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Decoherence and Entanglement

William G. Unruh

Decoherence is the obverse side of entanglement, the peculiarly quantum nature of correlations
between systems. By Bell’s theorem, we know that entanglement has a number of non-intuitive
properties, implying that quantum correlations can in some cases be stronger than classical, and
in some cases violate transitivity (A= B, B= C, C = D but not A=> D, where = is
implication). If we disregard these correlations, looking at only one of the systems on its own,
the statistical properties of that system suffer decoherence. Interference terms which would in
general be present for a quantum system with a variety of possible values for some attribute, are

not present.

This decoherence has be argued to solve a variety of problems including the measurement

problem in quantum mechanics.

However it is also true that the presence or absense of decoherence is far more subtle than
usually described. A system, quantum correlated with an “environment” ( another quantum
system), can for certain measurements appear to be highly decohered, while still exhibiting

interference between the apparently decohered values with suitable, long time, experiments.
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Abstract

The loss of coherence of a quantum system coupled to a heat bath as expressed

by the reduced density matrix is shown to lead to the miss-characterization
of some systems as being incoherent when they are not. The spin boson
problem and the harmonic oscillator with massive scalar field heat baths are
given as examples of reduced incoherent density matrices which nevertheless
still represent perfectly coherent systems.

I. MASSIVE FIELD HEAT BATH AND A TWO LEVEL SYSTEM

How does an environment affect the quantum nature of a system? The standard tech-
nique is to look at the reduced density matrix, in which one has traced out the environment
variables. If this changes from a pure state to a mixed state ( entropy 7rplnp not equal
to zero) one argues that the system has lost quantum coherence, and quantum interference
effects are suppressed . However this criterion is too strong. There are couplings to the
environment which are such that this reduced density matrix has a high entropy, while the
system alone retains virtually all of its original quantum coherence certain experiments.

The key idea is that the external environment can be different for different states of
the system. There is a strong correlation between the system and the environment. As
usual, such correlations lead to decoherence in the reduced density matrix. However, the
environment in these cases is actually tied to the system, and is adiabatically dragged along
by the system. Thus although the state of the environment is different for the two states,
one can manipulate the system alone so as to cause these apparently incoherent states to
interfere with each other. One simply causes a sufficiently slow change in the system so as
to drag the environment variables into common states so the quantum interference of the
system can again manifest itself.

An example is if one looks at an electron with its attached electromagnetic field. Consider
the electron at two different positions. The static coulomb field of the two charges differ, and
thus the states of the electromagnetic field differ with the electron in the two positions. These
differences can be sufficient to cause the reduced electron wave function loose coherence for a
state which is a coherent sum of states located at these two positions. However, if one causes
the system to evolve so as to cause the electron in those two positions to come together (



eg, by having a force field such that the electron in both positions to be brought together
at some central point for example), those two apparently incoherent states will interfere,
demonstrating that the loss of coherence was not real.

Another example is light propagating through a slab of glass. If one simply looks at
the electromagnetic field, and traces out over the states of the atoms in the glass, the light
beams travelling through two separate regions of the glass will clearly decohere— the reduced
density matrix for the electromagnetic field will lose coherence in postition space— but those
two beams of light will also clearly interfer when they exit the glass or even when they are
within the glass.

The above is not to be taken as proof, but as a motivation for the further investigation
of the problem. The primary example I will take will be of a spin % particle (or other two
level system). I will also examine a harmonic oscillator as the system of interest. In both
cases, the heat bath will be a massive one dimensional scalar field. This heat bath is of the
general Caldera Leggett type [1]( and in fact is entirely equivalent to that model in general).
The mass of the scalar field will be taken to be larger than the inverse time scale of the
dynamical behaviour of the system. This is not to be taken as an attempt to model some
real heat bath, but to display the phenomenon in its clearest form. Realistic heat baths will
in general also have low frequency excitations which will introduce other phenomena like
damping and genuine loss of coherence into the problem.

II. SPIN-1 SYSTEM

Let us take as our first example that of a spin—% system coupled to an external environ-
ment. We will take this external environment to be a one dimensional massive scalar field.
The coupling to the spin system will be via purely the 3 component of the spin. I will use
the velocity coupling which I have used elsewhere as a simple example of an environment
(which for a massless field is completely equivalent to the Caldera Leggett model). The
Lagrangian is

L= [ S(0@) ~ 0@ +m*6(a)’ + 2ed(x)h(x)os)de (1)

which gives the Hamiltonian

H = [ 2(x(@) — ch()os)? + (6(a))? +mP0(x))d )

h(x) is the interaction range function, and its Fourier transform is related to the spectral
response function of Leggett and Caldera.

This system is easily solvable. I will look at this system in the following way. Start
initially with the field in its free (¢ = 0) vacuum state, and the system is in the 41 eigenstate
of oy. T will start with the coupling e initially zero and gradually increase it to some large
value. I will look at the reduced density matrix for the system, and show that it reduces one
which is almost the identity matrix ( the maximally incoherent density matrix) for strong
coupling. Now I let € slowly drop to zero again. At the end of the procedure, the state of the
system will again be found to be in the original eigenstate of o;. The intermediate maximally
incoherent density matrix would seem to imply that the system no longer has any quantum



coherence. However this lack of coherence is illusionary. Slowly decoupling the system from
the environment should in the usual course simply maintain the incoherence of the system
Yet here, as if by magic, an almost completely incoherent density matrix magically becomes
coherent when the system is decoupled from the environment.

In analyzing the system, I will look at the states of the field corresponding to the two
possible o3 eigenstates of the system. These two states of the field are almost orthogonal
for strong coupling. However they correspond to fields tightly bound to the spin system.
As the coupling is reduced, the two states of the field adiabatically come closer and closer
together until finally they coincide when € is again zero. The two states of the environment
are now the same, there is no correlation between the environment and the system, and the
system regains its coherence.

