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What is the Fermi surface of metals?

® “A surface in k-space separating empty and
filled states at T=0" (free electron viewpoint)

or

® “A set of one or more compact 2-dimensional manifolds on
which long-lived quasiparticle states can flow in response to

applied fields” (a_“quantum geometric” viewpoint.)

| will describe the second “intrinsic” geometric viewpoint
where previously unnoticed aspects of the Fermi surface
“emerge”.

leads to the solution of a | |0 year-old puzzle: the origin of
the “Anomalous Hall effect” in ferromagnetic metals , now
seen to be a quasiparticle Berry phase effect!




Fermi surface of a noble metal (silver):

Abstract view of the same surface
(and orbits) as a compact manifold
of quasiparticle states

(with genus g = 4,

(X . . . 99 G —
conventional view as a surface in open-orbit dimension™ d*~ = 3).

the Brillouin zone, periodically p T
repeated in k-space Dimension of Bravais lattice of reciprocal

lattice vectors G corresponding to k-space
De Haas-Van Alpen effect allows extremal P 8 P

cross-sections to be experimentally
determined

~N

displacements associated with periodic open

orbits on the manifold.
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Ingredients of Fermi-liquid theory on a Fermi-surface manifold

K-space geometry Kinematic parameters
4 R . K-space metric /) inelastic
kr (8) Fermi vector U, (8) = 0, kr - O kp ¢(s) | mean free path

- direction of
nF(S) Fermi velocity

renormalization

Z(S) factor

Hilbert-space geometry

Hilbert-space metric

Berry gauge fields:
Z(2) +SO3) 9s =2

u(l) gs =1
Fermi surface f
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Quasiparticles “live” only on the Fermi surface.

® This leads to a 5-dimensional symplectic
(phase space) structure:

® 3 real space + 2 k-space

® 2 pairs + | “chiral” unpaired real space
direction at each point on the Fermi-
surface manifold

® the unpaired direction is the local Fermi
velocity direction.



Physical significance of “Hilbert space geometry”

if both spatial inversion
and time-reversal symmetry
are present’

Hilbert-space metric

Berry gauge fields:

Z(2) + SO@) g =2
U(l) gs =1 ( otherwise™ )

" assumes spin-orbit coupling

® The Hilbert-space metric and the Berry gauge fields modify the
ballistic behavior of quasiparticles which are accelerated by quasi-
uniform electromagnetic fields, chemical potential and thermal
gradients, strain fields, etc.

® Hilbert space geometric effects are completely omitted in a
single-band approximation that also neglects spin-orbit coupling
(like a one-band Hubbard model).



New Physics that emerges:

found so far:
® (Intrinsic) Anomalous Hall Effect in Ferromagnetic

metals: the recently-validated Karplus-Luttinger
(1954) theory is now seen as a Fermi surface
geometry effect! (FoMH, Phys. Rev. Lett. 93,206602 (2004))

® “Composite Fermion” Fermi liquids at v = |/2m
lowest Landau level filling also exhibit an AHE.



/ / . network of

/ electronic orbitals
— tied to positions of
atomic nucleii

Orbital ¢/; at
position 7;

® for new effects, need at least TWO orbitals

in the unit cell.

® Specify (a) Hamiltonian matrix elements on
network AND (b) embedding of orbitals in

real Space continuum (needed for coupling to slowly-

varying electromagnetic fields, thermal gradients, etc.)

gauge-invariant interactions
(origin of frequency-
dependent self-energy)




Matsubara single-electron (finite-temperature) Green’s function:

(0 < T < B is “imaginary time”)

Gij (1) = —(Trci(T)eh) pr —m=n - un

¢; creates an electron in an orbital that is physically

located at a real-space position 7;

(

When T = /2 (the largest imaginary-time
separation), the Green’s function is Hermitian !

