
1. Localization Theory  
 The fundamental localization concept suggested in the classical Anderson paper in 
1958 is the subject of this introductory lecture. This is the very significant concept 
because it creates the language adequately describing elementary excitation in disordered 
system. I will introduce it assuming that the system is at zero temperature and there is one 
elementary excitation which we are going to study. The simplest model for describing 
this excitation is a tight-binding model. In such a model we have sites enumerated by the 
index i=1, .. N, which are coupled by transition amplitudes tij and have random energies 
φi characterized by the certain distribution function f(φ) centered at φ=0 and having the 
width w. The Schrödinger equation for the elementary excitation can be written either in 
the time dependent or in the stationary form (Eqs. (1a,b) below)  
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 The second equation was obtained from the first one setting h/)( iEt
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Disordering introduced in Eqs. (1.1a, b) is called diagonal disorder or site disorder. 
Alternatively, one can consider off-diagonal disorder, which is associated with the 
fluctuations of the transition amplitudes tij. It can be also characterized by some 
distribution function g(t). The physical system leading to the model Eq. (1) is illustrated 
in Fig. 1.1. Site index corresponds to the lowest electronic energy level in the dopant 
potential, which is shown by the horizontal line. Diagonal disordering in local energies φ 
is caused by fluctuations in the shape of potential wells, while the off-diagonal 
disordering in transition (hopping) amplitudes tij can be due to fluctuations in distance 
between dopants.  
 Model Eqs. (1.1a,b) describes many systems. It was applied by P. W. Anderson in 
1958 to study spin-waves in ferromagnets placed into random fluctuating magnetic field. 
This model also describes electrons in doped semiconductors. In this case disordering is 
caused by random positions of dopants as well as structural disorder and other impurities. 
It also describes phonons and excitons in irregular crystals and/or amorphous solids.  
 Anderson localization can be described as following. Depending on the energy E of 
elementary excitation Eq. (1.1b), characteristic disordering w and transition amplitudes tij 
the eigen state of the problem Eq. (1.1b) can be either localized (bound) or delocalized 
(unbound or extended). In the first case the wavefunction is essentially different from 
zero only in the finite domain of the space with the typical size l called the localization 
length. In the second case the wavefunction is essentially non-zero everywhere inside the 
sample. Formal definition of the localization can be given in terms of the so called 
participation ratio defined using the eigenstate wavefunction ψE(x) at certain energy E  

  ,)( 4

∫= xdxP E
d

E ψ        (1.2a) 
In the case of a discrete problem Eq. (1.1b) the participation ration can be expressed as  
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Here d is the system dimension. It is straightforward to see that if the wavefunction is 
different from zero only in the restricted domain of the size l then the participation ratio 
can be estimated as  
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which gives us a way to estimate the localization length (radius) in the continuous case. 
In a discrete case we have  
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Where n is the number of sites occupied by the given localized state.  
 In the case of the wavefunction distributed uniformly in the whole sample of the size 
L the participation ratio is defined by the inverse sample volume. Thus the crucial 
difference between localization and delocalization regimes can be defined in terms of the 
behavior of the participation ratio in the limit of an infinite system size. When L ∞ the 
participation ratio remains finite for localized states and it approaches zero for 
delocalized states. For the discrete system the inverse participation ratio is equal to the 
number of sites occupied by the quasi-particle eigenstate.  
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Fig. 1.1. Electron in disordered system (Eq. (1)).  

  
 In systems of high dimension d>2 the localization can be described using the hand-
waving concept of resonances, which is quite useful for all considerations of this lecture 
set. I will introduce this concept using two sites following earlier work by Burin, 
Maksimov and Chesalov (1987) and Levitov (1990).  
 To study localization we start with the very simple system of one particle on two sites 
i, j (molecular orbitals, local vibrational excitations, magnetization deviation from its 
saturated value, etc.) coupled by transition amplitude tij and having local energies φi and 
φj. The Schrödinger equation Eq. (1.1b) for this system can be expressed in the form  
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The solutions to this equation can be expressed in the form of the standard u-v transform 
(e. g. Levitov, 1990)  
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Fig. 2. Participation ratio for pair of sites
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Wavefunctions |i> and |j> describe particles completely localized on corresponding sites. 
The extent of the wavefunction delocalization can be defined using participation ratio as  
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The participation ratio reaches its minimum at precise resonance of two sites, when |φi-
φj|=0 and it is equal to ½ there, which means that the wavefunction is shared in equal 
proportions between two available sites. Number of occupied sites is expressed precisely 

