 1/τ
(and ρ) (3,7). A dissipationless AHE current implies that
ρ′xy ∼ ρα, with α = 2. By contrast, in the skew scattering
model, α = 1.

Tests based on measurements at high temperatures
(77-300 K) yield exponents in the range αexp = 1.4-2.0
(18,19). However, it has been argued (20) that, at high
T , both models in fact predict α = 2, a view supported
by detailed calculations (21). To be meaningful, the test
must be performed in the impurity-scattering regime over
a wide range of ρ. Unfortunately, in most ferromagnets,
ρ′xy becomes too small to measure accurately at low T .
Results on α in the impurity-scattering regime are very
limited.

2

The copper-chromium selenide spinel CuCr2Se4, a
metallic ferromagnet with a Curie temperature TC ∼
430 K, is particularly well-suited for testing the AHE.
Substituting Se with Br in CuCr2Se4−xBrx decreases the
hole density nh (22). However, because the coupling be-
tween local moments on Cr is primarily from 90o su-
perexchange along the Cr-Se-Cr bonds (23), this does
not destroy the magnetization. We have grown crystals
of CuCr2Se4−xBrx by chemical vapor transport [details
given in Supporting Online Materials (SOM) (24)]. In-
creasing x from 0 to 1 in our crystals decreases nh by a
factor of ∼30 (Fig. 1A), while TC decreases from 430 K
to 230 K. The saturated magnetization Ms at 5 K corre-
sponds to a Cr moment that actually increases from ∼2.6
to 3 µB (Bohr magneton) (Fig. 1B).

FIG. 1: (A) The hole density nh (solid circles) in
CuCr2Se4−xBrx vs. x determined from R0 at 400 K (one hole
per formula unit corresponds to nh = 7.2 × 1021cm−3). The
Curie temperature TC is shown as open circles. (B) Curves of
the magnetization M vs. H at 5 K in 3 samples (x values indi-
cated). The saturation value Ms = 3.52, 3.72, 3.95 (105A/m)
for x = 0, 0.5, 1.0, respectively. (C) The resistivity ρ vs. T in
10 samples with Br content x indicated (a, b indicate different
samples with the same x). Values of nh in all samples fall in
the metallic regime (for x = 1, nh = 1.9 × 1020 cm−3).

As shown in Fig. 1C, all samples except the ones with
x = 1.0 lie outside the localization regime. In the ‘metal-
lic’ regime, the low-T resistivity increases by a factor of

∼270, as x increases from 0 to 0.85, and is predominantly
due to a 70-fold decrease in τ . The hole density nh de-
creases by only a factor of 4. In the localization regime
(x = 1.0), strong disorder causes ρ to rise gradually with
decreasing T . We emphasize, however, that these sam-
ples are not semiconductors (ρ is not thermally activated,
and nh = 1.9 × 1020 cm−3 is degenerate).

The field dependence of the total Hall resistivity (Eq.
2) is shown for x = 0.25 (Fig. 2A) and 1.0 (B). See SOM
(24) for measurement details. The steep increase in |ρxy|
in weak H reflects the rotation of domains into alignment
with H. Above the saturation field Hs, when ρ′xy is con-
stant, the small ordinary Hall term R0B is visible as a
linear background (24). As in standard practice, we used
R0 measured above TC to find the nh plotted in Fig. 1A.

FIG. 2: Curves of the observed Hall resistivity ρxy = R0B +
Rsµ0M vs. H (at temperatures indicated) in CuCr2Se4−xBrx
with x = 0.25 (Panel A) and x = 1.0 (B). In (A), the anoma-
lous Hall coefficient Rs changes sign below 250 K, becomes
negative, and saturates to a constant value below 50 K. How-
ever, in (B), Rs is always positive and rises to large values at
low T (note difference in scale).

By convention, the T dependence of the AHE signal is
represented by the anomalous Hall coefficient Rs(T ) de-
fined by ρ′xy = Rsµ0M (µ0 is the vacuum permeability).

T=5K
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example of a very large AHE  



• Karplus and Luttinger (1954):  proposed an intrinsic 
bandstructure explanation, involving Bloch states, spin-orbit 
coupling and the imbalance between majority and minority 
spin carriers.

• A key ingredient of KL is an extra “anomalous velocity” of 
the electrons in addition to the usual group velocity. 

•  More recently, the KL “anomalous velocity” was 
reinterpreted in modern language as a “Berry phase” effect.

• In fact, while the KL formula looks like a band-structure 
effect, I have now found it is a new fundamental Fermi liquid 
theory feature (possibly combined with a quantum Hall 
effect.)



The DC conductivity tensor can be divided into a symmetric Ohmic 
(dissipative) part and an antisymmetric non-dissipative Hall part:

σab = σab
Ohm + σab

Hall

In the limit T →0, there are a number of exact statements that can 
be made about the DC Hall conductivity of a translationally-invariant 
system.

For non-interacting Bloch electrons, the Kubo formula 
gives an intrinsic Hall conductivity (in both 2D and 3D)

σab
Hall =

e2

!
1

VD

∑
nk

Fab
n (k)Θ(εF − εn(k))

This is given in terms of the total Berry curvature of 
occupied states with band index n and Bloch vector k.



If the Fermi energy is in a gap, so every band is either 
empty or full,  this is a topological invariant:
(integer quantized Hall effect)

σxy =
e2

!
1
2π

ν ν = an integer(2D)

σab =
e2

!
1

(2π)2
εabcKc K = a reciprocal vector G (3D)

Implication:   If in 2D, ν is NOT an integer, the non-integer 
part MUST BE A FERMI SURFACE PROPERTY!