The density matrix for the spin system can always be written as

plt) = 51+ (1) - ) (3)
where
A(t) = Tr(Gp(t)) (4)
We have
S =i [ Hdy L 0 . —i [ Hdt)t
e = Tr (ST (e a1 (14 10) - ) RoTe S 1) (5)

where Ry is the initial density matrix for the field (assumed to be the vacuum), and 7] is
the time ordering operator. (Because € and thus H is time dependent, the H at different
times do not commute. this leads to requirement for the time ordering in the expression. As

usual, the time ordered integral is the way of writing the time ordered product [],, e (tn)dt —
¢ (Ol (—dt)d o —iH () )

Let us first calculate p3(t). We have
=17 (0Tl 15 (14 710) - ) RoTle S 101 (
=Ty (T e h L (14 10) - ) BT 1) 7)
Tr (o %( + (0) - &) Ro) (8)

because o3 commutes with H(t) for all ¢. We now define

o, = %(01 +i0y) = [+ >< —|; o_=ol (10)
Using 0,03 = —oy and 030, = 0, we have
1 (amei Js H‘”]%(l +(0) - 3)RoTle™/ H‘”F)
_ Try (T[e—if(Ho—e(t)fﬂ(:c)h(x)dx)dt]]‘ (11)
1

Tle i Ho+et) [ T@h@))]) < |
= (p1(0) +ip2(0)) J(t)



where Hj is the Hamiltonian with € = 0, i.e., the free Hamiltonian for the massless scalar
field and

J(t) _ T7"¢ (T[e—if(Ho—e(t)fw(x)h(x)dx)dt]TT[e—if(H0+e(t)fn(x)h(x)dx)dt]Ro) (12)

Breaking up the time ordered product in the standard way into a large number of small
time steps, using the fact that e " ) [ h@e@)dr g the displacement operator for the field
momentum through a distance of €(¢)h(x), and commuting the free field Hamiltonian terms
through, this can be written as

t/dt
J(t) _ Tr¢ (e—ie(oyb(o) H [e—i(e(tn)—e(tn,l)é(tn)]

n=1

1
SHE(D)2(2) ie(t) (D) H [eie(tn—e(tn,l))é(tn)] eie(O)@(O)RO) (13)

n=t/dt

where t,, = ndt and dt is a very small value, ®(t) = [ h(z)p(t, z)dr and ¢o(t, z) is the free
field Heisenberg field operator. Using the Campbell-Baker-Hausdorff formula, realizing that
the commutators of the ®s are c-numbers, and noticing that these c-numbers cancel between
the two products, we finally get

J(t) = Tr <€2i(e(t)<1> (0)+ [ et @ (t')dt') R0> (14)

from which we get

In(J(t) = —2Tr, (Ro (e(t)(l)(t) — (0)D(0) + /0 té(t’)@(t’)dt’>2> (15)

I will assume that €(0) = 0, and that é(¢) is very small, and that it can be neglected. ( The
neglected terms are of the form

//6'2 < O()O(t7) > d'dt” ~ é*tr < ®(0)? >

which for a massive scalar field has 7, the coherence time scale, &~ 1/m. Thus, as we let é
go to zero these terms go to zero.)
We finally have

<
- —2e(t)2/|fz(k)|27dk (16)

Choosing h(k) = e ¥/2 we finally get

7I‘|k\dk
— —4/ 17
Sqrt sqrt(k? +m?2) (17)



This goes roughly as In(I'm) for small I'm, (which I will assume is true). For I' sufficiently
small, this makes J very small, and the density matrix reduces to essentially diagonal form
(p=(t) = py(t) = 0, p:(t) = p-(0).)

However it is clear that if €(¢) is now lowered slowly to zero, the decoherence factor .J goes
back to unity, since it depends only on €(¢). The density matrix now has exactly its initial
form again. The loss of coherence at the intermediate times was illusionary. By decoupling
the system from the environment after the coherence had been lost, the coherence is restore.
this is in contrast with the naive expectation in which the loss of coherence comes about
because of the correlations between the system and the environment. Decoupling the system
from the environment should not in itself destroy that correlation, and should not reestablish
the coherence.

The above approach, while giving the correct results, is not very transparent in explaining
what is happening. Let us therefor take a different approach. Let us solve the Heisenberg
equations of motion for the field ¢(¢,z). The equations are ( after eliminating 7)

0{d(t, x) — Ozo(t,x) + m*p(t, x) = —€(t)osh(x) (18)
m(t,x) = (t, ) + e(t)h(x)oy (19)
If € is slowly varying in time, we can solve this approximately by
8(t,2) = dolt,2) +€(t) [ 5 ™ hia’)dr'oy + (t, 2)e(0)os (20)
w(t,x) = go(t, x) + e(t)h(x)os + ¥ (t, )e(0)oy (21)

where ¢y(t, ) and my(t, z) are free field solution to the equations of motion in absence of
the coupling, with the same initial conditions

$o(0,z) = 7(0,z) (22)
¢0(0,2) = ¢(0,z) (23)
, while v is also a solution of the free field equations but with initial conditions
$(0,2) =0 (24)
(0, x) = —h(x). (25)
If we examine this for the two possible eigenstates of o3, we find the two solutions
1 /
Bult) & dolt, 1) £ () [ 5™ (! + 4 (1,0)) (26)
i (t,w) % go(t, @) + O(€) £ (e()h(w) + e(0)¢(t, x)) (27)

These solutions neglect terms of higher derivatives in €. The state of the field is the vacuum
state of ¢g, my. ¢4 and my are equal to this initial field plus ¢ number fields. Thus in terms of
the ¢4 and 74, the state is a coherent state with non-trivial displacement from the vacuum.
Writing the fields in terms of their creation and annihilation operators,

. - dk
¢, :/A ¢ ikx AT —ikx 28
¢i( x) ki( )6 + Apye \/m ( )
, we | K2+ m?
Te(t,z) = / A (D)™ — A ek [ = (29)
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we find that we can write A, in terms of the initial operators Ay as
] L. —iw :
Apa(t) = Agge Rt + §z(e(t) — €(0)e ™ ) (h(k)/\/wr, + O(€(1))) (30)

where wy = Vk% +m?. Again I will neglect the terms of order € in comparison with the e
terms. Since the state is the vacuum state with respect to the initial operators Ay, it will be
a coherent state with respect to the operators A;y, the annihilation operators for the field
at time £. We thus have two possible coherent states for the field, depending on whether the
spin is in the upper or lower eigenstate of /sigmas. But these two coherent states will have
a small overlap. If Ala >= aja > then we have

o >= @A) (31)
Furthermore, if we have two coherent states |« > and |/ >, then the overlap is given by
< alo! >=< 0| AP 2ATIBPI2| g 5= g B (el +I81%)/2 (32)

In our case, taking the two states |4, >, these correspond to coherent states with

1 , 1
a=—d = iz(e(t) — e(0)e ™) = §i6(t)h,(k)/\/wk (33)
Thus we have
< gyt gyt >= [ e W IBIE/ KREm?) o0? [ PG _ J(t). (34)
k

Let us assume that we began with the state of the spin as 12(|+ > +|— >). The state of

[+ > [+ (1) > +[= > [=5 >)

Sl

the system at time t in the Schroedinger representation is %
and the reduced density matrix is

~~

1
p= §(|+ >S4 |- >< —|+ T )|+ >< = |+ J(@)]|— >< +]). (35)

The off diagonal terms of the density matrix are suppressed by the function J(t). J(t)
however depends only on €(t) and thus , as long as we keep é small, the loss of coherence
represented by J can be reversed simply by decoupling the system from the environment
slowly.

