
3. Two Level Systems in Glasses. Model, Interaction, Spectral Diffusion and Interaction 
Stimulated Dynamics. 
  
The main target of the consideration below is to study the delocalization in systems with 
the long-range excitation transfer. This concept will be illustrated on the example of two 
level systems (TLS) in amorphous solids. We start with the brief review of TLS model 
and related properties, and then will proceed to study various interaction effects.  
 
a. Model of Two Level Systems 

The low temperature properties of amorphous solids below few Kelvin are rather 
universal. As was discovered by Zeller and Pohl in 1971 the behavior of specific heat and 
thermal conductivity in a number of dielectric glasses was quite similar to each other, 
namely specific heat shows linear temperature dependence, while the thermal 
conductivity is proportional to the squared temperature. Also the specific heat shows 
logarithmic dependence on the time of measurements.  
 This behavior is surprising for dielectric materials, where the low temperature 
properties are associated with the vibrational modes (phonons). Specific heat associated 
with phonons is proportional to the third power of the temperature which takes place in 
crystalline counterparts of glasses. Thermal conductivity is much bigger in crystalline 
materials. Therefore one can expect that there exist additional elementary excitations 
responsible for the observed universal behavior.  
 The hypothesis leading to the successful explanation of the majority of anomalous 
properties in amorphous solids was put forward in 1972 by Anderson, Halperin and 
Warma and independently Phillips. They suggested that there exist tunneling two level 
systems formed by atoms or groups of atoms undergoing tunneling motion between two 

close energy minima (Fig. 3.1). Each 
two level system (TLS) can be 
represented as two wells separated by 
the potential barrier. The position of 
particle can be described using a spin 
½ operator, namely Sz=1/2 for the left 
well and Sz=-1/2 for the right well. 
The asymmetry of wells is 
characterized by the parameter Δ and 
the tunneling coupling of two separate 
states is characterized by the tunneling 
amplitude 0Δ . The energy of TLS can 
be  expressed using the Hamiltonian  
 .ˆ

0
xz SSh Δ−Δ−=  (3.1)  

Remember that Sz and Sx are spin-1/2 
–operators that can be expressed using 
Pauli matrices as  

.
01
10

2
1   ,

10
01

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

= xz SS (3.2)  

 

 

Δ 

Δ0 

Sz=1/2 
Sz= -1/2 

Fig. 3.1. Tunneling two level systems and 
definition of its parameters 



 Parameters Δ and Δ0 are different from TLS to TLS and one can characterize them 
by the distribution function P(Δ,Δ0). The right choice of this function is the critical issue 
for the model success. One can expect that the distribution of the parameter Δ is nearly 
uniform because the thermodynamics of glasses at low temperature T~1K is defined by 
energy range kBT~0.0001eV which is very small compared to characteristic energies of 
order of Debye energy of larger to expect remarkable changes in the distribution function. 
The distribution of the tunneling parameter Δ0 is more complicated. One can assume that 
since the tunneling amplitude is exponentially sensitive to the parameters of the potential 
barrier it will result in the logarithmically uniform distribution of Δ0. Indeed, expressing 

)exp(0 a−=Δ  where a is some parameter having the distribution g(a) and characterizing 
the potential barrier separating two minima Fig. 3.1. Then one can represent the 
distribution of tunneling amplitudes in the form  
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any reasonable distribution function g(a) which depends on the tunneling amplitude much 
weaker then the factor 1/Δ0  
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This distribution can be used to explain the anomalous behavior of the specific heat and 
the thermal conductivity at low temperature described above. Note that this distribution 
represents the TLS density in asymmetry energy, tunneling amplitude and space so that 
the probability to find TLS in the given volume element dV, with asymmetry between (Δ, 
Δ+dΔ), and tunneling amplitude in the domain (Δ0, Δ0+dΔ0) is given by  
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 Consider first the specific heat. For an individual two level system it can be 
expressed using the eigenenergies of the Hamiltonian Eq. (3.1), which can be obtained 
for instance introducing the transformation in the pseudospin space as  
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Then the Hamiltonian Eq. (3.1) can be rewritten as  
 .~ˆ zSEh −=          (3.5) 
Since eigenvalues of the spin ½ operator are always ±1/2 one can express energies of 
TLS as ±E/2. Accordingly average energy can be defined using the Botlzman distribution   
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The specific heat can be defined as the derivative of the average energy over the 
temperature. This yields  
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This expression should be summed over all two level systems and divided by the system 
volume, which is equivalent to averaging with the distribution Eq. (3.3)  
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 It is more convenient to change integration variables to E and Δ0 so Eq. (3.8) can be 
rewritten as  
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The low limit for integration over Δ0 is taken to be finite because otherwise the number of 
TLS diverges. Evaluating integrals in Eq. (3.9) we got 
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This result explains the linear temperature dependence of the glass specific heat. The 
logarithmic time dependence can be understood if we notice that at experimental time t 
only TLS having relaxation time smaller than t should be count in any equilibrium 
properties. Other TLS are not in equilibrium and cannot contribute to the specific heat. 
Since the relaxation time of TLS increases with decreasing Δ0 as C/Δ0

