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Abstract

Here is the way to derive Eq. (4.17)
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I. TRANSITIONS STIMULATED BY THE SPECTRAL DIFFUSION

This essentially formal section is dedicated to the derivation of Eq. (4.17). This result

is quite universal and independent of the particular mechanism of the relaxation. One can

briefly explain this result using the following qualitative picture of resonant tunneling.

In this section we calculate the rate of transitions induced by the spectral diffusion as-

suming that the single two-level system is characterized by the tunneling amplitude ∆0 and

the level shift ∆(t), which depends on the time and passes through zero due to the spectral

diffusion. This condition is satisfied when the characteristic energy shift is less than the dis-

persion of the interaction WT = U0P0T . Since fluctuations of the molecular field are caused

by the rapid phonon-induced transitions of environmental thermal TLS one can treat the

field ∆(t) classically. One can also assume that the field ∆(t) is distributed continuously

and almost uniformly within the domain (−WT , WT ) with the distribution density 1/WT .

The continuity is due to the long-range character of the interaction. It can be shown that

any interaction decreasing with the distance slower than exponentially leads to the smooth

continuous distribution of possible values of the field ∆(t) due the thermal fluctuations of

thermal TLS. Indeed, the characteristic energy discreteness for the possible values of ∆(t)

induced by the interaction within the radius R scales as δR ∼ exp(−ηnT R3) (where η ∼ 1

is the numerical factor and nT P0T is the density of thermal TLS, while the interaction at

longer distances is of order of 1/R3 and it will contemporary reduce the discreteness scale

filling the gaps in the distribution with increasing the interaction radius. One should note

that our consideration is analogous to the work by Prokofev and Stamp [1] where the similar

problem has been resolved for the tunneling of electronic spin coupled to the nuclear spin

bath and Eq. (11) is quite similar to their final result.

Thus the problem can be reduced to the two levels coupled by the small tunneling am-

plitude ∆0 and interacting with the random time-dependent field ∆(t). We can represent

the system Hamiltonian using pseudopin 1/2 model, where the projections Sz = ±1/2 cor-

responds to two states of the system and Sx-term is responsible for tunneling

Ĥ = −∆(t)Sz −∆0S
x. (1)

We assume that our system initially occupies the state Sz = 1/2 and study the probability

of its transfer to the other state Sz = −1/2 with the time t. Then the wavefunction can be
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expressed as

c+(t)|+ > +c−(t)|− > (2)

where indexes + and − denotes the states with the projections Sz = ±1/2, respectively, and

the coefficients c+ and c− satisfy the time-dependent Schrodinger equation (we set ~ = 1)

i
dc+

dt
=

∆(t)

2
c+ +

V

2
c−;

i
dc−
dt

= −∆(t)

2
c− +

V

2
c+; (3)

with initial conditions

c+(0) = 1; c−(0) = 0. (4)

We are interested in probabilities to find our system in |+ > of |− > states. These

probabilities are expressed by squared absolute values of wavefunction amplitudes P+ =|

c+ |2, P− =| c− |2. Using the Schrodinger equation Eq. (3) one can write down equations

for those probabilities as

i
d | c+ |2

dt
= −i

d | c− |2

dt
=

∆0

2
(c−c∗+ − c+c∗−). (5)

Similarly one can derive the equation for the terms in the right hand side of Eq. (5)

i
dc+c∗−

dt
= ∆(t)c+c∗− +

∆0

2
(1− 2P+),

c∗+c− = (c+c∗−)∗. (6)

Deriving the latter equation we used the conservation of the normalization of our wavefunc-

tion | c+ |2 + | c− |2= P+ + P− = 1. One can formally express the left hand side of Eq. (6)

in terms of the probability P+ as

c+c∗−(t) = i
∆0

2

∫ t

0

dτ exp

(
i

∫ t

τ

dτ1∆(τ1)dτ1

)
×(1− 2P+(τ)). (7)

Substituting this expression into Eq. (5) we get the closed equation for the probability to

find our system in the state Sz = 1/2

dP+

dt
=

−∆2
0

2

∫ t

0

dτ cos

(∫ t

τ

dτ1∆(τ1)dτ1

)
(1− 2P+(τ)). (8)
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Integrating Eq. (8) with respect to the time we got