The apparent decoherence comes about precisely because the system in either the two
eigenstates of o3 drives the field into two different coherent states. For large €, these two
states have small overlap. However, this distortion of the state of the field is tied to the
system. 7 changes only locally, and the changes in the field caused by the system do not
radiate away. As € slowly changes, this bound state of the field also slowly changes in concert
. However if one examines only the system, one sees a loss of coherence because the field
states have only a small overlap with each other.

The behaviour is very different if the system or the interaction changes rapidly. In that
case the decoherence can become real. As an example, consider the above case in which €(t)
suddenly is reduced to zero. In that case, the field is left as a free field, but a free field whose
state ( the coherent state) depends on the state of the system. In this case the field radiates
away as real ( not bound) excitations of the scalar field. The correlations with the system
are carried away, and even if the coupling were again turned on, the loss of coherence would
be permanent.



III. OSCILLATOR

For the harmonic oscillator coupled to a heat bath, the Hamiltonian can be taken as

=3 / (7)) + (0:6(2))* + m?é(t, 2)*de + %(pZ +O%Y) (36)

Let us assume that m is much larger than 2 or that the inverse time rate of change of e.
The solution for the field is given by

. e—m|x—x’\
8(t,) ~ Gults2) + (6, )e(0)a(0) — €@aD) [ o —hla)da' (37

—m|z—z'|

7(t,2) % (t, ) +(t,2)e(0)g(0) = €(Dg(D) [ G ——h(@')da’ +e(a(h(x)  (39)

where again ¢, is the free field operator, ¢ is a free field solution with (0) = 0, w(()) =
—h(z). Retaining terms only of the lowest order in €

‘ W(t, x) = do(t, ) (39)
m(t,x) = ¢(t, z) + e(t)q(t)h(x) (40)
The equation of motion for ¢ is
q(t) = p(?) (41)
p(t) = =g + e(t) (1) (42)

where ®(t) = [ h(z)¢p(t, x)dzx. Substitution in the expression for ¢, we get

i(0) + 9q(1) ~ (@o(0) + () @a®) [ [ 1) e x|dxdx’ (43)

Neglecting the derivatives of € (i.e., assuming that e changes slowly even on the time scale
of 1/Q), this becomes

(He 2 [ [ hophia) o w'dxdx') i+ 0% = Oy(e(1) () (4)

The interaction with the field thus renormalizes the mass of the oscillator to

- (1 +e(t)2//h(x)h(x')>

The solution for ¢ is thus

a(t) = 4(0) cos( [ 0)it) + % sin( [ (1)de)p(0) + é [ sin( [ 9eyanyan ey @@ mar
(45)

where Q(t) ~ Q/\/M



The important point is that the forcing term dependent on CI>0 is a rapidly oscillating
term of frequency at least m. Thus if we look for example at < ¢? >, the deviation from
the free evolution of the oscillator (with the renormalized mass) is of the order of [ sin(Qt —
tsin(w(t — t7) < Po(t)Do(t?) > dt'dt”. But < o(t")Po(t”) > is a rapidly oscillating
function of frequency at least m, while the rest of the integrand is a slowly varying function
with frequency much less than m, Thus this integral will be very small ( at least /m but
typically much smaller than this depending on the time dependence of €). Thus the deviation
of ¢(t) from the free motion will in general be very very small, and I will neglect it.

Let us now look at the field. The field is put into a coherent state which depends on the
value of ¢, because 7(t,z) &~ ¢o(t, z) + €(t)q(t)h(z) Thus

) 1-
Ay (t) = agpe™ ™kt + iih(k)e(t)q(t)/wk (46)
The overlap integral for these coherent states with various values of ¢ is

1 1 7 2 \2
H < z h /wk|2 h(k)e(t)q [wy, >= o5 J (k) dk(g—q") (47)

The density matrix for the Harmonic oscillator is thus

p(a,4) = polt, g, q)e = J Pk (48)

where py is the density matrix for a free harmonic oscillator (with the renormalized mass).
le, we see a strong loss of coherence of the off diagonal terms of the density matrix.
However this loss of coherence is false. If we take the initial state for example with two
packets widely separated in space, these two packets will loose their coherence. However,
as time proceeds, the natural evolution of the Harmonic oscillator will bring those two
packets together (¢ — ¢’ small across the wave packet). For the free evolution they would
then interfere. They still do. The loss of coherence which was apparent when the two
packets were widely separated disappears, and the two packets interfere just as if there were
no coupling to the environment. The effect of the particular environment used is thus to
renormalise the mass, and to make the density matrix appear to loose coherence.

IV. SPIN BOSON PROBLEM

Let us now complicate the spin problem in the first section by introducing into the system
a free Hamiltonian for the spin as well as the coupling to the environment. Following the
example of the spin boson problem, let me introduce a free Hamiltonian for the spin of the
form %Qal, whose effect is to rotate the oy states (or to rotate the vector p’in the 2 — 3
plane with frequency €.
The Hamiltonian now is
H= % ( [t ) = et)h()o3)* + (D (2))? + m(t, 2)d + Qal> (49)

where again €(t) is a slowly varying function of time. We will solve this in the manner of
the second part the first section.



If we let €2 be zero, then the eigenstates of o, are eigenstates of the Hamiltonian. The
field Hamiltonian ( for constant €) is given by

Hy = % [ Ceelt)h())? + (@0)da (50)

Defining 7 = 7 — (+h(x)), 7 has the same commutation relations with 7 and ¢ as does .
Thus in terms of 7 we just have the Hamiltonian for the free scalar field. The instantaneous
minimum energy state is therefor the ground state energy for the free scalar field for both
H_. Thus the two states are degenerate in energy. In terms of the operators m and ¢, these
ground states are coherent states with respect to the vacuum state of the original uncoupled
(e = 0) free field, with the displacement of each mode given by

h(k)

oulaE > ie(t) ol > (51)

or

£ >=]]1tar > |£ >, (52)
k

where the |ay > are coherent states for the k'™ modes with coherence parameter oy =
ie(t)f/(—%, and the states |£ >,, are the two eigenstates of o3. (In the following I will
eliminate the [, symbol.) The energy to the next excited state in each case is just m, the
mass of the free field.