Gij(38) = G5:(50)

~N

J

Oo,™™®

Gi;(8/2) =

B/2

Ir (e_BHmcie_ﬁHmc;)
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® Fundamental eigenproblem that will define the Fermi surface:

Equilibrium

in one-
property of an 1 particle
interacting  ——P» g . - ( — /8) qj S — g - Hilbert
many-particle 7’3 2 VJ v Vi s:Jaig
system. f Y
! \
Gij(38) = G;i(36) real orthogonal

eigenvalues

eigenstates



Bloch character of eigenstates:

® Gij depends only on H, but indices i,j
range over all orbitals; replace by:

Gij(k; 50) = Gij(58)e™ M=
® This now also depends on the real-space
positions 7; of the orbitals, but now indices

I,j just range over orbitals in the unit cell
(includes spin)

\Ij(k)m — eik.mu(k)m' « Full Bloch state

(property of Hamiltonian

alone) (embedding-dependent factorization)
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Lehmann representation |«

. atlowT!

' > , . — y
Gij(k,58) = f Aij(e,k;T) (58sech 58(e — p))

— O

® For interacting electrons, at finite T, Aj;(e, k ;T) is a
positive-definite Hermitian matrix, but cannot be
simultaneously diagonalized at different €

e Gauge-invariantlocaldensity of states(seenin
photoemission/absorbtion):

ple,r,T) Zé / dg—kA--(e k:T)
.7 'r'rj . (27’(’)3 YAGERAS
P hlghT | P low T

‘/\Mide B

T 8 \ RN 8
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4 )

.0
concentrated

Gij(k,53) = / Aij(e,k;T) (38sech 20(e — p)) €t neare=u

at low T!
— OO

\_ J

® For non-interacting electrons, diagonalizing Gi; (k, ¥2B ) is
equivalent to diagonalizing the one-body Hamiltonian:

hij (k)unj(k) — 8n(k)unz (k) hii(k) = hijeik'(rﬂ'—”)

as T —0, this diverges if k

is on the Fermi surface,
but vanishes otherwise.

eigenvalue of the non-interacting system Green’s function



Divergence of the eigenvalue of the Green’s function
signals the formation and location of the Fermi surface

T diverges at

] In Fermi liquid
the Fermi | theory, the
surface as | eigenvalue becomes

large at low T for k
T_’O near kg, but

{1
g

eventually decreases
again when the

BCS transition to
superconductivity
occurs...




Scenario for a normal metal as it is cooled:

(a) “cold spots” with a large eigenvalue of G;;(%2f3) (and
Jy O  a quasiparticle with a inelastic mean free path much
f longer than unit-cell dimensions) form in isolated regions
t #  of the Brillouin zone.

(b) The“cold spots” link up to form a connected region
of long-lived quasiparticles. Their mean free path is long
enough for the surface to be measurable with the De

Haas-Van Alpen effect. This is a degenerate Fermi liquid.

decreasing T

| Tc = : = (c) The BCS transition to weak-coupling
' - superconductivity destroys the Fermi surface by opening
a gap.

In high-T. materials, the transition to strong-coupling superconductivity may
occur at stage (a) (are these “cold spots” the “Fermi arcs™?)




k-space Fermi-surface geometry:

® s = (s',;s?) is a 2-component curvilinear
parameterization of the Fermi surface.

® k¢r(s) is a““dangerous variable”, only defined modulo
a reciprocal vector G, and is not gauge invariant:

: / Only this combination is
ez(kF (3) o kF (3 )) R <€ physically-meaningful: (R is any

periodic lattice translation)

® Nng(S) is the (unit vector) direction of motion of the
quasiparticle in real space, if s is not changing with
time.




Hilbert space geometry

There is a natural definition of “‘distance’ in
Hilbert space:

D(|\Ij1>7 |\Ij2>)2 =1- |<\P1|\Ij2>|

“Pure-state’ limit Bures-Uhlmann distance
between density matrices. max D =|
(orthogonal states)

satisfies symmetry, triangle inequality.

