
2. Localization and long-range coupling.  
 
We are getting to the topic more closely related to the target of this class. We consider the 
problem of localization in case of essentially non-local coupling tij in Eq. (1.1). The 
mathematical example of the long-range coupling is the power law distance dependence  
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where t0 is the interaction constant possibly dependent on angles and other parameters (i. 
e. transition dipole moments of local states for energy transfer problem, etc.), but having 
no essential dependence on the distance rij.  
 What is the physical source of this power law coupling? One can consider the 
example of excitation transferred between two atoms or molecules having nonzero 
transition matrix elements of the dipolar interaction. Then the dipole moment operator of 
each molecule contains the part 
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and d0 is the value of the transition dipole moment while operator c+ creates the excited 
state and the operator c annihilates it. If two molecules are located closer than the 
resonant wavelength of light  
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Then the interaction of them takes the standard form  
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Interaction in the form Eq. (2.4) leads to the excitation transfer Hamiltonian in the 
resonant approach 
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Similarly elastic interaction in solids leads to the 1/r3- long-range energy transfer. If 
dipolar moments are zero perhaps because of the symmetry then there exist quadrupole 
interaction decreases with the distance still by the power law 1/r5. It seems that the long-
range amplitude of excitation transfer is unavoidable except for the mass transfer 
(electrons or heavy particles). The interaction radius is restricted by the wavelength of the 
quanta responsible for excitation virtual exchange which can be estimated as λT~vh/kT, 
where v is the excitation velocity that is the speed of light for the dipolar interaction, the 
speed of sound for the elastic interaction or the Fermi velocity for the indirect exchange 
interaction. At low temperature this length is very large. For instance at T=1K the thermal 
wavelength of light is of order of 1cm which is comparable to the typical size of the 
experimental sample so we can ignore the corresponding constraint.  
 Consider what happens if we are using the transfer amplitude Eq. (2.1), assume that 
excitations hops between centers placed randomly in the space with the density n and 
each center is in some random potential φ characterized by the distribution f(φ). Also we 
assume that the angular average transition amplitude is 0, which is certainly true for the 
multipole interaction. The problem is similar to the one considered previously for the 
short-range interaction except for the interaction distance dependence.  



 First of all we restrict the consideration to the case of not very small exponent a in 
Eq. (2.1). We assume a>d/2, otherwise all characteristic rate expressions like 
∑

j
ijt 2 diverge at long distances so it is not clear how to treat such a system. I do not know 

any physical system with hopping amplitude characterized by the small exponent a<d/2.  
 Next we assume that disorder is strong in the sense of Eq. (1.47), so that the typical 
value of the sum of squared interactions da

j
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 Consider the correction to the participation ratio Eq. (1.10) in the case of the power 
law interaction tij Eq. (2.1) 
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where averaging is made with respect to the interaction amplitude. Changing the order of 
integration and evaluating integral over coordinate r we get  
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where νd is the volume of a d-dimensional unit sphere,   
  The correction diverges at a≤d. This is because the number of resonances 
diverges for the infinite volume of the system. The divergency in the number of 
resonances is caused by the divergence of the sum of absolute values of tij at a≤d at long 
distances. Since at small transition amplitude tij the probability of resonance is 
proportional to |tij|, the total number of resonances given by the sum of such probabilities 
diverges correspondingly. The delocalization becomes significant starting with the certain 
size R where the number of resonances becomes large. Restricting the sum over 
resonances in Eq. (2.7) by the certain value of R=Rmax one can find 
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Correspondingly at a<d one can expect that the delocalization shows up at the distance  
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The first estimate is indeed relevant while as we will see below the second estimate does 
not really give us the delocalization criterion because the logarithmic divergence is too 
weak. For a<d one can then estimate the rate of excitation hopping out of the site as  



 ( ) ,)0( //
0

*

0 ad
a

dada
a Unfnt

R
t

r −=≈
h

      (2.11) 

which resolves the delocalization problem.  
  In the case of a>d the excitations are localized when Eq. (2.6) is satisfied and the 
long-range interaction cannot assist them.  
 Can we describe the situation for d/2<a≤d using the delocalization regime? One 
can apply the earlier suggested self-consistent approximation Eq. (1.84) to study the 
average transition rate of excitation from the given site  
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After averaging over random potential we obtain the result similar to Eq. (1.85) 
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The sum in the right hand side of Eq. (2.13) can be evaluated as  
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where vd is the volume of the d-dimensional sphere of the unit radius.  
 Eq. (2.14) definitely has the nonzero solution for the case of strong disordering 
only for a<d. This solution can be expressed as  
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This result agrees with our previous estimate Eq. (2.11) and with our percolational 
qualitative picture Fig. 1.3.  
 The difficult but important situation is related to the threshold case a=d. This is 
most interesting and most often met case of the long-range transfer amplitude. Eq. (2.14) 
has only trivial solution in this case despite of the divergency in the number of 
resonances in the infinite volume limit. For certainty we consider a 3-d case with a 1/r3 
interaction. In this case it follows from the perturbation theory expansion Eqs. (2.7), (2.8) 
that all states must be delocalized. On the other hand our estimate of the excitation 
transfer rate Eq. (2.11) yields to the answer zero in the regime of strong disordering.  
 This problem has been resolved by Levitov in 1990, who pointed out that the 
delocalization characterized by the zero diffusion coefficient takes place so the situation 
is intermediate between the localization and strong delocalization. His arguments 
essentially used the concept of resonance and our discussion below is based on those 
arguments.  