We now introduce the Qo, as a perturbation parameter. The two lowest states ( and in
fact the excited states) are two fold degenerate. Using degenerate perturbation theory to find
the new lowest energy eigenstates, we must calculate the overlap integral of the perturbation
between the original degenerate states and must then diagonalise the resultant matrix to
lowest order in 2. The perturbation is %Qal . All terms between the same states are zero,
because of the < %|,,01|% >,,= 0. Thus the only terms that survive for determining the
lowest, order correction to the lowest energy eigenvalues are

1 1
5 < +|Qoy|— > = 5 < —Qoq |4+ >* (53)
1 1
_ —QH < O[k| — Qg >—= _QH€72‘C¥I¢|2 (54)
2 k 2 k
_ %QeQIE(t)Qh(k)Z/wkdk _ %Qj(t) (55)

The eigenstates of energy thus have energy of E(t)y = Eo £ 32J(¢), and the eigenstates are

\/g(H— > +|— >) If epsilon varies slowly enough, the instantaneous energy eigenstates will
be the actual adiabatic eigenstates at all times, and the time evolution of the system will
just be in terms of these instantaneous energy eigenstates. Thus the system will evolve as

() >= /T (e 4+ )en T EMWON (1> 4] 5) (56)
s e e (e ). (57)



where the ¢, and c¢_ are the initial amplitudes for the |+ >,, and |— >,, states. The
reduced density matrix for the spin system in the o3 basis can now be written as

pt) = (J(t)por (t), J () po2(t), pos(t)) (58)

where jy(t) is the density matrix that one would obtain for a free spin half particle moving
under the Hamiltonian J(¢)Qo.

por(t) = p1(0)
pMa:mmn%m/ﬂﬂﬁq+m@gm9/mﬂw) (59)

mdn:mmn%m/meﬁ—mmnmm/met

Thus if J(t) is very small (ii.e., € large) , we have a renormalized frequency for the spin
system, and the the off diagonal terms (in the o3 representation) of the density matrix are
strongly suppressed by a factor of J(¢). Thus if we begin in an eigenstate of o3 the density
matrix will begin with the vector p as a unit vector pointing in the 3 direction. As time
goes on the 3 component gradually decreases to zero, but the 2 component increases only
to the small value of J(t). The system looks almost like a completely incoherent state, with
almost the maximal entropy that the spin system could have. However as we wait longer,
the 3 component of the density vector reappears and grows back to its full unit value in the
opposite direction, and the entropy drop to zero again. This cycle repeats itself endlessly
with the entropy oscillating between its minimum and maximum value forever.

The decoherence of the density matrix ( the small off diagonal terms) obviously represent
a false loss of coherence. It represents a strong correlation between the system and the
environment. However the environment is bound to the system, and essentially forms a part
of the system itself, at least as long as the system moves slowly. However the reduced density
matrix makes no distinction between whether or not the correlations between the system
and the environment are in some sense bound to the system, or are correlations between the
system and a freely propagating modes of the medium in which case the correlations can be
extremely difficult to recover, and certainly cannot be recovered purely by manipulations of
the system alone.

V. INSTANTANEOUS CHANGE

In the above I have assumed throughout that the system moves slowly with respect to
the excitations of the heat bath. Let us now look at what happens in the spin system if we
rapidly change the spin of the system. In particular I will assume that the system is as in
section 1, a spin coupled only to the massive heat bath via the component o3 of the spin.
Then at a time ¢y, I instantly rotate the spin through some angle # about the 1 axis. In this
case we will find that the environment cannot adjust rapidly enough, and at least a part of
the loss of coherence becomes real, becomes unrecoverable purely through manipulations of
the spin alone.

The Hamiltonian is

H= % / ((W(t, x) — e(t)h(z)o3)? + (00 (t, x)* + m>p(t, x)) dx 4+ 0/26(t — to)oy (60)
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Until the time ¢y o3 is a constant of the motion, and similarly afterward. Before the time
to, the energy eigenstates state of the system are as in the last section given by

|£,t >={|+ >0, |ax(t) > or{|— >, | — ax(t) >} (61)
An arbitrary state for the spin—environment system is given by
[ >=cip|+ > +e_|— > (62)

Now, at time t;, the rotation carries this to

|(to) >= c+(co8(0/2)[+ >, Fisin(0/2)| = >, |ak(t) >
+ c_(cos(8/2)|— >4, +isin(0/2)|+ >45)| — ar(t) >
= cos(0/2) (cq|+ > +c_|—>) (63)

Fisin(0/2) (co|— >oq |an(t) > —c_|+ >0, | — a(t) >

The first term is still a simple sum of eigenvectors of the Hamiltonian after the interaction.
The second term, however, is not. We thus need to follow the evolution of the two states
|— >4, |ak(to) > and |+ >, | — ax(ty) >. Since o3 is a constant of the motion after the
interaction again, the evolution takes place completely in the field sector. Let us look at the
first state first. (The evolution of the second can be derived easily from that for the first
because of the symmetry of the problem.)

[ will again work in the Heisenberg representation. The field obeys

b_(t,x) = m_(t,2) + e(t)h(2) (64)
T (t,x) = 50 (t,x) — m*p_(t,x) (65)

with solution At the time ¢ the field is in the coherent state |y >. This can be represented
by taking the field operator to be of the form

- (to, #) = do(to, ) (66)
m_ (to,l‘) = ¢0(t0,3§') + G(tg)h,(l') (67)

whee the state |ay > is the vacuum state for the free field ¢y.. We can now solve the
equations of motion for ¢_ and obtain (again assuming that €(¢) is slowly varying)

(?— (tv .77) = ¢0(t7 ‘77) + 277[)(t7 x)e(tO) (68)
T (t2) = dolt,x) + 20(t, 2)e(to) — e(t)h() (69)

where ¥ (ty, ) = 0 and t(to,#) = h(z). Thus again, the field is in a coherent state set
by both 2¢(tp)y and €(t)h(z). The field 1) propagates away from the interaction region
determined by h(x), and I will assume that I am interested in times ¢ a long time after the
time #o. At these times I will assume that [ h(x)i(t,2)de = 0. (This overlap dies out as
1/v/mt. The calculations can be carried out for times nearer ¢, as well— the expressions
are just messier and not particularly informative.)

Let me define the new coherent state as | — oy (t) + Bk (t) >, where ay is as before and
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Br(t) = 26(t0)wk15(t, k) = 2ie(t0)ei“’“tﬁ(k)/wk (70)

(The assumption regarding the overlap of h(x) and 1 (t) corresponds to the assumption that
J 0 (t)Br(t)dk = 0). Thus the state |— >,, |ax > evolves to the state |— >, | —ar+Be(t) >.
Similarly, the state |+ >,, | — ax > evolves to |+ >,, |ax — Br(t) >.

We now calculate the overlaps of the various states of interest.

< aplap £ By >=< —ay| — ay, £ B, >= e [ 1Bk = (1)) (71)
< —ayl|ag £ By >=< ag| —ag £ B >= J(t)J(to) (72)
< —ap + Brlow — B >=< —ay — Brlou + B >= J(t)J(t0)4 (73)

The density matrix becomes
p3 = cos(0)pos + sin(0)J (L) po2 (74)
p1 = J(t) (cos(0) + J*(to) sin(0)) pos (75)
pa(t) = J(t) (= sin(0) pos + (cos(6/2) — J*(to) sin(6)) oz ) (76)

where

pos = (sl — le-P) (77)
po1 = Re(cic™) (78)
poz = Im(cicl) (79)

If we now let €(¢) go slowly to zero again ( to find the ‘real’ loss of coherence), we find that
unless pg; = po2 = 0 the system has really lost coherence during the sudden transition. The
maximum real loss of coherence occurs if the rotation is a spin flip (# = 7) and py3 was
zero. In that case the density vector dropped to J(tp)* of its original value. If the density
matrix was in an eigenstate of o3 on the other hand, the density matrix remained a coherent
density matrix, but the environment was still excited by the spin.