by the inverse participation 
ratio. This corresponds to 
the maximum possible 
extension of the 
wavefunction on two sites. 
In the opposite limit |φi-
φj|>>tij the participation 
ratio asymptotically 
approaches unity, which 
means that the eigenstate 
wavefunction is essentially 
localized on one of two 
sites.  
 One can clearly see in 
Fig. 2 where the 
participation ratio is shown 
as a function of the  

dimensionless ratio e=|φi-φj|/tij that the wavefunction is essentially localized in one of the 
sites except for the case of resonant conditions which can be approximately expressed as  
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We can qualitatively define the pair of sites satisfying Eq. (1.7) as the resonant pair, 
while otherwise the pair of sites is non-resonant.  
 In the absence of the coupling between sites (tij=0) eigenstates of the problem (Eq. 
(1.4)) are localized on single sites and the participation ratio is equal to 1. Eq. (1.6) can 
be treated as the correction to the participation ratio in the fully localized states if we 
assume that this coupling is small. Since our system is random the participation ratio 
should be averaged over the distribution f(x) of random energy difference x=φi-φj. This 
correction can be expressed as  
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Assuming that the coupling of sites is small compared to the disordering one can 
approximate replace the function f(x) by its value at f(0) and then the straightforward 
integration yields  
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 It is interesting that the correction to the full localization participation ratio (P=1) is 
defined by the probability of resonance between sites i and j. Indeed the probability of 



resonance Eq. (1.7) can be expressed as ratio of the size of energy domain for e. g. energy 
φi corresponding to the resonance, which is around 2tij and the size of total domain of 
energy, which is given by W. The integral in Eq. (1.8) is defined by the resonant domain 
Eq. (1.7). Thus we can conclude that the reduction in the participation ratio is associated 
with the formation of resonant pairs.  
 In the next step we extent the perturbation theory analysis to a more complicated 
situation where each site is coupled to many other sites. Then if the coupling strength is 
small compared to the characteristic disordering W one can first treat pairs of sites 
separately in the lowest order of perturbation theory. The corrections from all sites j Eq. 
(1.8) should be added to each other and we find   
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It is clear that depending on the value of the correction Eq. (1.10) compared to unity, 
which is the participation ratio in a fully localized state, one can either expect that the 
coupling tij is too weak to break down a localization so all eigenstates are localized. If the 
correction is much larger than unity one can expect that all states are delocalized. Indeed, 
the 

correction Eq. (1.10) can be treated as the number of the resonant interaction per the 
given site i. If this number is much greater than one then one can create the infinite 
percolation cluster of coupled resonances (see Fig. 3) which promotes the delocalization 
of the quantum state through the whole sample.  
 The estimate of the number of resonances depends on the particular behavior of the 
transition amplitude tij with the distance. For electronic excitations it decreases with the 
distance according to the exponential law or faster (see Fig. 1) which can usually be 
replaced with the nearest neighbor interaction. Then we can assume that each site is 
coupled to Z other neighboring sites, while there is no coupling to sites located at longer 
distances. The sum in Eq. (1.10) can be expressed as    
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where t0 stands for the coupling at neighboring sites. This estimate permits us to get the 
localization criterion. If the disordering is strong  
          Wzt <         (1.12) 

 