2 one can define the 
minimum tunneling amplitude as Δ0min=(c/t)1/2 and substituting this expression into Eq. 
(3.10) we obtain the logarithmic time dependence as in the experiments  
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 To describe the thermal conductivity we need to introduce the interaction of TLS 
with the bath that is represented by phonons in dielectric glasses. We assume that 
phonons are responsible for the thermal conductivity and their absorption by TLS is the 
main mechanism of their scattering. Then if the phonon decay rate for thermal phonons 
(with energy hω=kBT) is given by γ  one can estimate the thermal conductivity as  
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is the phonon specific heat of the corresponding spectral branch and v is the speed of 
sound.  
 To find γ consider the rate of sound wave absorption by TLS, where the sound 
wave is expressed as  
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where q and ω are wavevector and frequency of the sound wave under consideration, u0 
is its amplitude and e is the polarization vector which is parallel to q for longitudinal 
mode and perpendicular to q for two transverse modes. The rate of absorption is defined 
as the rate of energy absorption divided by the sound wave energy, which can be 
expressed as  
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where M is the mass of the elementary cell and N is the number of cells in the crystal.  
 TLS interacts not with the wave Eq. (3.14) itself but with its gradients because of 
the translational symmetry of the system. If the wave is coordinate independent, then 
there is no potential energy change associated with it. Therefore the interaction of wave 
and TLS can be written in the form  
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where γab is the strain tensor characterizing the deformation associated with TLS 
transitions. The effect of vibration on the tunneling amplitude is neglected because the 
essential change in TLS asymmetry occurs when the interaction strength reaches the 
thermal energy T, while the essential change in TLS tunneling amplitude takes place 
when the energy change is of order of hω0 which is the quantization energy of harmonic 
oscillator in the TLS potential well (Fig. 3.1). Since this energy is of order of the Debye 
energy it remarkably exceeds the thermal energy for T<1K and therefore we can ignore 
this effect because all relevant interactions are smaller than the thermal energy.  
 One can use the Fermi golden rule to derive the absorption coefficient for 
interaction Eq. (3.16). It can be expressed as the difference of energy absorption and 



energy emission rates between its ground TLS state 2/1~
=zS  and its excited state 

2/1~
−=zS . The rate of TLS transition accompanied by absorption of the energy hω is 

given by  
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while the rate of transitions accompanied by energy emission reads  
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and P- and P+ are probabilities to find the given TLS in its ground or excited states, 
respectively  
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Substituting Eq. (3.19) into Eqs. (3.17), (3.18), using definition Eq. (3.4) and subtracting 
emission rate from absorption rate we got the following expression for the energy 
absorption rate  
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Index μ enumerates vibrational modes and it can be either l for longitudinal mode or t for 
two transverse modes.  

This result should be summed over all TLS in the sample which is equivalent to 
the following averaging  
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The integrals can be evaluated analytically and we get  

.
2

tanh
8 2

2
00

32

⎟
⎠
⎞

⎜
⎝
⎛=

kTv

VuP
rtot

ωωγπ

μ

μ h        (3.22) 

