
5. Two Level Systems in Glasses. Interaction Stimulated Delocalization of energy.  
 In this lecture we approach the problem of relaxation and decoherence caused by TLS 
interaction. In contrast with the previous lecture we will consider it using the approach 
based on Anderson localization theory. The interaction with any thermal bath will not be 
included into this consideration. We will also discuss the consequences of the energy 
delocalization for other system of interest.  
 The Hamiltonian of the model of interacting TLS can be written as  
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Here Uij is 1/R3 interaction of TLS induced by either their elastic or dipolar interactions. 
For our purposes it can be expressed in the general form  
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where U0 is the characteristic interaction constant defined as  
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where µ is a TLS dipole moment and ε is the dielectric constant of the glass or  
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where γ is a TLS – phonon interaction constant, ρ is the density of glass and v is the 
velocity of sound.  
 Most important parameter of theory is the dimensionless product P0U0 which has a 
universal and small value in all known glasses  
 .10~

3

00

!
UP          (5.5) 

 Our problem of interest is whether some typical TLS i with tunneling amplitude Δ0 
and energy E (E<kT) being initially in excited state will be able to transfer its energy 
irreversibly to other TLS and if yes, then how long would it take?  
 The delocalization takes place due to resonant interactions. Each resonant interaction 
can include this TLS i and any other TLS sequence i1, i2, i3, … in. Their simultaneous 
transition can be characterized by the energy difference of initial and final states  
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and collective transition amplitude  
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which depends on TLS parameters and interactions in a very complex manner. Under 
resonance conditions one has  
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Each coupling Vn is related to some energy scale ε~Vn that characterizes the rate of 
transition through this resonance channel. In our considerations we will start with large 



energies of order of the thermal energy kT and then reduce the energy scale of 
consideration verifying in each step whether the interaction is strong (the number of 
resonances is greater or equal one which assumes the energy delocalization) or it is weak 
and no resonances take place. Until the interaction is weak we can remove the 
corresponding energy scale from the consideration as adiabatically fast with the proper 
modification of parameters of remaining low energy excitations. Since for weak 
interaction the modification is weak we can use this analysis as the estimate of the 
transition point if any exists. It is, for instance, perfectly applicable to the Anderson 
localization problem for the system with coupling strength decreasing with the distance 
as 1/Ra (a≤3).  

The simplest transition leading to sharing TLS energy is the transition involving two 
TLS including the one under consideration (E, Δ0) and some other TLS i1 separated from 
the given one by the distance R and having energy E1 and tunneling amplitude Δ01. The 
energy change associated with the transition can be expressed as  
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while the transition amplitude takes the form in the second order of perturbation theory 
Eq. (4.19)  

  .

1

010

3

0

EER

U
Vp

!!
=        (5.10) 

The resonant condition can be written as  
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The number of resonances in the energy domain ε/2<Vp<ε can be estimated as  
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 (5.12) 
It is clear from the above estimate that the probability to find resonance in the TLS-TLS 
interaction channel is negligibly small due to the weakness of interaction Eq. (5.5). 
Therefore more complicated channels should be added into consideration.   
 Next channel is made of this excited TLS plus two others. As previously we 
consider the TLS coupled to two neighbors and characterized some arbitrary parameters 
E, Δ0 < kT. Two others have energies and tunneling amplitude E1, Δ01 and E2, Δ02. If both 
of them are initially in their ground states their contribution to the resonant situation is of 
order of Ns