Fig. 1.3. Percolational approach to the delocalization problem.  Resonant pairs are circled. In 
case A the number of resonances per site is much smaller than unity, in case B  a number of 
resonances per site is of order of unity but still insufficient to form the infinite cluster, in case C 
the number of resonances exceeds one so the infinite cluster is formed (shown by yellow 
couplings)) 
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then one can expect that eigenstates of the problem Eq. (1.1b) are localized while in the 
opposite limit they are delocalized.  
 Note that criterion Eq. (1.12) is derived for quantum states in the middle of the energy 
band with E~0. For eigenstates in the band tail |E|>W Eq. (1.12) changes to  
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Since in the band tail f(E) 0 the states at band edge are always localized.   
 Our consideration proves that if Eq. (1.11) is not satisfied then the perturbation theory 
starting with the strong localization of all states fails. Can we say what happens in the 
opposite limit? The alternative approach can be developed using the propagating waves 
as the basis and then considering corrections to some parameters of interest caused by 
disordering. One relevant approach to study the localization of quantum states with 
certain energy E is to evaluate the system conductivity assuming that we study the Fermi 
system at zero temperature and the energy of interest coincides with the Fermi energy. 
Then if the electronic states at the Fermi energy are localized the conductivity should be 
zero, while for delocalized states it is expected to be finite. We follow the work of 
Altshuller and coworkers. First we derive the Kubo formula for the conductivity and then 
use diagram technique to evaluate the conductivity.  
 Imagine that the system was in external alternating electric field with the frequency Ω 
that will be later set to zero. The field was turned on adiabatically slow starting at t=-∞  
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For a most general consideration we consider the system described by the Hamiltonian  
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where H0 describes the system and V is the perturbation associated with the external field  
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where Pb is the operator of the system dipole moment.  
 The conductivity is defined as the proportionality coefficient between the applied 
field and the induced current. The current can be found using the time-dependent density 
matrix calculated in the linear order in V.  Using the Schrödinger equation for the density 
matrix we can evaluate it as  
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Average current can be found using Eq. (1.17) as  
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Using Eq. (1.18) one can define the linear conductivity as  
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For the static conductivity one should take the limit of zero frequency.  
 Conductivity is the relevant characteristics for systems of charged particles. More 
general way applicable to delocalized excitations is to define the diffusion coefficient, 
which can be found using the Einstein relationship  
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where dn/dμ is the derivative of the Fermi particle density over the chemical potential, 
taken at zero temperature. This equation can be derived from the equilibrium condition 
for the current through the system  
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Considering the fact that ϕ−∇=E  and )( ϕμ enn −= and expanding the particle density 
over the small potential ϕ one can easily derive Eq. (1.20).  
 It is convenient to express all parameters using the system Green functions. In the 
noninteracting Fermi system one can express the Fermi particle density as 
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where E=μ is the energy of the quantum state of interest. Then the derivative of the 
chemical potential reads  
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where fai is the solution of the Schrödinger equation (1.1b) with the energy Ea  
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and V is the system volume.  
 Eq. (1.23) can be rewritten in terms of retarded and advanced Green functions of the 
system as  
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where average sign <…> stands for the configurational average over all possible 
realizations of disordering (potentials φi) and N is the number of lattice sites. The 
advantage of retarded and advanced Green functions is that they do not depend on the 
particle statistics and can be used for all quasi-particles of interest including electrons, 
phonons, photons, excitons and spin-waves. Below we also derive the expression for the 
conductivity of the non-interacting system Eq. (1.20) in terms of retarded and advanced 
Green functions. First we can define the operator of the dipole moment as  
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Then the current operator can be defined as the time derivative of the dipole moment  
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In the non-interacting system it is convenient to express the operator of current in terms 
of the basis of eigenstates Eq. (1.24) 
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Then the real part of the current-current correlation function can be expressed as  
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Substituting this expression into the definition of the conductivity Eq. (1.19) we got  
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 For the system without off-diagonal disorder in the simplest approach of decoupling 
of the average Green function product this equation leads to the Drude formula. Indeed, 
we can represent it as  

[ ] ,
)Im())Re((

)Im(
)2(3 222

2
2

2

EE

E
d

ab
ab

E

de

Σ+−Σ−

Σ
= ∫

p

pvp

εππ
δ

σ
h

    (1.31)  

where the Green function for the weakly scattered plane wave is used in the standard 
form  
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and the energy spectrum and group velocity of elementary excitations are defined as  
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v0 stands for the volume of the elementary cell.  
 In the domain where the scattering is weak the integral in Eq. (1.31) can be 
approximately evaluated leading to the Drude expression  

,
3

)(

)Im(6
)(

)1(
)(

)Im(3
2

0
2

2
0

2

220

22

abF

E

abF
F

E

abF
ab

vEge

vEge
x

dxEgve

τδ

δ
π

δσ

><
=

=
Σ

><
=

+Σ
><

= ∫
+∞

∞−    (1.34) 

 where the density of states is defined as  
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the average squared velocity is defined as  
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and the scattering time τ is given by  
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The transition to the classical Drude formula can be made taking into account that the 
product (2/3)g0(E)(mvF