     
Using Eq. (3.15) one can express the phonon decay rate as  
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The main contribution to thermal conductivity is associated with thermal phonons 
characterized by the thermal energy hω~kT. The decay rate of thermal phonons scales as  
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Substituting this result into Eq. (3.12) we obtain the behavior of the thermal conductivity   
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 Thus the model of two-level systems successfully explains the low-temperature 
behavior of the specific heat and the thermal conductivity in amorphous solids. It is 
interesting that the dimensionless ratio of phonon absorption rate Eq. (3.23) and phonon 
frequency ω or the ratio of the phonon mean free path to the phonon wavelength is 
expressed by the dimensionless parameter  
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This parameter is universal in various glasses and its universality was used by theorists to 
suggest some models for TLS formation.  
 Other parameters often used to characterize the universal low temperature glassy 
behavior are the sound attenuation (or internal friction) at hω<<kT and temperature 
dependent velocity of sound. Similar behavior takes place for dielectric constant and 
dielectric losses.  
 The absorption described by Eq. (3.23) is called resonant absorption because it is 
associated with the transition of TLS having the energy equal to the sound energy 
quantum. If hω<<kT this mechanism is substantially suppressed by the population 

difference factor ⎟
⎠
⎞

⎜
⎝
⎛

kT2
tanh ωh  (of order or less than 10-4). At sufficiently small frequency 

the absorption nevertheless approaches Eq. (3.24) due to the different, so called 
relaxational, mechanism. Qualitatively this mechanism can be described as following. 
The external field Eq. (3.16) changes the equilibrium population difference of TLS. Since 
the relaxation of some TLS is slow their population difference deviates strongly from 
equilibrium and therefore they absorb sound. To characterize this absorption one has to 
compute TLS relaxation time caused by their interaction with phonons.  
 The relaxation time can be computed assuming that TLS is in its ground or 
excited state and computing the time of absorption or emission of phonon, accompanied 
by TLS transition between two states. The interaction of the given TLS with phonons can 
be taken in the form of Eq. (3.16) 
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TLS transition rates between its ground and excited states and backwards can be 
evaluated similarly to Eqs. (3.17), (3.18) 
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Evaluation of integrals for both rates yields  
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Finally the relaxation rate of TLS can be defined using the Bloch equations for 
probabilities to occupy ground and excited states  
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Using the identity Pg+Pex=1 we express the relaxation in term of the single rate r=r++r- 
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 At this point we are ready to derive the expression for the relaxational absorption. 
The equilibrium population of two level systems changes in the presence of the external 
field Eq. (3.16) as  
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The rate of the energy absorption from the external field can be expressed as the average 
time derivative of the interaction Hamiltonian Eq. (3.16) 
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where the average population difference  ΔP is defined by the Bloch’s equation  
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Within the linear response theory we need to hold only linear term in u0 in ΔPeq  
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Then the solution to Eq. (3.36) linear in u0 can be expressed as  
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This expression should be substituted into Eq. (3.35) and then the contribution of the 
given TLS to the relaxational absorption can be expressed as 
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This contribution should be divided by the mode vibrational energy Eq. (3.15) and 
summed over all TLS. This yields the sound decay rate  
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It is convenient to replace Δ0 with the new variable x=Δ0/E. Then the integral Eq. (3.40) 
can be written as  
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The expression under first integral is defined by the energies E of order of thermal 
energy. Then depending on the relationship between the frequency ω and the maximum 
efficient transition rate rmax~ AT3 we have two different behaviors. At low frequency  
 ,3AT<<ω          (3.42) 
The integral in Eq. (3.41) can be evaluated because it is defined by the intermediate 
x<<1. After straightforward calculations we get  
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 This expression is formally two times smaller than the one for the resonant 
absorption Eq. (3.23) in the limit of a very high frequency hω>>kT.   
 In the opposite limit of high frequency or low temperature  
 ,3AT>>ω          (3.44) 
One can also evaluate the integral Eq. (3.41) neglecting the second term in the 
denominator of Eq. (3.41). Then we get  
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The attenuation of sound is defined by the ratio γ/vμ. It is convenient to use the 
dimensionless parameter of internal friction defined as the ratio Q-1=γ/ω. This parameter 
is universal constant  
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at larger temperatures  
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(for typical experimental frequency ω~104s-1 the crossover temperature Tω is around 
50mK) Eq. (3.43) and decreases at lower temperatures as T3  
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This behavior permits the direct measurements of the typical relaxation rate of thermal 
TLS having both energy and tunneling amplitude of order of the thermal energy.  
 The frequency dependence of the sound attenuation (internal friction) can be used 
to study the temperature and frequency dependence of the sound velocity, which is 
coupled to the internal friction by the Kramers-Kronig relationships  
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The main contribution to Eq. (3.49) is defined by the domains where Q-1 is constant and 
ω’>ω because of the logarithmic character of the integrals there. Then at low temperature 
the logarithmic temperature dependence comes from the domain kT/h<ω<ωmax where 
ωmax is some natural cutoff or TLS energies  
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At higher temperatures T>Tω the domain ω<ω’<AT3 also contributes to the logarithmic 
temperature dependence of the velocity of sound so one can express it as  
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      (3.51) 