Berry gauge invariant: D2 = O iff states are
physically equivalent:
(U(l) gauge equivalence)

D12 =0 — |\112> — €ix|\Ifl>



Manifold of quantum states

o Letg = (g',g’....,89) (real) parameterize a d-
dimensional manifold, and |¥(g)) be a state in a

D-dimensional Hilbert space with d <2(N-1)

® [he covariant derivative is:

Zuz )i),  (ilg) = 0y

. 0
0,9(g9)) = ;%ui(g)lﬁ% Ou = Dy
Au(g) = —(¥|0,V) « U(l) Berry connection

D,¥(g)) = [0,%) —iAu[Y), (V[D,¥)=0.

Berry connection is a “vector potential” in g-space!



Riemannian metric structure (Provost and Vallee |1980)

(D Y|D,¥) =Guu(g) + iFu(9)

Positive Hermitian matrix (definite provided G,y
is non-singular, generic case)

Guv is a real symmetric metric tensor, derives
from the Bures-Uhlmann distance.

g}uﬂgau — 55
Fuv = Oy Ay - Oy A, is the Berry Curvature

(analog of magnetic flux density in g-space!)

> 07‘}‘ F analog of electromagnetic
gl“/ =Y RO VT stress-energy tensor?

fw(g) = F(g)| det g‘l/ZEHV |F(s)]* < 1 | special form

for a 2-manifold



Berry curvature

® (Berry 1984, Simon 1983, TKNN 1982) ;
now much more familiar than the

Riemannian metric structure.

® Berry curvature is analog of magnetic flux density
(satisfies Gauss law)

® Berry connection is analog of magnetic vector potential

® First Chern invariant is analog of Dirac magnetic
monopole quantization.....



U(l) Berry ‘“gauge field” on the manifold

1Pr

Berry’s phase for a closed directed path on the manifold
can be obtained from the integral of the Berry curvature Berry 1984
over any oriented 2-manifold bounded by the path.

1
o= b Fulg)dg" ndg” = O (a1)
T JMm

The integral of Berry curvature over a
closed 2-submanifold M gives the integer
“Chern number” topological invariant of
M (“first Chern class”),




Application to the Fermi surface

® “old” (k-space) geometry” Ke(s), ng(s).

® “new” (Hilbert space) geometry: G, (s),

(Riemann metric), plus A, (s) (U(1) Abelian
“gauge potential”)

if the Fermi surface is spin-split: this U(l) gauge potential becomes a
topological Z(2) “gauge potential” if the Fermi surface is not spin split
(both spatial inversion and time-reversal unbroken), but an additional

SO(3) non-Abelian gauge potential A’,(s) appears if spin-orbit coupling
is present.



relation to embedding in space

® On the Fermi surface, the metric G,v(S), and

Berry connection(s) Ay(s) ( A%(s)) are not

quite the “standard” ones, because they
characterize the geometry of its embedding of
the electronic system in continuum space, as
well as its Hamiltonian.

® (only the Topological invariants are independent
of the embedding)



Hall effect in metals:

E.’I; = /O.’I:y Jy Pry = R()BZ isotropic (cubic) case

Hall effect in ferromagnetic metals with B parallel

to a magnetization in the z-direction, and isotropy
in the x-y plane:

Py — R M~* + RyB~

The anomalous extra term is constant when HZ is
large enough to eliminate domain structures.

What non-Lorentz force is providing the sideways
deflection of the current! Is it intrinsic, or due to

scattering of electrons by impurities or local non-
uniformities in the magnetization!?




Dissipationless Anomalous Hall Current in the Ferromagnetic Spinel CuCr,;Se,_,Br,

Wei-Li Lee!, Satoshi Watauchi?t, V. L. Miller?, R. J. Cava®?, and N. P. Ong!3*
! Department of Physics, ?Department of Chemistry,
3 Princeton Materials Institute, Princeton University, New Jersey 08544, U.S.A.
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Karplus and Luttinger (1954): proposed an intrinsic
bandstructure explanation, involving Bloch states, spin-orbit
coupling and the imbalance between majority and minority
Spin carriers.

A key ingredient of KL is an extra “anomalous velocity” of
the electrons in addition to the usual group velocity.

More recently, the KL “anomalous velocity” was
reinterpreted in modern language as a “Berry phase” effect.