2/2) is equal to the electron density n for the system with the 
spherical Fermi surface. This result in the Drude expression σ=ne2τ/m.  
 The approximation Eq. (1.33) is good when the scattering is weak. Below I discuss 
the effect of the strong scattering leading to the Anderson localization. The target of this 
study is to investigate corrections to the Drude formula Eq. (1.34) and see where they 
become critically important. We will show that they are significant under conditions 
when the corrections to the single site localization are negligible. Since the problem of 
diagonal disorder has been investigated by many people and for our future study the off-
diagonal disorder is more important we consider the model Eq. (1.1b) with the strong off-
diagonal disorder assuming that coupling constants tij are significantly different from zero 
for z>>1 neighbors of each site. We also assume that  
    0>=< ijt        (1.38)  
and it is characterized by some distribution function h(tij) which is symmetric with 
respect to 0.  This model is relevant to the case where the transitions of excitation are 
associated with the dipolar or elastic interactions like for excitons or spin-waves as well 
as for electrons in the strong magnetic field fluctuating in space. In the absence of 
diagonal disorder the model is close to the Wigner random matrix and we will reproduce 
several answers known for that system.  
 To characterize the system conductivity we need to calculate its configurational 
averaged Green functions. We start with the single particle retarded Green function 
satisfying the following equation    
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Here g stands for the Green function not averaged over configurations (distribution of 
energies). The result should be averaged during its calculation. The configurationally 
averaged Green function will be denoted by the capital letter G so  
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 We will use the perturbation theory method expanding the Green function in the 
leading order in the large parameter z>>1. The same result can be obtained using the Σ-
model but I prefer an iterative approach as most straightforward and qualitatively clear 
one.  
 Eq. (1.39) can be rewritten as  
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The first term in the right hand side of Eq. (1.41) can serve as the zero approximation 
while the second term is the correction. Then we can substitute it to the second term. 
Repeating this procedure an infinite number of times we can rewrite the solution for the 
Green function as the infinite series  
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After configurational average of the series the only diagonal G00 Green function differs 
from zero because all transition 
terms tkl should be met twice in 
Eq. (1.42) so that the path over 
sites must lead to exactly the 
same point, where it has 
started. Thus  
 .00 ii GG δ=  (1.43) 
This property serves as an  
excellent illustration of the well 
recognized fact that the 
configurationally averaged 
single particle Green function 
contains no direct information 

about the localization transition in the system. Moreover the Ioffe-Regel criterion telling 
us that the localization takes place when the mean free path of excitations gets 
comparable to their wavelength is fully irrelevant for the problem we study because 
elementary excitations cannot be represented as plane waves in the model with strong 
off-diagonal disorder. Despite of all those circumstances it is evident since the Wigner’s 
consideration that in the case of a large number of neighbors z representative excitations 
of the problem are delocalized.  
 Consider the terms in Eq. (1.42) non-vanishing after configurational average. First 
terms in the leading order in z are given by  

Fig. 1.4. Diagram approach to the single particle 
Green function. Open circle stands for the zero point 
Green functions and dashed line for transition matrix 
elements tij. 
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Neglected terms are related to the case where the third index k in last two terms in Eq. 
(1.44) coincides with i. This term is definitely small as 1/z compared to other terms in the 
series.  
 It is convenient to represent our expansion using diagrams shown in Fig. 4. In the 
leading order in z one can express the iteration series self-consistently as 
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where Gi is the Green function at site i averaged over all disordering except for the 
random potential φi. Eq. (1.45) is algebraic and we can solve it finding the closed 
equation for the Green function G in the form  
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 In the limit of weak disordering  
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one can set φ=0 in Eq. (1.45) or replace f(φ)=δ(φ) in Eq. (1.46). Then the Green function 
takes the well known semicircular form which expresses the density of states for the 
eigenmodes of random matrix  
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The density of states is defined by the imaginary part of this Green function. It differs 
from 0 for ztE 2|| < or otherwise there is no eigenstates in the remaining energy 
domain.  
 The important value to study is the density of states which can be expressed through 
the imaginary part of the Green function G. Taking imaginary part of both sides of Eq. 
(1.46) we got  
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Eq. (1.49) is the important identity which is the Word identity in the leading order in z. In 
the limit of weak disordering it leads to the Green function Eq. (1.48) while in the limit of 