P+(t) = 1−

−∆2
0

2

∫ t

0

dt1

∫ t1

0

dτ cos

(∫ t

τ

dτ1∆(τ1)dτ1

)
(1− 2P+(τ)). (9)

At this point we are going to study the behavior of P+(t) using the iteration method. In the

first step one can set P
(0)
+ (t) = 1 in accordance with the initial conditions and substitute it

to the right hand side of Eq. (9) which leads to the first iteration

P
(1)
+ (t) = 1

−∆2
0

2

∫ t

0

dt1

∫ t1

0

dt2 cos

(∫ t

t2

dτ1∆(τ1)dτ1

)
. (10)

To evaluate the expression for P+ one should average the right hand side of Eq. (9) over

possible realizations of the random field ∆(t). To perform this averaging one can use the

fact that the relaxation of the field due to the interaction of thermal TLS with phonons

is relatively slow compared to the decay rate of the average cosine < cos(∆t) > with the

time t due to the static fluctuations of the energy ∆. Indeed, the characteristic dispersion

of the random field WT is proportional to the thermal energy T WT ≈ U0P0T , while the

rate of phonon stimulated transitions in the environment scales as 1/τph ∼ AT 3. Then

averaging the cosine function under the integral in Eq. (10) one can approximately assume

∆(t) = const and perform averaging over various static realizations of ∆(t) because in this

case the average cosine < cos(∆τ) > decays at times τ ∼ 1/WT � τph. Then one can

replace the integral over τ with the δ-function and we get

P+(t)(1) = 1− k1t;

k1 =
π∆2

0 < δ(∆) >

2
∼ ∆2

0

WT

. (11)

This equation leads to the estimate of the transition time reproducing the earlier used

expression Eq. (11). Its accuracy can be verified considering the next iteration in Eq. (9).

P
(2)
+ (t) = 1

−∆2
0

2

∫ t

0

dt1

∫ t1

0

dt2 cos

(∫ t1

t2

dτ1∆(τ1)dτ1

)
+

∆4
0

4

∫ t

0

dt1

∫ t1

0

dt2∫ t2

0

dt3

∫ t3

0

dt4

〈
cos

(∫ t1

t2

dτ1∆(τ1)

)
cos

(∫ t3

t4

dτ2∆(τ2)

)〉
(12)
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Correction terms should be averaged over random realizations of the field ∆(t). Averaging

of the first term yields the answer Eq. (11). The second term is much more complicated.

It describes the correction due to the coherent return of the system back to its initial

state. If the field ∆ is time-independent then this term is very large because of the phase

compensation of two cosines. Taking ∆ to be constant and performing averaging over its

random realization one can get for the main term

δ
(2)
stat =

=
∆4

0

8

∫ t

0

dt1

∫ t1

0

dt2∫ t2

0

dt3

∫ t3

0

dt4F (WT (t1 − t2 − t3 + t4)), (13)

where

F (WT t) =< exp(i∆t) >, (14)

and averaging is made over all static realizations of the random field ∆ having the charac-

teristic value WT . Integration over one of the four time arguments in Eq. (13) yields the

factor 1/WT similarly to Eq. (11) while integration of remaining constant over all other

three arguments results in the factor t3 so we get

δ
(2)
stat ≈

∆4
0t

3

WT

. (15)

This static field correction becomes comparable with the first order term Eq. (11) at t ∼

1/∆0 and after this time we cannot use the first approach. The average transition probability

is then given by P− ∼| ∆0 | /WT . This transition probability describes the effect of overlap

between two different levels induced by their coupling ∆0. The transferred density ∆0/WT

is associated with rare resonances having |∆| ≤ |∆0| where almost the whole density is

transferred. The factor ∆0/WT expresses the probability of such resonance which defines

the average population transfer.