In 3D,  any part of K modulo a reciprocal vector  also 
must be a Fermi surface property!

In 3D G = νG0, where G0 indexes a family of lattice planes with a 2D QHE.

TKNN formula



2D zero-field Quantized 
Hall Effect

• 2D quantized Hall effect: σxy = νe2/h.   In the 
absence of  interactions between the particles, 
ν  must be an integer.   There are no current-
carrying states at the Fermi level in the interior 
of a QHE system (all such states are localized 
on its edge).

• The 2D integer QHE does NOT require 
Landau levels,  and can occur if time-reversal 
symmetry is broken even if there is no net 
magnetic flux through the unit cell of a periodic 
system.   (This was first demonstrated in an 
explicit “graphene” model shown at the right.). 

• Electronic states are “simple” Bloch states! 
(real first-neighbor hopping t1, complex second-

neighbor hopping t2e
iφ, alternating onsite 

potential M.)

FDMH, Phys. Rev. Lett. 61, 2015 (1988). 



• The Berry curvature acts in k-space like a magnetic flux density acts in real 
space.

• Covariant notation ka, ra is used here to emphasize the duality between k-

space and r-space, and expose metric dependence or independence (a ∈{x,y,z }).

Semiclassical dynamics of Bloch electrons

write magnetic flux density 
as an antisymmetric tensor

Motion of the center of a wavepacket of band-n electrons centered at k in 
reciprocal space and r in real space:                        (Sundaram and Niu 1999)

Note the “anomalous velocity” term!
 (in addition to the group velocity)

Karplus and Luttinger 1954



k, t

k+δk, t+δt

x

x

Current flow as a Bloch wavepacket is accelerated 

• If the Bloch vector k (and thus the periodic factor in the Bloch state) is 
changing with time, the current is the sum of a group-velocity term 
(motion of the envelope of the wave packet of Bloch states) and an 
“anomalous” term (motion of the k-dependent charge distribution 
inside the unit cell)

• If both inversion and time-reversal symmetry are present, the 
charge distribution in the unit cell remains  inversion symmetric as k 
changes, and the anomalous velocity term vanishes.

“anomalous” flow

regular flow



2D case:  “Bohm-Aharonov in k-space”

• The Berry phase for moving a quasiparticle around the 
Fermi surface is only defined modulo 2π:  

•  Only the non-quantized part of the Hall conductivity is 
defined by the Fermi surface!



• even the quantized part of Hall conductance 
is determined at the Fermi energy (in edge 
states necessarily present when there are 
fully-occupied bands with non-trivial 
topology)

• All transport occurs AT the Fermi level, not 
in “states deep below the Fermi energy”. 
(transport is NOT diamagnetism!)



non-quantized part of 3D case can also be 
expressed as a Fermi surface integral 

• There is a separate contribution to the Hall 
conductivity from each distinct Fermi surface  
manifold.

• Intersections with the Brillouin-zone boundary need to 
be taken into account.

“Anomalous Hall vector”:

integral of Fermi vector
weighted by Berry 
curvature on FS

Berry phase around
FS intersection with

 BZ boundary

This is ambiguous up to a reciprocal vector, 
which is a non-FLT quantized Hall edge-state 
contribution

SΓ2
Γ1

Γ1

Γ2

Γ3



• The  Fermi surface formulas for the non-quantized 
parts of the Hall conductivity  are purely 
“geometrical” (referencing both k-space and Hilbert 
space geometry)

• Such expressions are so elegant that they “must” be 
more general than free-electron band theory 
results!

• This is true: they are like the Luttinger Fermi 
surface volume result, and can be derived in the 
interacting system using Ward identities.



An exact formula for the T=0 DC Hall conductivity:

• While the Kubo formula gives the conductivity tensor as a current-
current correlation function, a Ward-Takahashi identity allows the 
ω→0, T→0 limit of the (volume-averaged) antisymmetric (Hall) part of 
the  conductivity tensor  to be expressed completely in terms of 
the single-electron propagator! 

• The formula is a simple generalization and rearrangement of a 2+1D 
QED3 formula obtained by Ishikawa and Matsuyama (Z. Phys C 33, 41 (1986), Nucl. 

Phys. B 280, 523 (1987)), and later used in their analysis of possible finite-size 
corrections to the 2D QHE.

(PBC, discretized k)exact (interacting) T=0 propagator

antisymmetric part 
of conductivity tensor

agrees with Kubo for free electrons, but is quite generally EXACT at T=0 for 
interacting Bloch electrons with local current conservation (gauge invariance).



• Simple manipulations now recover the result 
unchanged from the free-electron case.

• After 43 years, the famous Luttinger (1961) 
theorem relating the non-quantized part of 
the electron density to the Fermi surface 
volume now has a “partner”.



For the Future:

• General reformulation of FLT for arbitrary Fermi 
surface geometry and topology.   Bosonization 
revisited?  Use differential geometry of manifolds

• non-Abelian SO(3) Berry effects on spin-
degenerate Fermi surface?

• role of “quantum distance” ? (approach weak 
localization by adding disorder to FLT, not 
interactions to disordered free electrons?)

• wormholes (monopoles at band degeneracies) and 
other exotica!  (singular Berry curvature means a 
singular metric)