strong disordering the imaginary part of the Green function is defined by the distribution 
function f as  
 ).(Im EfG π≈           (1.50) 
In this limit corrections to the density of states obtained within the single site approach 
G≈1/(E-φ) are negligible.  
 Consider the two particle Green function, which is relevant for our study of particle 
transport. The propagation of excitations can be adequately described by the average 
product of two Green functions (retarded and advanced) taken at similar coordinates and 
slightly different energies  
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This function is the partial contribution of quantum states with energy E to the Fourier 
expansion of the density – density correlation function <δnj(t)δni(0)> with the frequency 
Ω, which describes the propagation of particle density. One can define the backwards 
Fourier transform of the function Eq. (1.51) as 
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The limiting behavior of this function taken at i=j at t ∞  in the infinite sample 
characterizes whether the information originally stored at the position i. If the correlation 
function becomes 0 it means that the quantum states are delocalized so the particle gets 
infinitely far from its original location in the infinite time limit. If it is finite then the 
quantum states are localized. Below we show following Gorkov and Berezinskii that 
Kii(∞) is proportional to the average participation ratio of the quantum states with energy 
E.  One can represent the correlation function Eq. (1.51) as  
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The Fourier transform leads to the expression 
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In the limit of an infinite time all terms disappears due to oscillations except for those 
with a=b. Then the expression of interest takes the form  
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Configurational averaging of this expression permits us to rewrite it in the form of 
averaged participation ratio at the given energy E as  
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 Earlier we demonstrated that 
the participation ratio remains 
finite and close to unity for strong 
disordering zt<W Eq. (1.12). Now 

Fig. 1.5. Diagram approach to the two particle 
Green function. Notations are similar to Fig. 4. 
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we study the correlation function Eq. (1.51) in the opposite limit expanding it over large 
parameter z as we did for the single particle Green function. Diagram series leading in z 
is shown in Fig. 5. It is most convenient to evaluate the whole series using the Fourier 
transform with respect to coordinate j. Then the series becomes the geometric series, 
which can be evaluated as  
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Using the identity Eq. (1.49) and considering long time and distance limit corresponding 
to Ω, q  0 we get  
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In the limit of strong disordering Eq. (1.47) one can express the diffusion coefficient as  
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According to our findings Eqs. (1.58), (1.59), one can approximate the dynamics of 
quantum particle by the classical diffusion. This is definitely not fully true because the 
classical diffusion description does not contain interference which can be critically 
important for the quantum system. As we will see below the interference expressed by 
the 1/z corrections lead to localization of certain quantum states in 3-d systems. Moreover 
all states in 1-d and 2-d systems so the quantum phenomena can be really important. 
Nevertheless above the localization transition the classical diffusion description is very 
good for the 3-d quantum system.  
 To verify the applicability of this result for the diffusion coefficient we consider the 
Kubo expression for conductivity Eq. (1.30) in the leading order in z and then will study 
corrections to it. Actually, the order of correction in z corresponds to the number of loops 
in diagram expansion (like Figs. 1.4, 1.5 has no loops but each additional visit to the site 
creates the loop). The simplest approach for the conductivity Eq. (1.30) having no loops 
is defined by decoupling of average product of two Green functions 

( ) ( ) ,)()()()())((
4 ,,,

2

2
)0( EGEGEGEGttxxxx

V
e A

il
R
il

A
kj

R
kj

lkji
klijlbkbjaia −−−−= ∑

hπ
σ  (1.60) 



described by the first diagram in Fig. 6. Since configurationally averaged Green functions 
are diagonal in coordinates one can re-express the zero order conductivity as  
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Diffusion coefficient can be found using Einstein relationship Eq. (1.20) and since 
dn/dμ=NImG/(πV) we got the result  
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which coincides with the earlier result Eq. (1.59). This coincidence confirms the 
consistency of our approach.  
 Consider corrections to the diffusion coefficient describing the localization transition. 
The first order correction in 1/z is defined by single loop diagrams. It is also important 
that only average products of retarded and advanced Green functions give the significant 
contribution to the configurationally averaged results because such a product has poles in 
energy complex plane on different sides with respect to the real axis, while if we have 
similar Green functions the poles are on the same side with respect to the real axis. The 
critical difference in both integrals is illustrated below assuming the Lorentzian 

distribution of the random potential ( )22)(
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φ
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any distribution) assuming the validity of Eq. (1.47) that the density of states is defined 
by the random potential  
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In the case when disordering determines the density of states Eq. (1.47) (where as we will 
see below the corrections to the diffusion coefficient can be interesting) one can clearly 
neglect second and third integrals compared to the first one. It is also important that 