2 Eq. (5.12) because the situation is essentially equivalent to the Anderson 
localization problem. If one of them is in its ground state (S1), while the other one is in its 
excited state (S2) then the qualitatively new effect compared to the single particle 
Anderson localization is originated from the collective transition including all three spins 
(S1, S2, S3  -S1, -S2, -S3), which cannot take place in the single particle problem. The 
main phase volume for such neighboring spins is associated with the situation when both 
TLS are the thermal ones (see Eq. (4.7)) 
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Also the most significant contribution to the resonances is due to the situation when these 
two thermal TLS are located closer to each other then the main one. Their interaction 
should be stronger because their energies are bigger. Thus the case of interest is defined 
by the given TLS in its excited state and two thermal TLS, one excited and one in its 
ground state.  Two thermal TLS are separated from each other by the distance R1, while 
the given TLS is separated from them by the distance R.  
 The pair of thermal TLS can be treated as a two-level system with respect to the 
flip-flop transition involving both of them. This flip flop transition can be characterized 
by energies and tunneling amplitudes (cf. Eqs. (5.9), (5.10)) 
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Accordingly the energy and transition amplitude for three TLS simultaneously can be 
expressed as  
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The number of resonances at characteristic energy ε can be expressed as  
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This is very interesting result. Indeed it shows that two level systems with energy  
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Particularly for resonant TLS with E~Δ0<E*=T(P0U0)2 the number of resonant 
interactions always exceeds 1. Remember that the corresponding frequency E*/h 
coincides with the previously estimated rate of spectral diffusion Eq. (4.28).  
 This calculation can be redone for the case of d-dimensional space and U0/Ra 
interaction. In that case we get  
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Similarly to the previous lecture we get the strong effect at small energies for the 
interaction decreasing with the distance slower than 1/R2d. For resonant TLS with E~Δ0 
the number of resonant interaction is always greater than one if the TLS energy is below 
its critical value  
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 Why did we get what we got? This can be understood if we consider rare resonant 
pairs interacting with each other. For instance, for 1/R3 interaction in 3-d space the 
probability of resonance for two thermal TLS in any energy domain (ε/2 < Δ0p < ε) or 
spatial domain  (U0/ε < R3 < 2U0/ε) is small but finite Eq. (5.12). It is constant P0U0, 
independent both of the TLS interaction energy and the characteristic distance between 
them. The density of resonant pairs is thus constant for any energy scale and it is given by 
the product of the density of thermal TLS in excited state P0T and the probability that 
another thermal TLS is in resonance with the given one which is P0U0 in the given energy 
domain, so resonant pair density is given by  
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There exists interaction between resonant pairs capable to transfer energy between them. 
It is also U0/R3 interaction of the entirely many-body nature. Since all pairs are in 
resonance the interaction has the same form as the original interaction of z-projections of 
pseudospins. The typical coupling strength is given by the interaction of adjacent pairs 
which is the product of interaction constant and average (5.20) expressing the inverse 
cubed distance between neighbors  
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Note that the interaction Eq. (5.21) does not depend on pair energies so for the typical 
pair subsystem energy ε<V* we arrive at the situation when the coupling of pairs exceeds 
their characteristic energy disordering. This is the situation for Anderson delocalization 
transition. Reduction of typical energy ε can make the Anderson delocalization parameter 
(number of resonances) arbitrarily large so the delocalization transition is inevitable. We 
considered off-diagonal interaction. Diagonal interaction cannot break down 



delocalization because it’s induced disordering scales with the number of neighbors as 
z1/2 while the delocalization effect is proportional to the number of neighbors z. Our 
analysis explains the nature of the large number of resonances Eq. (5.16) for TLS energy 
less than E*. Similarly one can treat the situation for the interaction U0/Ra in a d-
dimensional space.  
 The probability to form a resonant pair with the energy of order of ε for the given 
excited thermal TLS is given by  
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The density of resonant pair of the certain energy ε is given by the product of the density 
of thermal pairs and the resonance probability (5.22)  
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The interaction of resonant pairs can be expressed similarly to Eqs. (5.19), (5.21) as  
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If (a-d)/d<1 the interaction dominates over the characteristic disordering energy ε at 
sufficiently small ε, which leads to the delocalization of excitations. In accordance with 
the previous analysis this always happens at a>2d. Comparing the interaction Eq. (5.24) 
and the energy ε one can estimate the threshold energy. The estimate reproduces the 
previous result Eq. (5.19).  
 The energy E* represents the system decoherence rate 1/T2=h/E*. Indeed, this 
energy represents both the typical energy of interacting pairs and their typical interaction. 
This means that (1) the rate of pair irreversible dynamics induced by their interaction is 
given by the related time scale τ*~h/E*. This means that during the time τ* the transitions 
in resonant pairs create energy fluctuations of all TLS of order of E*. Accordingly their 
phase fluctuation is given by  
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which is the definition of a decoherence rate.  
 In the case of 1/R3 interaction theory predicts that the decoherence rate is 
proportional to temperature which should dominate T2 dependence associated with the 
interaction of TLS with phonons at sufficiently low temperature. This expectation agrees 
with experimental observations of the linear temperature dependence of decoherence rate 
qualitatively. The parametric expression 1/T2~T(P0U0)2/h is smaller than the 
experimentally observed rate by the factor of 100 and this can be understood just 
incorporating missed factors coming from phase volume integration like (4π) which we 
skipped several times in our calculations. However the scaling theory that I described 