In fact, while the KL formula looks like a band-structure
effect, | have now found it is a new fundamental Fermi liquid
theory feature (possibly combined with a quantum Hall
effect.)



The DC conductivity tensor can be divided into a symmetric Ohmic
(dissipative) part and an antisymmetric non-dissipative Hall part:

In the limit T —0, there are a number of exact statements that can
be made about the DC Hall conductivity of a translationally-invariant
system.

For non-interacting Bloch electrons, the Kubo formula

gives an intrinsic Hall conductivity (in both 2D and 3D)
b e? 1

= (K —en(k
THall = Y %;fn (k)O(er —enlk))

This is given in terms of the total Berry curvature of
occupied states with band index n and Bloch vector k.



If the Fermi energy is in a gap, so every band is either
empty or full, this is a topological invariant:
(integer quantized Hall effect)

2
e 1
oY = ——v v = an integer(2D) TKNN formula
h 2
w_ 1 abepe g iprocal vector G' (3D)
O — € c — a I'eClprocCal vecior
I (27)2 Y

In 3D G = vG(, where GGy indexes a family of lattice planes with a 2D QHE.

Implication: If in 2D, v is NOT an integer, the non-integer
part MUST BE A FERMI SURFACE PROPERTY'!

In 3D, any part of K modulo a reciprocal vector also
must be a Fermi surface property!




2D zero-field Quantized
Hall Effect

FDMH, Phys. Rev. Lett. 61,2015 (1988).

® 2D quantized Hall effect: @Y = ve?/h. In the
FIG. 1. The honeycomb-net model (“2D graphite”) showing

absence of interactions between the Partldes’ nearest-neighbor bonds (solid lines) and second-neighbor bonds

V must be an integer, There are no current- (dashed lines). Open and solid points, respectively, mark the A4

. . . . . and B sublattice sites. The Wigner-Seitz unit cell is con-
carrying states at the Ferml Ievel In the Interior veniently centered on the point of sixfold rotation symmetry

of a QHE system (a" such states are localized (marked “*”’) and is then bounded by the hexagon of nearest-
. neighbor bonds. Arrows on second-neighbor bonds mark the
on Its edgel. directions of positive phase hopping in the state with broken

time-reversal invariance.

® The 2D integer QHE does NOT require

Landau levels, and can occur if time-reversal 33 V=0
symmetry is broken even if there is no net
magnetic flux through the unit cell of a periodic Moo
system. (This was first demonstrated in an f
explicit “graphene” model shown at the right.).
-3/3 v=0
® Electronic states are “simple” Bloch states! - 0 ™
(real first-neighbor hopping ,, complex second- |, =/ e S orect phases (v =1

where 6™ =ve?/h) occur if | M/t3| <3+/3|sing|. This figure

neigh bor hOPPlng tze'q’, alternating onsite assumes that ¢ is positive; if it is negative, v changes sign. At
. the phase boundaries separating the anomalous and normal
Potentla.l M) (v=0) semiconductor phases, the low-energy excitations of the

model simulate undoubled massless chiral relativistic fermions.



Semiclassical dynamics of Bloch electrons

Motion of the center of a wavepacket of band-n electrons centered at k in

reciprocal space and r in real space: (Sundaram and Niu 1999)

write magnetic flux density
h dka E F drb as an antisymmetric tensor

m— (& E— C
dt @ T €Lab dt EFop(r) = €ape BS(1)

dr® dk
L a ab b
Karplus and Luttinger 1954

Note the “anomalous velocity” term!
(in addition to the group velocity)

® The Berry curvature acts in k-space like 2 magnetic flux density acts in real
space.

¢ Covariant notation k, ™ is used here to emphasize the duality between k-

space and r-space, and expose metric dependence or independence (a €{x,y,z }).



Current flow as a Bloch wavepacket is accelerated

_ X

regular flow

k+dk, t+6t
_M X
_>

“anomalous’”’ flow

® |f the Bloch vector k (and thus the periodic factor in the Bloch state) is
changing with time, the current is the sum of a group-velocity term
(motion of the envelope of the wave packet of Bloch states) and an
“anomalous® term (motion of the k-dependent charge distribution
inside the unit cell)

® [f both inversion and time-reversal symmetry are present, the
charge distribution in the unit cell remains inversion symmetric as k
changes, and the anomalous velocity term vanishes.