Fig. 1.6. Diagrams for the conductivity in leading order in  z and the correction to it taken 
assuming i=k, j=l in Eq. (1.60). All single loop approach corrections are shown. Factors xij are 
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because of the same reasons the only <GRGA> correlation function has the diffusion pole 
while it does not exist for the products of identical Green functions.  
 In Fig. 6 the simplest sequence of single loop diagrams is shown. Although there 
more possible choices for the single loop series only this one possesses the proper 
sequence of products <GRGA>. Also for our estimate purposes it is sufficient to see on 
the example of typical correction in Fig. 6 where the perturbation theory in z becomes 
irrelevant first.  
 Since the sum over m, n and other intermediate sites in Fig. 1.6 can be reduced to the 
geometric series Fig. 1.5, Eq. (1.57), we can use here these results to express the 
correction to the conductivity Eq. (1.61) as  
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It is important that the sign of the correction to conductivity is negative because of the 
product 2

ijjiij xxx −= in Eq. (1.30). The result is crucially sensitive to the system 
dimension because of the infrared divergence of inverse Fourier transform of 1/q2 for 
d=1, 2. We start with the consideration of the 3-d case and then will discuss lower 
dimension.  
 In the case d=3 one can represent the inverse Fourier transform of 1/q2 as  
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Then the correction (1.64) can be evaluated as  
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This result should be compared to the zero point approximation Eq. (1.61) to estimate its 
applicability. Taking the ratio of the correction to the zero order conductivity we get  
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Since the volume a3 where a is the effective radius of hopping exceeds the elementary 
cell volume V/N by the large number of neighbors factor z one get  
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Thus the corrections to the conductivity become important in the localization regime 
defined by Eq. (1.12). Our consideration from both sides gives similar estimate of the 
localization criterion. There is no way to improve our estimate using the perturbation 
theory because all corrections from either side in the crossover regime zt~W are 
comparable to each other and numerical there is required there. To my knowledge no 
analytical simplifications can be made near the transition point. Numerical study 
confirms the qualitative behavior described above.  
 Consider the case of the low dimension. For d=2 one has instead of Eq. (1.65)  
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where L is the system size. We will discuss the physical nature of this size dependence 
later after calculating the correction. This correction can be expressed as  
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In a one-dimensional case one can express the Fourier transform as  
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and we get  
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 Thus in a 3-d case our estimates confirms the naïve picture of percolational 
delocalization (see Fig. 1), while in low-dimensional systems the corrections to the 
conductivity depend on the systems size and become infinite when the system size 
approaching infinity. This reflects the full localization of all quantum states in model Eq. 
(1) in low dimension d=1, 2. The correction has the form of the number of returns of the 
diffusion path to its origin during the infinite time. As we know the probability to return 
back in one and two dimensional systems is unity after sufficiently long random walk 
while it is finite in a 3-d case. Quantum mechanical return back is coherent in sense that 
the particle continues “following the loop” that it made initially.  
 Localization radius of quantum states in low dimension can be estimated setting the 
correction to the conductivity to its zero point value. This radius behaves as  
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which emphasizes the exponential sensitivity of localization to disordering. At weak 
disordering this radius is very large and can easily reach macroscopically large value so 
than the localization can be ignored.  At finite temperature the maximum radius in Eq. 
(1.69) must be replaced by some radius where phase coherence fails and since this radius 
increases with decreasing temperature the conductivity has corrections logarithmically 
dependent on temperature. These effects predicted by Altshuller, Aronov, Larkin, and 
Khmelnitzkii, are called the weak localization and have been seen in many experiments.    
 It is interesting that qualitatively similar behavior of corrections to conductivity was 
found in scaling theory of localization by Abrahams, Anderson, Licciardello and 
Ramakrishnan. The only assumption they made is that when they consider the composed 
cubic sample of size 2L made of 2d cubic samples of the size L the conductance of the big 
sample is the function of conductances of smaller samples. This hypothesis can be 
expressed using scaling equation  
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In the case of a dimension d one would expect that for very large conductance Σ the 
system behaves classically meaning f(Σ)≈d-2 because the conductance of the classical 
system behaves as Ld-2. The corrections due to quantum effects are expected to be 
negative and increasing with decreasing conductance so one can assume the expansion 
over 1/Σ like  
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 In three dimensional systems this lead to the weak correction while in the case of d=2 
Eq. (1.74) takes the form  
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Accordingly its solution has the logarithmic correction dependent on the system size  
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This agrees with calculations expressed by Eq. (1.70) and moreover the constant A has a 
universal value of order of quantum conductance e2/h.  
 In a 1-d  case we got similarly  
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This equation also reproduces the quantum correction and in all cases the value of the 
coefficient A is close to the quantum conductance e2/h.    
 Localized states can be usually characterized by the localization length l which is 
defined by the exponential decrease of the wavefunction far from the center of the 
quantum state  
 )./exp(~)( lrr −ψ         (1.79) 
 The consideration should be made differently if the system Hamiltonian is not 
invariant with respect to the time-reversal symmetry. In the limit of strong random 
magnetic field we should assume the random phase on each hopping amplitude tij which 
leads to the following correlation rules  
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In this case all single loop terms in Fig. 6 
except for the first one give zero contribution 
to the diffusion coefficient. Correction 
associated with the first term and other 
similar terms (Fig. 1.7) can be interpreted as 
the effect of the level repulsion on the 
particle capability to leave the site i for the 