cannot pretend on the numerical factor and therefore more accurate study is necessary. 
This study is very difficult because of the many character of interaction effects.  
 The general conclusion about inevitable delocalization of energy at arbitrary 
disorder for interaction decreasing with the distance as 1/Ra with a<2d should remain 
valid for low-dimensional system because the number of resonances rapidly increases 
after with the reduction of the relevant energy, which makes effects like coherent 
backscattering improbable. The effective phase space increases exponentially after the 
localization threshold is passed, which should eliminate all dimensional effects. Note that 
the results take place only at finite temperature while in the zero temperature limit, where 
the only single excitation problem is relevant there is no way to make flip-flop pairs 
responsible for energy delocalization. The threshold power of interaction there is a=d 
rather than 2d. Analysis of more complicated clusters then pairs and triples does not 
change our estimates. When the energy is larger than the threshold energy E* that 
contribution is small as E*/E. Of course at E<E* all contribution become important and 
nothing can be neglected. The system then should be treated differently.  
 It is interesting that the model of interacting two-level centers describes 
interacting qubits in quantum hardware. In many systems which can be used there the 
long-range 1/R3 interaction is unavoidable. For example any electronic, Josephson or spin 
qubits inevitably have the long range dipole-dipole interaction 1/R3. This interaction can 
lead to decoherence that will break down quantum computations. This can be avoided 
however if the system is kept in external field working as effective disordering. The 
decoherence Eq. (5.21) takes place only if the number of interacting pseudospins is 
sufficiently large, meaning that the system size must exceed R*=(U0T2/h)1/3. Accordingly 
if the total number of qubits is sufficiently small N<nR*

3 the delocalization and 
decoherence will be substantially suppressed. Here n is the characteristic qubit density. 
Also the reduction of the effective system dimension remarkably reduces the destructive 
effect of the long-range interaction. 
 Our study addressed the decoherence rate. Under conditions of strong disordering 
the energy delocalization takes place only for the small fraction of TLS (P0U0), which are 
resonant pairs. Relaxation for TLS which are not in resonant pairs must also take place 
because interacting resonant pairs form the thermal bath capable to assist any transition 
having the finite transition amplitude. Energy delocalization makes such transitions 
irreversible. Below we study the relaxation rate in a 3-d system with 1/R3 interaction. 
Analysis of other systems is beyond this class.  
  There are two possible scenarios of relaxation of arbitrarily TLS characterized by 
the energy E~T and tunneling amplitude Δ0<E. It has neighboring thermal TLS, which 
can assist its transitions. One way is if it forms a pair with the other thermal TLS with 
energy E’ and tunneling amplitude of order of E’, such that  
 *|'| EEE <!           (5.26) 
The characteristic distance R to such TLS can be defined using the phase volume 
estimate  
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The transition amplitude for such a pair is given by  
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and the transition rate can be estimated using the Landau Zener type expression 
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The inevitable relaxation of all thermal TLS results in spectral diffusion which 
varies all TLS energies within the energy domain (E-WT, E+WT) where WT~TP0U0 is the 
typical interaction of thermal TLS at neighboring distance. Then one can consider the 
alternative scenario of relaxation where the give TLS selects few neighboring TLS 
having energy E’ such that  
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Then it can wait some characteristic time Tsd necessary for spectral diffusion to bring the 
pair energy into the resonant domain (-E*, E*). Accordingly the transition rate (inverse 
relaxation time) for resonant TLS can be estimated as  
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The relaxation of non-resonant TLS is more complicated. If the spectral diffusion passes 
the same energy domain in average once per the period (this seems to be the case for two-
level systems) then the relaxation rate can be estimated as  
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Otherwise the dependence on tunneling amplitude can be weaker at intermediate 
tunneling amplitudes.  
 To study the spectral diffusion we can use the following model. Imaging that we 
study the relaxation of TLS pairs starting at the time t=0 and investigate how many TLS 
pairs have transferred between their states during the time t. Imagine that the density of 
such pairs is x(t). We are interested in thermal TLS pairs having tunneling amplitudes Δ0 
smaller than the resonant energy E*~T(P0U0)2. Such a pairs are separated by the distance 
R such that  
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The density of such TLS can be expressed as the product of thermal TLS density P0T, 
and the differential probability that the second TLS belongs to the spatial domain 
dR3=U0dΔ0/Δ0

