
5. Two Level Systems in Glasses. Interaction, Interaction Stimulated Delocalization of 
energy.  
 In this lecture we approach the problem of energy relaxation. 
 Two level systems interact with each other because of the virtual exchange of 
them by photons (dipolar interaction) and phonons (elastic interaction). The first 
interaction is straightforward and its Hamiltonian can be expressed as  
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where µ i stands for the dipole moment of TLS i. Off diagonal term Sxµx can be neglected 
because the off diagonal (transition) dipole moment µx~µΔ0/(hωD) estimated within the 
semiclassical approach is smaller in all relevant cases than the off-diagonal element  
µΔ0/(E) caused by the direct effect of tunneling on wavefunctions. Eq. (4.1) is applicable 
up to the distances of order of resonant optical wavelength for photon energy of order of 
thermal energy  
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 In addition to the dipolar interaction there is elastic interaction of TLS. It also 
decreases with the distance as 1/R3 and has the interaction constant (e. g. Burin, Natelson, 
Osheroff, Kagan, 1998) 
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Eq. (4.3) is applicable up to the distances of order of resonant phonon wavelength for 
photon energy of order of thermal energy  
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Interaction constants of elastic and dipolar interactions are usually comparable to 
each other (except for vitreous silica where elastic interaction is stronger). This follows 
from the measurements of dielectric losses and internal friction (see previous lecture) 
which produce similar results.  

How does the interaction affect the relaxation and decoherence of two level systems? 
First we start with the description of decoherence induced simultaneously by the 
interaction of TLS with each other and phonons following Black and Halperin and then 
turn to the direct interaction effect on the relaxation.  

The decoherence rate of TLS can be estimated considering their phase change 
induced by the transition of surrounding TLS. Decoherence takes place when TLS phase 
fluctuation approaches unity. One can express that phase fluctuation as  
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and the solution of Eq. (4.5) gives us the definition of the decoherence rate. 
Consider the phase fluctuation induced by TLS interaction. Since the transition rate of 

TLS (Eq. (3.3)) 
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rapidly decreases with tunneling amplitude we can consider only most relevant thermal 
TLS having both energy and tunneling amplitude of order of the temperature  
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The density of thermal TLS is given by  
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and their phonon-stimulated transition rate is given by  
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Then during the time t<1/r the number of surrounding TLS which undergo transitions can 
be estimated as  
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The energy fluctuation associated with such changes for the interaction 1/R3 can be 
estimated as the interaction with the neighboring TLS already transferred during the time 
t  
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Using this estimate in Eq. (4.5) one can define the decoherence rate as  

 ..~
1

0020

2
hh

UAP
T

nU
r

T

T =       (4.12)  

 This result is applicable at relatively low temperature where  
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which takes place at  
 .200mKT <          (4.14) 
Measurements of the decoherence rate well below 100mK (Bayer and von Schikfus, 
1988) however shows that the decoherence rate deviates from the predicted law T2 Eq. 
(4.12) but instead follows linear temperature dependence. This is possible when the 
relaxation rate depends linearly on the temperature. There exists the number of direct and 
indirect measurements showing linear temperature dependence of the TLS relaxation 
rate.  
 Therefore one can consider the question whether TLS interaction can lead to the 
alternative relaxation mechanism leading to the linear temperature dependence of TLS 
relaxation rate. We are going to consider this question now following earlier work by 
Burin and Maksimov (1989), Burin and Kagan (1995) and Burin, Kagan, Maksimov and 
Polishchuk, 1998.   
 First question one can raise is whether the spectral diffusion associated with 
neighboring TLS transitions (4.11) can itself induce the TLS relaxation. If we consider 
the typical thermal TLS Eq. (4.7) the maximum fluctuation of its energy TP0U0 induced 
by TLS interaction is about factor of 1000 less than its energy. Therefore the spectral 
diffusion cannot induce its transition.  
 This is different if we consider TLS with energy and tunneling amplitude less 
than the spectral diffusion range TP0U0. For this TLS the energy fluctuations Eq. (4.10) 
inevitably bring this TLS to zero energy conditions. The rate of energy change can be 
estimated as  
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and TLS having sufficiently small tunneling amplitude   
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are adiabatically slow compared to the rate of energy change. Those TLS undergo 
transitions defined by the Landau Zener mechanism. The transition rate is defined by the 
product of the number of level crossing per the unit time r multiplied by the Landau 
Zener probability of the non-adiabatic transition Δ0