The situation is quite different when the fields ∆(t) changes with the time and the

memory about its previous value is lost during the characteristic time τ∗ ≈ T2 induced

by the irreversible interaction with phonons. The correlation time τ∗ can be approximated

by the system dephasing time T2 which is evident from the one to one correspondence of

the second correction to the probability expression with the standard expression for the

spin echo-amplitude caused by the similar phase correlations. For a crude estimate of the
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correction we make a straightforward assumption that when t1 − t4 > τ∗ in Eq. (10) the

correlation between two cosines can be totally neglected, while at t1 − t4 < τ∗ one can

neglect the time-dependence of the field ∆. Then we have two contributions expressed by

correlated and non-correlated terms. The correlated term has the form similar to the static

field expression Eq. (15) with the important replacement of t3 factor with the smaller factor

tτ 2
∗

δ(2)
corr ≈

∆4
0

4

∫ t

0

dt1

∫ t1

t1−τ∗

dt4

∫ t1

t4

dt2 cos

(∫ t1

t2

dτ1∆(τ1)

)
∫ t2

t4

dt3 cos

(∫ t3

t4

dτ2∆(τ2)

)
≈ ∆4

0τ
2
∗ t

WT

, (16)

while the second term can be well approximated by the second expansion term of the stan-

dard exponent describing relaxation

δ(2)
noncorr

≈ ∆4
0

4

∫ t

0

dt1

∫ t1

0

dt2

〈
cos

(∫ t1

t2

dτ1∆(τ1)

)〉
∫ t2

0

dt3

∫ t3

0

dt4

〈
cos

(∫ t3

t4

dτ2∆(τ2)

)〉
≈ (k1t)

2

8
. (17)

It can be shown making independent averaging of cosine in Eq. (9) that the collection of all

noncorrelated terms leads to the exponential behavior of the probability function

P+(t) = 1/2 + 1/2(1− exp(−k1t). (18)

The correction to this behavior can be estimated comparing Eq. (16) with the first order

correction δ1 ≈ k1t in Eq. (11). This yields

δ
(2)
corr

δ1

≈ ∆2
0τ

2
∗ . (19)

Since for nonadiabatic TLS we took the amplitude ∆0 small Eq. (4.16) is small compared

to 1/T2 one would expect that this and other corrections are always very small so one can

use Eq. (11) without any restrictions. One should note that the more accurate averaging

using the telegraph process formalism as in Refs. [2], where the similar consideration has

been applied to the spin system, leads to the same result.

6



It is useful to discuss the transitions described above qualitatively. Real transitions take

place when the field ∆(t) is small. Assume that there exists the resonant domain (−ε∗, ε∗)

and transitions take place mostly when ∆(t) belongs to this domain. The size of this domain

can be defined by the following self-consistent analysis. The size of the domain ε∗ exceeds

extremely small tunneling ∆0 because the energy change during the time 1/∆0 is much larger

than ∆0. If the energy change with the time is negligible then the population transfer takes

place during the time t∗ ∼ ~/ε∗ and after that the coherent oscillations of population take

place. The transferred population is given by the standard quantum mechanical expression

P∗ ≈ ∆2
0/ε

2
∗. If the change of energy during the time τ∗ exceeds the energy ε∗ then we

cannot use ε∗ in the denominator of the expression for P∗ but the larger energy associated

with the energy fluctuation should be used there. One can introduce the minimum energy

scale ε∗ such as the energy fluctuation during the time ~/ε∗ coincides with this energy. The

definition of our energy scale can be made in terms of the decoherence time τ2 as

ε∗ = ~/T2, (20)

where the decoherence time is the time corresponding to the phase fluctuation δφ(t) ∼∫ t

0
dτ(∆(τ) − ∆(0)) becoming of order of unity. One can estimate this decoherence time

setting the product of the energy fluctuation during the time t which is δ(t) ∼ WT (t/τph)

(see Refs. [2]) and the time t to be equal unity. This yields

ε∗ =
~
τ2

∼
(

WT ~
τph

)1/2

. (21)

When the transition energy ∆ exceeds ε∗ the transferred population during the time of

energy change less or of order of ∆ behaves as ∆2
0/∆

2 so we can neglect these contributions

compared to the resonant contribution. Thus transitions take place mostly when energy

∆ enters the resonant domain and for each entrance the transition probability is given by

(∆0/ε∗)
2. During the time t � τph the system can enter to the resonant domain Pt ≈ t/τ2

times and the probability to enter there Pε is given by the ratio of the resonant domain size

ε∗ to the whole energy domain size Pε ≈ ε∗/WT . The total probability of transition during

the time t is given by the product of all three factors P∗ · Pt · Pε leading to the phonon

independent result k1t ∼ ∆2
0t/WT . Setting this probability to unity one can estimate the
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transition rate as k1 ∼ ∆2
0/WT in agreement with Eq. (11).
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