site j. Namely the repulsion of energy levels by the transfer matrix element tij leads to the 
difficulty to conserve energy during the particle hopping. The conservation of energy is 
required with the accuracy of the width of energy level which can be estimated using the 
diffusion coefficient as  

   .
2

W
zt

=
τ
h         (1.81)  

When the level repulsion (1.81) exceeds the hopping amplitude t one can ignore repulsion 
effects and this can be done at zt>W. This result coincides with earlier obtained criterion 
of delocalization. In the opposite limit the level repulsion cannot be neglected and one 
can expect particle localization.  

Fig. 1.7. Diagrams for the conductivity in 
case of the strong random magnetic field  
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 It is possible to include the level repulsion effect self-consistently into the equation 
for the width of the energy level Eq. (1.81) for estimate purposes only. The result (1.81) 
can be reexpressed in the form of the Born approximation  
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where E is the energy (φi) of the site i. In reality this δ-function should be replaced with 
some function with the width which is defined by the same self-consistent parameter 
(1.82)  
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We assume that the function F(x) has a maximum at x=0 with the width of order of unity.  
 Finally level repulsion can be included in the very straightforward manner as  
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Averaging leads to the replacement of function F/Γ with some dimensionless function G 
of the ratio tij/Γ having maximum at t=0.  
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Since the tij is not equal zero for Z neighbors and takes the same value there one can 
rewrite Eq. (1.85) as  
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If zt>W the ratio in the argument of the function G is much less then unity so we can 
replace this function by unity and then we reproduce the earlier answer. If zt<<W, then 
the arguments is much greater than 1. Even if an analytical expansion for the function G 
at large argument works e. g. we can set it in the form G(x)=c/x2, c~1 (the function G is 
expected to be even because both signs of Γ can be used in Eq. (1.84)) then we get  
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This equation has two solutions Γ=0 and Γ~W/z and we should choose zero because 
second choice conflicts with our assumption Γ<t.  
 This method gives the right estimate for the localization transition point from the 
upper side but it cannot be used to characterize the transition because there are other 
effects which were not considered, including e. g. corrections in Fig. 1.6. It is not 
applicable therefore to low-dimensional systems.  
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Some sample problems  

1. Derive the Kubo formula for the thermal conductivity (Zubarev, 1970)  
2. Derive analytical expressions for the conductivity and diffusion coefficient using 

the simplest approach in the Wigner model without diagonal disorder and in the 
Lloyd model where the distribution of the random potential is given by the 

Lorentzian distribution ( ).)( 22 φπ
φ

+
=

W
WP  

3. Assume that the system described by Eq. (1) is in the strong random magnetic 
field so that <tijtji>=t2, while <tij

2>=0. Investigate what happens with the 
correction to the conductivity in that case in 2-d system. Does it have logarithmic 
increase with the system size? How to handle the situation in the scaling 
localization theory.   

4. Derive Eq. (2.4) considering four point charges +q1 at position a1/2, -q1 at 
position –a1/2, +q2 at position r+a2/2, -q2 at position r–a2/2 assuming that a1, 
a2<<r and expanding the Coulomb interaction of couples of charges belonging to 
different dipoles over small lengths a and b. Remember that d1=q1a1, d2=q2a2.  