2D case: “Bohm-Aharonov in k-space”

TY = e? 1 2 X n
o' = B (2r)? /d k (Vi x A(k))n(k)
vy e’ 1
ord = e A(k) - dk

ey _ i (I)];erry
h 27

® The Berry phase for moving a quasiparticle around the
Fermi surface is only defined modulo 27:

® (Only the non-quantized part of the Hall conductivity 1s
defined by the Fermi surface!




® even the quantized part of Hall conductance
is determined at the Fermi energy (in edge
states necessarily present when there are
fully-occupied bands with non-trivial

topology)

® All transport occurs AT the Fermi level, not
in “states deep below the Fermi energy”.
(transport is NOT diamagnetism!)



non-quantized part of 3D case can also be

expressed as a Fermi surface integral

® There is a separate contribution to the Hall

conductivity from each distinct Fermi surface
manifold.

® |ntersections with the Brillouin-zone boundary need to
be taken into account.

“Anomalous Hall vector”: 1 , dg,
K =) Ky(modulo G)  Kao=- /d fkﬁZGif dA
i=1 L%

" on
o (04
g /Fl integral of Fermi vector Berry phase around
r 4 weighted by Berry FS intersection with

curvature on FS BZ boundary

~T° [ This is ambiguous up to a reciprocal vector,

—
which is a non-FLT quantized Hall edge-state
/ contribution

Fl




® The Fermi surface formulas for the non-quantized
parts of the Hall conductivity are purely
“geometrical”’ (referencing both k-space and Hilbert
space geometry)

® Such expressions are so elegant that they “must” be
more general than free-electron band theory
results!

® This is true: they are like the Luttinger Fermi
surface volume result, and can be derived in the
interacting system using VWard identities.



An exact formula for the T=0 DC Hall conductivity:

® While the Kubo formula gives the conductivity tensor as a current-
current correlation function,a Ward-Takahashi identity allows the
w—0, T—0 limit of the (volume-averaged) antisymmetric (Hall) part of
the conductivity tensor to be expressed completely in terms of
the single-electron propagator!

® The formula is a simple generalization and rearrangement of a 2+1D
QED3 formula obtained by Ishikawa and Matsuyama (z phys C 33,41 (1986), Nucl.

Phys. B 280,523 (1987)), and later used in their analysis of possible finite-size
corrections to the 2D QHE.

Gij(k,w) = —i/ dt e (T {cki(t), cf;(0)})  {cki ;b = Onnrdi;

exact (interacting) T=0 propagator (PBC, discretized k)

2 abc . )
. €" € antisymmetric part
lim o9 (w,T) = K. 4 Tep
of conductlwty tensor

w, T 0 T R (21)2

K — lim Eabc/ dSk/ _ezwnTr ((Vb d (IHG))(GV G—l))
B * Ow

n—>0+

agrees with Kubo for free electrons, but is quite generally EXACT at T=0 for
interacting Bloch electrons with local current conservation (gauge invariance).



, O

5~ (In G))(GVCG_1)>

K, = lim | d / = e iwn Ty ((v
BZ — 00

77—>O+ 27T

® Simple manipulations now recover the result
unchanged from the free-electron case.

® After 43 years, the famous Luttinger (1961)
theorem relating the non-quantized part of
the electron density to the Fermi surface
volume now has a “partner”.



For the Future:

General reformulation of FLT for arbitrary Fermi
surface geometry and topology. Bosonization
revisited? Use differential geometry of manifolds

non-Abelian SO(3) Berry effects on spin-
degenerate Fermi surface?

role of “quantum distance” ! (approach weak
localization by adding disorder to FLIT, not
interactions to disordered free electrons?)

wormholes (monopoles at band degeneracies) and
other exotica! (singular Berry curvature means a
singular metric)