We can use the models of a fast or a slow spin flip interaction to discuss the problem
of the tunneling time. As Leggett et al argue [3], the spin system is a good model for the
consideration of the behaviour of a particle in two wells, with a tunneling barrier between
the two wells. One view of the transition from one well to the other is that the particle
sits in one well for a long time. Then at some random time it suddenly jumps through the
barrier to the other side. An alternative view would be to see the particle as if it were a
fluid, with a narrow pipe connecting it to the other well- the fluid slowly sloshing between
the two wells. The former is supported by the fact that if one periodically observes which
of the two wells the particle is in, one sees it staying in one well for a long time, and then
between two observations, suddenly finding it in the other well. This would, if one regarded
it as a classical particle imply that the whole tunneling must have occurred between the
two observations. It is as if the system were in an eigenstate and at some random time
an interaction flipped the particle from one well to the other. However, this is not a good
picture. The environment is continually observing the system. It it really moved rapidly
from one to the other, the environment would see the rapid change, and would radiate.
Instead, left on its own, the environment in this problem ( with a mass much greater than
the frequency of transition of the system) simply adjust continually to the changes in the
system. The tunneling thus seems to take place continually and slowly.
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VI. DISCUSSION

The high frequency modes of the environment lead to a loss of coherence (decay of the off-
diagonal terms in the density matrix) of the system, but as long as the changes in the system
are slow enough this decoherence is false— it does not prevent the quantum interference of
the system. The reason is that the changes in the environment caused by these modes are
essentially tied to the system, they are adiabatic changes to the environment which can
easily be adiabatically reversed. Loosely one can say that coherence is lost by the transfer
of information (coherence) from the system to the environment. However in order for this
information to be truly lost, it must be carried away by the environment, separated from the
system by some mechanism or another so that it cannot come back into the system. In the
environment above, this occurs when the information travels off to infinity. Thus the loss of
coherence as represented by the reduced density matrix is in some sense the maximum loss
of coherence of the system. Rapid changes to the system, or rapid decoupling of the system
from the environment, will make this a true decoherence. However, gradual changes in the
system or in the coupling to the external world can cause the environment to adiabatically
track the system and restore the coherence apparently lost.

This is of special importance to understanding the effects of the environmental cutoff in
many environments [3]. For “ohmic” or “superohmic” environments ( where h does not fall
off for large arguments), one has to introduce a cutoff into the calculation for the reduced
density matrix. This cutoff has always been a bit mysterious, especially as the loss of
coherence depends sensitively on the value of this cutoff. If one imagines the environment
to include say the electromagnetic field, what is the right value for this cutoft? Choosing
the Plank scale seems silly, but what is proper value? The arguments of this paper suggest
that in fact the cutoff is unnecessary except in renormalising the dynamics of the system.
The behaviour of the environment at frequencies much higher than the inverse time scale of
the system leads to a false loss of coherence, a loss of coherence which does not affect the
actual coherence ( ability to interfere with itself) of the system. Thus the true coherence is
independent of cutoff.

As far as the system itself is concerned, one should regard it as “dressed” with a polar-
ization of the high frequency components of the environment. One should regard not the
system itself as important for the quantum coherence, but a combination of variables of
the system plus the environment.What is difficult is the dependence of which the degrees
of freedom of the environment are simply dressing and which are degrees of freedom which
can lead to loss of coherence depends crucially on the motion and the interactions of the
system itself. They are history dependent, not simply state dependent. This make it very
difficult to simply find some transformation which will express the system plus environment
in terms of variables which are genuinely independent, in the sense that if the new variable
loose coherence, then that loss is real.

These observations emphasis the importance of not making too rapid conclusions from
the decoherence of the system. This is especially true in cosmology, where high frequency
modes of the cosmological system are used to decohere low frequency quantum modes of
the universe. Those high frequency modes are likely to behave adiabatically with respect
to the low frequency behaviour of the universe. Thus although they will lead to a reduced
density matrix for the low frequency modes which is apparently incoherent, that incoherence
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is likely to be a false loss of coherence.
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Abstract

The debate about the non-locality of quantum mechanics is old, but still lively. Numerous
people use non-locality as a (bad) shorthand for quantum entanglement. But some have a long
standing commitment to the validity of this characterisation. This paper examines two separate
streams in this debate. The first is the arguments of Stapp, and especially his recent paper where
he simplifies his contractually argument in the Hardy situation to argue for the non-locality of
quantum mechanics. He has maintained his contention that an analysis of a Hardy type correlation
between two spatially separated observers proves that quantum mechanics itself is non-local, with
out any additional assumption of realism or hidden variables.

In the second section I try to carefully examine the Bell argument, in the CHSH variant to see

where the difference between the quantum and classical situations differ.



Asher Peres was one of the great physicists on the late 20th century, especially in his
intense concern with the fundamental nature of quantum mechanics. His courage in devoting
his life to an area many considered “philosophical” (ie non-physical) paved the way for the
rest of us to reveal our interests and confusions about this area. I am not sure that he would

agree with everything in this paper, but I offer it as a tribute to him.

I. STAPP

Stapp|[1] has long maintained the position that quantum mechanics must be considered
to be a non-local theory in its own right. He believes that the the assumption of ”hidden
variables” or local realism in Bell’s argument is unnecessary, and that no local theory or any
form could mimic quantum mechanics. It is not that any hidden variable theory, or locally
realistic theory must be non-local in order to mimic quantum mechanics, as Bell showed. It
is that quantum mechanics itself is non-local.

In much of the popular vocabulary of physicists, his war has been won. Many physicists,
including many of those with an interest in the foundational issues of quantum theory, refer
to quantum mechanics as non-local—- using Bell’s arguments as a justification. By this they
usually mean that quantum mechanical entanglement has non-classical features and when
pushed, they will back off and agree that that non-locality is not really what Bell’s arguments
mean. However, they stubbornly insist on using the terminology. (Names or references are
purposely omitted to protect the guilty).

Stapp would however like to put this popular misnaming onto a firm footing. Despite a
large amount of criticism, he still insists that his analysis of a Hardy type experiment shows
that quantum mechanics itself is non-local. Unfortunately, in the face of this criticism, his
claims have become more and more diluted.