2 and energy domain dE, so the density distribution of thermal TLS flip-
flop pairs can be expressed as 
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Thus the density distribution of resonant pairs over their energies and tunneling 
amplitudes can be written as (Burin, Kagan, 1995)  
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 Assume that W(Δ0, t)dΔ0 is the density of TLS pairs which has transferred 
between their states in the time domain (0, t). Then the total density of pairs which made 
transition in that time domain is given by  
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Consider the time evolution of the density function W(Δ0, t). Its time derivative is 
determined by pairs with the energy belonging to the resonant domain (-E*, E*) which did 
not transfer earlier in the time domain (0, t). The density of such pairs can be expressed 
as  
 *02 ),( EtP !           (5.37) 
where the function P2(Δ0, 0) coincides with the “equilibrium” distribution Eq. (5.35). The 
transition probability for such pairs during the time dt can be expressed as  
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We will express the function P2(Δ0, t) through the function P2(Δ0) multiplying it by the  
probability that this pair already made transition earlier at 0<τ<t. The probability that the 
pair made transition during the infinitesimal interval dτ can be expressed as (following by 
Fernandes and Alonso, see also Burin and Kagan, 1995)  
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Here W(E1, E2; t, τ) is the probability distribution for pair transition energies E2 at time τ 
if it is equal to E1 at time t. This probability distribution can be expressed through the 
density of transferred TLS x as  
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The factor 
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 reflects the fact that only TLS, which make their first 

transition in the time domain (τ, τ+T2) should be count. Then the total number of 
transitions will be given by the denominator, while the number of first time transitions is 
given by the numerator.  

Finally the equation for the density of transferred spins with the given tunneling 
amplitude can be expressed as  
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This equation can be rewritten in the form  
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Eq. (5.42) can be studied using the Laplace transform of both sides with respect to the 
time  
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The solution to Eq. (5.43) is straightforward 
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Using the definition Eq. (5.36) one can obtain the self-consistent equation for the Laplace 
transform of the density of pairs x 

.
1

1

1
1

1
),(

**

0 2

0

0

0

00

p

E

p

E

p

x

B

A

p

x
AB

Ad

p
pFdx

!
"

#
$
%

&
=

'
'
(

)

*
*
+

,
!
"

#
$
%

&
-+

-
=--= ..

/    (5.45) 

The upper integration limit in Eq. (5.45) can be approximately set to infinity in agreement 
with the result below. The self-consistent solution for time dependence of the density of 
transferred pairs can be expressed as  
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The relaxation will take place when the density of transferred pairs approaches the 
density of thermal TLS which takes place at time  
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This estimate coincides with the estimate of the previous lecture obtained using the 
dynamical approach. Consequently for TLS with energy E, and tunneling amplitude Δ0 
one can express the relaxation rate as  
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Since the interaction 1/R3 represents clearly the threshold regime for the self-supporting 
spectral diffusion the situation can be different for the interaction decreasing with the 
distance faster.  
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