Thus theory predicts that the sound velocity has a maximum in its temperature 
dependence at T~Tω. At lower temperatures it decreases logarithmically with decreasing 
the temperature. The slope of the logarithmic temperature dependence is C at low 
temperatures, while above Tω the sound velocity decreases with increasing the 
temperature logarithmically with the slope -C/2.  
 Both the broad domain of temperature independent internal friction and the 
logarithmic temperature dependence of the velocity of sound have been found 
experimentally. This behavior is considered as the evidence of the existence of TLS in 
particular material.  
 In metal glasses the TLS relaxation rate behaves differently. It shows linear 
temperature dependence because the phase volume of electron-hole pairs interacting with 
TLS scales linearly with the temperature in contrast with the phonon phase volume T3. 
The TLS relaxation rate can be expressed as  
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where the constant B usually belongs to the domain between 0.1 and 1. This behavior of 
relaxation rate changes qualitatively the sound velocity temperature dependence. At low 
temperature T<hω/k the temperature dependence of sound velocity still obeys the law Eq. 
(3.50) while at higher temperatures sound velocity still increases with the temperature 
although the slope of the logarithmic dependence changes to C/2. The internal friction at 
higher temperatures follows Eq. (3.48), while at low temperatures it depends linearly on 
temperature as     
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This universal behavior was observed in various metal glasses.  
 The dielectric losses ε’’ and dielectric constant ε’ behave quite similarly because 
TLS possess dipole moments. The derivation can be made in the similar way to the 
internal friction and speed of sound. Below I give only answers, which are qualitatively 
transparent. For higher temperatures T>Tω Eq. (3.47) dielectric losses are temperature 
independent and can be expressed as  
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Here μ2 is the characteristic average squared dipole moment of TLS. Dielectric constant 
shows logarithmic temperature dependence defined by slightly modified Eq. (3.51)  
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The sign of temperature dependence is opposite to that for the sound velocity. This is not 
surprising because the temperature dependence of the speed of light under these 
conditions is identical to that for the speed of sound because the speed of light is 
inversely proportional to ε1/2. At very low temperatures T<Tω we get  
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Thus the temperature dependence of the dielectric constant is similar to the one for the 
negative sound velocity. Dielectric constant has a minimum at T~Tω. The slope of 
logarithmic temperature dependence at high temperature side should be approximately ½ 
of the slope on the low temperature side.  
 Further investigation of two level systems reveals other interesting effects. Echo 
and hole burning experiments in glasses clearly demonstrated that the TLS decoherence 
rate associated with the phase of its quantum state cannot be described using the 
relaxation rate Eq. (3.33). The real decoherence rate is much larger and has a different 
temperature dependence. Analysis of TLS decoherence cannot be performed without the 
consideration of TLS long-range 1/R3 interaction. Such interaction exists because TLS 
possess dipole moments and the interaction with phonons also results in similar 1/R3 
interaction. This consideration will be made in the next lecture.  
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Problem set 

1. Using the definition of spin operators Eq. (3.2) find eigenvalues and eigenstates of 
the Hamiltonian Eq. (3.1) directly diagonalizing it.  

2. According to the semiclassical theory the tunneling amplitude can be expressed as 

the following function of barrier height U and width a ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Δ=Δ

h

mUa2exp*0  

where Δ* is the preexponential factor and m is the mass of tunneling particle 
which we both set constant. Then assume that either a or U are uniformly 
distributed is some broad domain calculate the distribution function and compare 
it with Eq. (3.3). Do the same assuming both a and U uniformly distributed.  

3. Verify that the redefinition of spin operators (3.4) conserves their commutation 
rules.  

4. Derive kinetic formula Eq. (3.12). Hint: First derive the estimate for the phonon 
diffusion coefficient D~lv/3 and then express the thermal conductivity through 
energy diffusion.  