He has recently published another paper in the American Journal of Physics [1] with new
arguments on the non-locality of quantum mechanics. The end of the paper states ”This
conclusion represents some sort of failure of the notion that no influence of any kind can act
over a space-like interval”. “Some sort of failure” is so vague that almost anything can be
subsumed under its mantle. Meanwhile “no influence of any kind” is so strong that many
innocuous aspects of both classical and quantum physics can fall under this rubric.

Of course neither quantum mechanics nor classical mechanics has never argued that



no influence of any kind can act over a space-like interval. The existence of correlations
between widely separated bodies could be taken to imply some sort of action over space-like
intervals. A measurement operation, in which the measuring apparatus is only read when
widely separated from the object could be taken to act over space-like intervals, since the
value of the variable measured on the system in question has changed from unknown to
known when the measuring apparatus is read. This is especially true in quantum mechanics
where one cannot regard the system in question as having a value for the quantity of interest
even in the absence of measurement. Ie, this sentence makes it unclear as to what Stapp
is claiming. With a suitably diluted notion of non-locality, any theory could be said to be
non-local.

The above paragraph may be taken as unfairly using his infelicitous language to erect
and demolish a straw man. Let us therefor look a bit more closely at his argument.

He uses a Hardy-type experiment in his argument. The quantum Hardy-type experiment
has been extensively described and generalised. It is a thought experiment in which two
(spatially separated) physical systems are described by some state which is weakly entangled
between the two systems. The weaker the entanglement, the more striking is the violation
of the classical expectations, although the more rare the conditions under which it applies.
We can consider the two systems to each be a two level system, and the state to be any
state which is not a product state. For any such state, one can find a set of two dynamical
variables for each sub-system, call them L1 and L2 for the one sub-system, and R1 and R2
for the other, with each variable having a pair of eigenvalues, denoted by + and -. These
attributes have the following four properties in the given state.

In all experiments with the system in that given initial state and in which L1 and R1 are
measured, and L1 is found to have value +, then R1 always has value +.

If R1 and L2 are measured, and R1 has value +, then L2 always has value +.

If L2 and R2 are measured, and L2 has value 4+, then R2 always has value +.

If L1 and R2 are measured, and L1 has value +, then R2 has value - with a probability
which approaches unity as the state approaches a product state. This is clearly in conflict

with the logical chain
Il=4+=Rl=+=1L2=+= R2=+ (1)

which one would naively deduce from the chain of bipartite measurements.



To make the above more definite, consider the two systems to be two two level systems,
with the usual Pauli matrices . Assume that in the o, basis for each the state of the system

|V >= sin(¢)| + + > +cos(p)| — — > (2)

le, if ¢ is small, this state is almost a product state. Take L1 to be cos(2u)or,+sin(2u)or,
where tan(u) = tan(¢)?, and take R1 to be cos(2¢)og. + sin(2¢)og,, Choosing L2 to be
%(JLZ +0r.) and R2 to be sin(2¢)o g, + cos(2¢)or,, where These operators obey the above
conditions. This choice comes very close to maximizing the probability, cos(2¢)?, that if
L1 and R2 are measured and L1 is +, then R2 is -. For ¢ << 1, this probability becomes
very close to unity. Note that attribute R2 is almost exactly the negative of R1, and its
+ eigenvector is almost exactly the — eigenvector of R1. le, L2 having value + implies
R1 has value + while L1 having value 4 implies that R2 has value - with high probability.
However, for any value of ¢ except 0 (no entanglement but the probability of L1=+ is zero)
or m/2 (maximum entanglement) these operators obey the conditions of this generalised
Hardy system.

For any classical system, the first three properties would imply that if L1 has value +
then R2 must have value +. The fourth property contradicts this. Stapp’s argument is that
this chain of reasoning also applies in quantum mechanics. The argument is subtle and uses
the language of counterfactuals.

Counterfactual arguments are tricky (see for example Shimony’s criticism of this paper
by Stapp which is similar to my criticism)[2], and are invariably heavily theory laden. They
are not statements about the world, but rather about one’s theory of the world. This is
especially clear in the example which could be called the argument of Peres’s mother [3].

When young his mother asked herself the counterfactual question of whose child, her
mother’s or her father’s, she would have been if her mother and father had each married
different people. While she ultimately decided the question was meaningless, it is clear that
it would not have been meaningless, and would furthermore have had a definite answer, had
her theory of human essence rested upon matrilinear reincarnation. Furthermore, had she
asked instead whether her father’s or mother’s child would have had her blue eyes, we would
have had no difficulty giving an answer based on our theories of genetic inheritance. Ie, the

meaningfulness and answer to a counterfactual question depends crucially on the theoretical
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context in which it is embedded.

The central point of Stapp’s argument rests on a proposition which he calls SR. This
proposition is (translated to the notation I am using)

If R1 is measured and gives outcome +, then if, instead, R2 had been measured, the
outcome would have been +.

By “instead” he does not mean in some other experiment, but means a counterfactual
replacement of the measurement of R1 by a measurement of R2 in the same experiment
in which R1 was measured. As a counterfactual statement, it can of course never actually
be tested by experiment in the real world. As with all counterfactual statements, it is
a statement made within the context of a theoretical framework. As such one must be
careful to ensure that the replacement makes sense within the context of the theory. Within
quantum theory this becomes especially ticklish, since the attribute R2 does not commute
with R1, and quantum mechanics thus rules out any interpretation of “instead of” which
makes it synonymous with “as well as 7. Ie, the measurement of R1 inherently destroys the
probability structure of the outcomes for R2 and interferes with any measurement of R2.

The first question to ask is whether, within the theoretical context of quantum mechanics,
the statement makes any sense. The statement assumes a number of other postulates—
namely that the state of the system before any measurement is the Hardy state, a state
which explicitly refers to both L and R. One can certainly argue that in fact, as in the case
of Peres” mother, this statement does not make any sense withing the context of quantum
mechanics. Because attributes do not have values in the absence of measurement, because
the values found in a measurement occur without sufficient cause, are generated out of thin
air by the measurement itself, the question of what quantum mechanics would have to say
about the counterfactual replacement of R1 with R2 is "nothing” in the absence of any other
conditions. But let us push the analysis a little bit further.

Within quantum mechanics, the validity of this counterfactual replacement hinges on
whether or not L2 was actually measured. If it was measured, then, because of the prior
condition that the state is the Hardy state and the assumption about the measured value
of R1, it is a fact that both R1 and L2 have values +. The validity of the counterfactual
replacement of R1 with R2 giving the value + then rests on the reality of the measurement of
L2. If, on the other hand, L2 was not actually measured, then the validity of the argument

rests on a double counterfactual- namely that if instead of not being measured at all, L2



had been measured, it would have had value +, and thus on the second counterfactual
substitution of R2 for R1, R2 would have value 4. There is no reason to believe that
quantum physics makes any sense at all out of such a double counterfactual substitution.