 The special feature of the delocalization problem in the case of the 1/r3 is 
logarithmic divergence of the number of resonances with the system size. Eq. (2.13) in 
this case takes the form  
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Accordingly one can estimate the distance to the k-th resonance (k=1, 2, 3, …) as  
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Thus the distance to each next resonance increases by approximately the same factor 
compared to the previous one. This factor is very large and we cannot interpret the 
situation using the percolational scenario.  

Indeed, one can describe the evolution of system wavefunctions with the increase 
of the interaction radius following Levitov 1990. In each step the interaction radius 
increases by some factor η, 
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Imaging that interaction radius increases in the step k from Rk to Rk+1=Rkη. Also imagine 
that in the step k all quantum states of the system are localized and have localization 
radius much smaller than Rk. In the step k the small faction of the quantum states, namely  

  ( ) 1ln4 0 <<= ηπχ
W

Un         (2.16)  

will have resonant interaction with some other states because they started feeling each 

other through the long-range interaction. Note that if two states were in resonance before 
at smaller radius then only one of two newly formed superpositions will participate in the 
next resonance. This is because the level repulsion given by the resonant interaction in 
the previous step is much larger than the resonant interaction in the present step (see Fig. 
2.1).  
  The probability of the single resonance in each given step is small Eq. (2.16). The 
probability of two resonances is given by even smaller parameter χ2 (χn for n resonances 

 

Fig. 2.1. Resonant interactions of quantum states in case of 1/R3 interaction and stepwise increase of 
interaction radius from case A to case C as described in text. At step 1 resonance takes place between states 
1 and 2 which results in their level repulsion. Because of that in the step 2 only the modified state 2 got to 
resonance with the state 3, while in the step 3 only the modified state 1 got in resonance with the state 4 which 
prevent the formation of the percolation cluster 
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simultaneously). Therefore there is no way to form infinite percolation cluster from 
resonances in each step of the consideration. For each resonance event localization radius 
of the particular quantum state increases and reaches the interaction radius. However 
since next resonance takes place at the interaction radius bigger by the factor 
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 than the one for the previous resonance accordingly localization radius 

remains much smaller in average than the interaction radius. Therefore we can treat 
quantum states as point-like states during all consideration. Collective states are formed 
though because each state has infinite number of resonances with increasing the 
interaction radius. It was demonstrated by Levitov in 1990 that for such a system 
coupling constants for collective states have a quite reasonable nearly Gaussian statistics.  
 So what can we say about the quantum states in a strongly disordered system with 
1/r3 amplitude of excitation transfer? They are definitely delocalized because the number 
of resonances increases unlimitedly with increasing the interaction radius and each 
resonance reduces the participation ratio of the given quantum state by some factor η 
greater than 1. One the other hand the participation ratio of the finite system of the size L 
will scale as  
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For typical delocalized states occupying all available volume one would expect d’ to be 
equal to the system dimension 3. This is not the case for our system where d’<1. So the 
delocalized states are fractal (actually multifractal) with very small effective 
dimensionality at strong disordering. These delocalized states behave similarly to the 
threshold states in the short-range interaction problem with the energy separating the 
localized states from delocalized. It is interesting that dynamics is also similar in those 
two systems.  
 The diffusion coefficient can be estimated using the following arguments. Using 
the uncertainty principle for time and energy one can consider the increase of interaction 
radius as the time evolution of the system with the characteristic time  
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Since localization radius increases proportionally to the interaction radius and the 
localization radius tells us where the excitation has been transferred one can obtain the 
following relationship  
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Remember that for the normal diffusion we have .~)( 2/1ttr  Thus we have the 
anomalously slow diffusion regime with the diffusion coefficient scaling with the size as  
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This behavior is identical to the diffusion coefficient behavior at the localization 
threshold as follows from the scaling theory of localization. If we take Eq. (1.74) for a 3-
d system we should set the function f to be 0 at the threshold. Then the system 



conductance is constant which corresponds to conductivity and diffusion coefficient 
behaving as in Eq. (2.20).  
 Note that the logarithmic increase of resonance number Eq. (2.15) is very slow 
and therefore if the logarithmic prefactor is really small (for instance, it is less then 0.01 
for interacting two-level systems in glasses) then delocalization can be ignored for any 
realistic system size. Despite of that delocalization at finite temperature is still possible 
even there because of the many-body interaction which we are going to consider later.  
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