2/|hdE/dt| which yields  
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This equation is derived more accurately in Appendix 4.1 attached as a separate pdf file. I 
can be understood as following. There exists the important characteristic scale of time, 
where the energy change during this time is equal to the inverse time multiplied by the 
Planck constant. This scale defines the energy uncertainty in our problem. Corresponding 
time coincides with the decoherence time T2. Transitions occurs when the energy 
difference of two levels belongs to the energy domain (-h/T2, h/T2) and the probability of 
the transition is defined by the Landau Zener formula (Δ0T2/h)2. The probability of 
transition during the long time t is defined as the product of single transition probability 
multiplied by the number of occurrences of energy in the transition domain which is 
given by the product of number of opportunities to get there t/T2 and the probability that 
such an opportunity is realized h/(U0nTT2). The product of all three probabilities results in 
Eq. (4.17).  
 Can the spectral diffusion stimulate the relaxation of TLS with higher energy? 
The answer is yes if this TLS transfers together with some other TLS which compensates 
its energy for the total energy change during transition. Consider arbitrarily TLS with 
tunneling amplitude Δ0 and energy E both smaller than the thermal energy. Assume that 
this is in its ground state. Then there can exist the neighboring TLS in excited state with 
energy E’ such that  
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This pair of TLS can undergo the collective transition where the given TLS is getting to 
its excited state, while the other one goes to its ground state due to the spectral diffusion. 
The transition amplitude for such joint transition can be expressed using the second order 
perturbation theory with respect to both TLS tunneling amplitudes as  
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It is clear that the main contribution from neighboring TLS should be associated with the 
resonant TLS with Δ0’~E’~E, so one can set their density to be P0U0nT. The closest TLS 
satisfying this condition is located at the distance defined by the equation  
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The transition amplitude of two TLS at such distance is defined by Eq. (4.19)  

 .
0

000

E
PUnUV Tp

!
=         (4.21) 

Under any conditions this value is smaller than the TLS dephasing amplitude h/T2 as we 
will see below. Therefore one can use Eq. (4.17) for the spectral diffusion induced 
transition rate  
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where η is the dimensionless constant which can be large because of the phase volume 
factors like 4π. This expression is applicable when it exceeds the transition rates of the 
given TLS induced by its interaction with phonons which has the form  TA

2

0
!  Eq. (4.6). 

This works for TLS with sufficiently small energies  
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Note that it is completely independent of phonons.  
 The typical TLS energy is given by the thermal energy E~kT. Until the 
temperature is sufficiently high  
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the interaction stimulated relaxation is consistent with its main driving force which is 
phonon stimulated dynamics. This condition fails in the opposite limit of low temperature  
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In this regime the correction to the relaxation rate of thermal TLS induced by the spectral 
diffusion becomes greater then the phonon stimulated relaxation rate, which is the origin 
of the spectral diffusion. At the same time in the temperature domain (4.25) pairs of most 
adjacent thermal TLS are no more adiabatic because the coupling strength of them Eq. 
(4.21) becomes equal to h/T2. However we can consider other thermal TLS separated 
from the given one by the distance corresponding to the crossover from nonadiabatic to 
adiabatic condition  
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where rT is the thermal TLS transition rate. The number of such neighbors can be 
estimated as  
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and the number of transitions per the single quasi-period of the spectral diffusion rT
-1=T1 

is given by this number. Since this number should not exceed unity we got  
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Consistency between T1 and T2 Eq. (4.26) requires us to set the TLS relaxation rate to be  
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for all TLS including the thermal once. Thus we obtain that decoherence and relaxation 
rates are independent of phonons at very low temperature. This result can be used to 
explain experiments where these dependencies have been observed. We will show during 
the next lecture that this behavior can be understood as many-body delocalization of 
energy induced by the long-range interaction.  



 It is interesting to consider the same mechanism of relaxation and spectral 
diffusion for the arbitrary dimension d and interaction 1/Ra with a≥3. In this case the 
characteristic scale of spectral diffusion can be estimated as  
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The transition matrix element Eq. (4.19) for thermal excitations can be estimated as  
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And correspondingly the transition rate induced by the spectral diffusion reads  
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If the interaction with phonons leads to the standard AT3 behavior of the relaxation rate, 
then the relaxation induced by the spectral diffusion can compete with single phonon 
processes when a≤3d/2.   
 Eq. (4.32) is applicable only when the characteristic transition amplitude Eq. 
(4.31) is smaller than the energy uncertainty h/T2. When this condition is broken one 
should define the relaxation rate stimulated by the spectral diffusion differently. All 
neighboring TLS with energies E’ and separated from the given TLS by the distance R, 
satisfying the conditions  
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should be included into consideration for the transition of the pair. The number of such 
neighbors is given by  
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The number of transitions stimulated by any of them during the time t is given by the 
product (t/T2)(h/(WTT2). The overall transition rate caused by the spectral diffusion can 
be expressed as  
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 Remember that the decoherence time T2 and relaxation time T1 can be expressed 
through each other as  
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which results in the dependence T2~T1
d/(a+d). Accordingly the relationship between the 

transition rate stimulated by the spectral diffusion (4.35) and relaxation rate responsible 
for the spectral diffusion can be expressed as  
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When the exponent in Eq. (4.37) is smaller than 1 the rate of transitions stimulated by the 
spectral diffusion becomes larger than the rate of transitions stimulating spectral diffusion 
at sufficiently small relaxation rate. This happens for the interaction 1/Ra with exponent   
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In this case the interaction leads to the relaxation independent on the interaction with the 
environment which is the consequence of the energy delocalization which will be 
addressed in the next lecture.  
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