Stapp argues that if, one had, in the past (but space-like separated from) of the mea-
surement of either R1 or R2 referred to in this statement, L2 had been measured, then this
statement is true. The measurement result of + for the measurement of R1 would ensure
through the correlations inherent in the state that the outcome of the L2 measurement in
the past must have been + as well. But, since that result is surely independent of whether
or not R1 or R2 were measured in the future, it would still have had outcome + if the
experimenter in R had decided to measure R2 instead, and thus, because of the correlations
in the state, R2 would then have had value + as well. Thus, given only the knowledge that
L2 was measured, the statement SR is true. Of course it is true only because of the existence
of the measurement of L2. Without the existence of that measurement, the statement SR
is nonsense (ie, untrue).

However Stapp here uses the fee will of the experimentalist and his notion of locality
to argue that, as a statement about region R, SR must surely be independent of what
experiment was carried out in region L, since, it being space-like separated from R, one can
consider the measurement in region L to occur after that in R. Thus SR should continue to
be true if L2 were replaced with L1, in which case however, the inference of SR does not
follow ( and is in fact negated with high probability if the outcome of the L1 measurement
is +).

However this notion of locality is strange. SR, is not a statement about region R, rather it
is a statement about two different counterfactual worlds, the one in which R1 was measured
and the other where R2 was measured. There seems to me to be no argument from locality
or anything else which could demand that such a counterfactual relationship should be
independent of the actions in region L. The existence of the measurement of L2 plays a
crucial role in the establishment of the truth of SR, and there is no reason why that truth
should be independent of that measurement. IF SR refereed to some actual state of affairs in
a single world (established even by counterfactual reasoning) then such a locality requirement
might be reasonable. But as I have stated, the assumption that SR says something about

the single real world is a form of realism.



II. VON NEUMAN MEASUREMENT

This Hardy type system can also be used to point out some features and limitations of the
von Neuman description of measurement. In establishing the logical consistency of quan-
tum mechanics and in particular of the measurement hypothesis, von Neuman introduces
a measurement hypothesis. A measurement on a system could be regarded as a primate
operation on that system. Alternatively, one could introduce a measuring apparatus which
was itself a quantum system, and whose interactions with the system were fully governed
by the laws of quantum mechanics. The measurement process on the original system was
now regarded as the establishment of correlations between some dynamic attribute of the
apparatus with the “measured” attribute of the system. The measurement, in the primate
sense, on this pointer attribute of the apparatus, could be used to infer, by means of the
correlations between the two systems, a value for the attribute of the system. He argued
that regarding a measurement on the system either as a primitive, or as being inferred from
a measurement on an apparatus, are consistent, and equivalent.

However, this model demonstrates limitations of this equivalence in some situations. Be-
cause of the correlations inherent in this Hardy state, one can regard the either the system
on the left or on the right as the system of interest and the other to be a measuring appara-
tus. The correlations created by the interaction which placed the system into the partially
entangled state are of the kind discussed by von Neuman. In particular, a measurement, in
the primitive sense, of R1 giving value + is perfectly correlated with L2 having value +. le,
a primitive measurement of R1 giving value + is a measurement in the von-Neuman sense
of L2 giving value +. (The primitive measurement of R1 giving any value is not equivalent
to a generic von Neuman measurement of L2, since the correlation is not valid for R1 hav-
ing value -.) Now, the primitive measurement of L2, giving value 4 can also be regarded
as a measurement in the von Neuman sense of R2 giving value +. But von Neuman also
insisted that there is no difference between a von Neuman and a primitive measurement as
far as the system is concerned. Thus, we can take the primate measurement of R1 with
value + to be equivalent to the measurement of L2 referred to the above, which was also a
measurement, of R2 with value +. Ie, by the double application of von Neuman’s argument
the (primitive) measurement of R1 giving value + can apparently also be regarded as a von

Neuman measurement of R2 giving value +.



One might make two objections. The first is that the measurement of R1 destroys the
probability distribution of R2, leaving R2 with an entirely different probability distribution.
What is R1 then measuring? However, physicists have long engaged in measurements which
destroy the system being measured even more completely. When a photon impinges on a
photographic plate or a CCD, the fact that the photon is completely destroyed in the process
does not change physicists’ notion that the photographic plate has measured the position
of the photon. Yes, it is destroyed, but just before the destruction the photon had that
position.

The second possible objection is that the measurement is very indirect. After all we are
operating through the intermediary of L2. Without L2, the measurement of R1 would not
allow anything to be inferred about the value of R2. But again, this possibility was already
envisioned by von Neuman, who discussed a whole chain of measuring apparatuses. One
could "measure” the pointer of the apparatus, either as a primitive operation, or by coupling
it again to another super-apparatus, whose pointer we correlated with the pointer of the first
apparatus. This chain could be as long as one wished, as long as one had established the
chain of correlations between the various pointers and the original attribute in the system
to be measured. Ie, there is nothing in the von Neuman equivalence which limits our right
to regard R1 having value + as being a measurement of R2.

Note of course that this is a system to which we cannot apply the arguments of “Wigner’s
Friend”. Ie, a separate attempt to measure R2 either by coupling it to some other apparatus
, or via a primitive measurement will not give the same result as the result inferred from the
measurement of R1. But nowhere in the naive von Neuman analysis is there any requirement
that the “Wigner’s Friend” argument apply.

But, of course, if one does allow the measurement of R1 with value 4+ to be a valid mea-
surement of R2, the plot grows even more convoluted. One could regard the measurement
of L1, giving value +, to be a measurement of R1 (with value +) which is a measurement
of L2 (with value +) which is a measurement of R2 (with value +). Again the fact that L2
is destroyed in the primitive measurement of L1 would seems to be irrelevant.

But this leads to a contradiction. For exactly the same correlated state between the
measuring apparatus L1 and the system attribute R2 allows one to assume that if L1 has
value +, R2 almost certainly has value -. Ie, the equivalence between primitive measurements

and von Neuman causal chain measurements fails spectacularly. At the same time it is not



clear exactly where it fails.

Ie, it would seem that one needs to restrict the von Neuman measurement chain such that
at each step one can apply a "Wigner’s Friend” argument to obtain the same outcome for
the measurement as the one inferred from the von Neuman chain. Or equivalently one must
restrict the measurement chain so that at no point can a measuring apparatus be regarded
as measuring itself.

Bell’s theorem and Quantum Systems

Ultimately all arguments for the non-locality of quantum mechanics can be traced back
to Bell’s arguments [4] in establishing his theorem for ”Locally realistic” systems. It seems
to be because of the powerful fascination of realism that the violation Bell’s inequality for
quantum mechanics and for the real physical world is interpreted as a violation of locality.
It is worth looking in more detail at Bell’s argument and at the differences between quantum
and classical systems for each step in the argument. In the following I will use the name
Bell to refer to the Clauser, Horn, Shimony and Holt [5] version of the argument.(See also
Jarret[6] for a discussion of the experiment).

The setup is that we have two attributes L1 and L2 on the left and R1 and R2 on the right.
(these are not the same as the attributes above in the Stapp argument.) Each takes values
of £1. In the quantum system we will take L1 and L2 to be maximally non-commuting
attributes, and can take them as o7 and o9, the two Pauli spin matrices, and R1 and R2 are
also the two sigma matrices for another two level system.The system is set up in a correlated
state, and a sequence of measurements are made on the L. and R systems. In particular L1
or L2 is measured on the left and R1 or R2 on the right. In each measurement only one
of the pair are measured. After the measurements have all been made, a set of correlation

functions is measured. Namely

[L1 R1] = ZLI Rl/Zl (3)
[L1 R2] = ZLl 32/21 (4)
[L2 R1] = ZLQ 31/21 (5)
[L2 R2] = ZL2 RZ/Zl (6)

where in each case terms like L1; refer to the value obtained for L1 in the i** trial and the

sum over i is over all instances in which the corresponding attributes were measured. (ie,
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312 is the sum over all instances in which L1 and R2 were measured.)

Now, of course each of these correlation function is taken over disjoint sets. It is never
the case that both R1 and R2 were measured in the same instance, and similarly no case
where L1 and L2 were measured in the same instance.

The critical procedure in Bell’s proof is to argue using local realism, that even though
they were not measured in any instance, all of the operators L1, L2, R1, R2 actually have
values in each of the instances of measurement. Furthermore, he uses locality to argue that
if this is true, then the measured correlation function < La Rb >, with a,b both taking

values 1 and 2 is a good estimator of the (counterfactual) correlator
J

where this time the sum is taken over all instances in which any measurement was taken. If
we assume that the sets are or roughly equal size, in 1/4 of the values of j, these correspond
to real values for La and Rb and in 3/4 of the cases at least one of them is the value assumed
to exist by counterfactual realism.

Furthermore, locality is used to argue that we can write
[L1 R1] + [L1 R2] + [L2 R1] — [L2 R2] =< L1(R1 + R2) > + < L2(R1 — R2) >=< L1(R1 + R2) + L2(F

This is the critical relation. Ie, the whole use of locality and local realism is to argue that
the sum of the correlators is equal to the correlation of the sum of the operators.

What is of course interesting about quantum mechanics is this property comes free. If
we define La and Ra as the quantum operators and the expectation values as the quantum

expectation values, then quantum mechanics gives us, for free, that

[L1 R1]+ [L1 R2] + [L2 R1] — [L2 R2] = (y|L1(R1 +R2)[y)) + (¥|L2(R1 — R2)[1)Y9)
— (|L1(R1+R2) +L2(R1 —R2)[¢)  (10)

Since the use of locality in the classical case is solely to demonstrate the truth of something
which quantum mechanics apparently gives us for free, the question now arises as to where
the difference between the quantum and classical resides.

The first instance is when we examine the meaning of these expectation values. In the
classical case, for example < L1(R1 + R2) > is taken to mean something different from

(¥|L1(R1 + R2)|()%). In the classical case, Bell took R1 + R2 in each instance to be the
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sum of the values of R1 and R2 for each particular instance. Since by assumption Ra took
values of +£1, R1+ R2 has values of 2 or 0. However, a critical feature of quantum mechanics
is that R14+R2 is an operator, and attribute in its own right, and will take values of /2.
Furthermore, in all situations in which the operators R1 and R2 are measured separately,

or their sum is measured,

()M RL(Y| + [)M R2(¢| = [))M( R1 + R2)(¢)| (11)

where M is any operator which commutes with Ra. Ie, measured separately or measured
as a sum, these two correlators are identical.

If the classical system is to mimic the quantum system, this must also be true of the
classical system. In general since R1+ R2 has different values than R1 + R2 (namely £+2,0
instead of ++/2 this mimicking is difficult for the classical system to maintain.

Secondly, Bell makes use of another feature. Both of the attributes R1+ R2 and R1— R2
are assumed to have possible values of £2,0. Furthermore they are perfectly anti-correlated
in that one and only of of the two ever has the value 0 in any one instance of the experiment.
Thus in each element of the sum, either R1+ R2 or R1 — R2 is zero. Since. L1 and L2 have

values of 1 we immediately get Bell’s theorem, namely that
—2 < [L1 R1] + [L1 R2] 4+ [L2 R1] — [L2 R2] <2 (12)

The quantum violation comes about by noting that we can find a state, |¢))such that L1
and (R1+R2) are maximally correlated— ie every-time L1 has value +1, R1+R2 has value
++/2 and every time L1 has value -1, R1+R2 has value ++v/2. That same state |t)) can be
chosen so that 1.2 and R1-R2 are also maximally correlated. This immediately leads to the

quantum correlation
[L1 R1] +[L1 R2] + [L2 R1] — [L2 R2] = 22 (13)

Where can one locate the difference between the quantum and classical case. A key
location is the assumption that the values of R1 + R2 take values of 42,0 rather than the
++/2 of the quantum system. Ie, in quantum mechanics the sum of the values is not the
same as the values of the sum. This is clearly crucial in Bell’s argument.

WE can express this in a slightly different way. If we look at the correlation < (R1 +

R2)(R1 — R2) > for the classical system, it is crucial to Bell’s argument that this is zero.
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Quantum mechanically of course, this expression would not necessarily be zero and in fact
in the quantum state under consideration it is non-zero.

The second point, related to the first, is that R1+R2 is anti-correlated with R1-R2 in
that a non-zero value of one is perfectly correlated with a zero value of the other. Clearly
if the values are not 0 and 42 this correlation between the two makes little sense. Finally,
the perfect correlations between R1+R2 and L1 at the same time as a perfect correlation
between R1-R2 and L2 obtains in the quantum system is also critical to the possibility
of its violating the classical limits. Can a classical system be set up so as to have this
same correlation? The answer is of course yes. We take R1 4 R2 to have values +v/2 as
for the quantum system. Set up the four states {+1, +1, +v/2,+v2 , {+1, —1,+v2, —/2,
{-1,+1, —V/2,4+/2, and {-1,-1, —/2, —v/2 where these four values are the classical values
of L1,L2,(R1+R2), and (R1-R2) respectively. The classical state is now defined by taking
each of these states with probability of 1/4. Thus we see that the critical difference between
quantum and classical system is in the fact that the sum of values is not the same as the
values of the sum. Classically, the values of R1+R2 are just the values of R1 added to those
of R2, namely 42,0 while quantum mechanically they are just 4+/2.

We note that the locality has played a weak role. It has acted to allow us to argue that for
the classical system, the correlations behave in just the way we would expect the quantum
system to behave— namely that the sum of the correlators is just the theoretical correlation

of the sum.
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