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Assuming the universal validity of quantum theory, the quantum-to-classical transition is also of 

crucial importance in cosmology. Firstly, any linear theory of quantum gravity predicts 

superpositions of different metrics even at the macroscopic level. Secondly, primordial 

fluctuations in the early Universe, out of which galaxies and clusters of galaxies are expected to 

develop, are of a genuine quantum nature. In my talk, I shall discuss both cases and show how 

and to which extent classical behaviour emerges through decoherence. The emphasis is on the 

main conceptual aspects rather than on technical issues.  
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Quantum Gravity

C. Kiefer

. . .

4.2 Decoherence and the gravitational field1

4.2.1 Emergence of classical spacetime

According to the Copenhagen interpretation of quantum theory, the existence
of a classical world is needed from the outset in order to interpret quantum
theory. Appropriate classical apparata are assumed to define the occurrence
of quantum phenomena. The presence of such classical measurement agencies
seems to be possible only if spacetime exists as a classical entity.

The discussion of the previous chapters has, however, convincingly demon-
strated that quantum theory has a much wider range of applicability than
the pioneers had imagined. Classical properties are not intrinsic to objects
but emerge through the irreversible interaction with the environment. The
experiments discussed in Chap. 3 are an impressive confirmation of this idea.

What about the structure of spacetime itself? Before the advent of the
general theory of relativity, spacetime was considered to be a given, non-
dynamical background structure. This is also the case in quantum field the-
ories such as QED (Sect. 4.1). In general relativity, however, the geometry
of spacetime is associated with the gravitational field and thereby becomes
dynamical. If the gravitational field is fundamentally described by quantum
theory, then spacetime cannot be a classical entity.

But has gravity to be described by quantum theory? Quite generally, it
does not seem possible to find a fundamental hybrid description that couples
a quantum system to a classical system in a consistent way (Kiefer 2003). This
does of course not mean that there exists no effective theory which couples
quantum to classical systems. For example, one can develop a formalism in
which a decohered (“classical”) system is coupled to a quantum system that
does not exhibit decoherence (Halliwell 1998).

As has already been mentioned, it was important already during the early
discussions between Einstein and Bohr to apply the uncertainty relations to
macroscopic objects (screens, photographic plates etc.) in order to save them

1 Extract from Chapter 4 of Decoherence and the Appearance of a Classical World

in Quantum Theory, by E. Joos, H. D. Zeh, C. Kiefer, D. Giulini, J. Kupsch, and
I.-O. Stamatescu (Springer, Berlin, 2003).
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for microscopic systems. This is reasonable because macroscopic objects are
composed of atoms. Such consistency arguments are at the heart of these dis-
cussions. At the Solvay conference in 1930, Bohr and Einstein had a debate
concerning the time-energy uncertainty relation, ∆E∆t ≥ ~/2. In the discus-
sion, Bohr had to invoke general relativity to counter Einstein’s objections.
But only very little structure from general relativity does in fact enter the
argument; it is only the equivalence principle and therefore the curved nature
of spacetime, from which the redshift of light follows as a consequence. The
redshift may be derived by just applying the energy law to the expression ~ω
for the energy of a photon. One could thus phrase Bohr’s argument in the
way that a violation of the uncertainty relation would entail a violation of
energy conservation.

In fact, the possible violation of conservation laws often plays an impor-
tant role in such consistency arguments. Eppley and Hannah (1977), for ex-
ample, consider the interaction of classical gravitational waves with quantum
systems. They find, as a consequence, a violation of either momentum conser-
vation or the uncertainty relations for the quantum system, or the occurrence
of signals faster than light. Since not many peculiarities of the gravitational
field enter their discussion, these results hold also for other systems such as
the electromagnetic field. This type of arguments is certainly enforced for
the gravitational field due to its coupling to all other degrees of freedom.
Taking then the quantum nature of the gravitational field for granted, one
would expect that efficient decoherence results from this universal coupling
for both the gravitational field and other variables.

In a heuristic example, where quantum theory is applied to Newtonian
gravity, one finds that the gravitational field is decohered by its action with
quantum matter (Joos 1986b). Suppose that a (homogeneous) gravitational
field within a box of side length L is in a quantum superposition of different
strengths, i.e.

|ψ〉 = c1|g〉 + c2|g′〉, g 6= g′. (4.1)

A particle with mass m in a state |χ〉, which moves through this volume,
“measures” the value of g, since its trajectory depends on the metric, yielding
the total state

|g〉|χg(t)〉 . (4.2)

This correlation destroys the coherence between g and g′, and the reduced
density matrix can be estimated to assume the following form after many
such interactions are taken into account:

ρ(g, g′, t) = ρ(g, g′, 0) exp
(

−Γ (g − g′)2t
)

, (4.3)

where

Γ = nL4

(

πm

2kBT

)3/2

,



4 Quantum field theory and quantum gravity 3

for a gas with particle density n and temperature T . For example, air under
ordinary conditions, and L = 1 cm, t = 1 s yields a remaining coherence
width of ∆g/g ≈ 10−6.

One can give quite general arguments that the gravitational field is fun-
damentally of quantum nature (Kiefer 2000, 2003):

• Singularity theorems of general relativity: Under very general conditions,
the occurrence of a singularity, and therefore the breakdown of the un-
quantised theory, is unavoidable. A more fundamental theory is therefore
needed to overcome this breakdown, and the natural expectation is that
this fundamental theory is a quantum theory of gravity. This is simi-
lar to ordinary quantum theory preventing the singularity that classical
electromagnetism would predict for atoms.

• Initial conditions in cosmology: This is related to the singularity theorems
which predict the existence of a “big bang” where the known laws of
physics break down. To fully understand the evolution of our Universe,
its initial state must be amenable to a physical description.

• Unification: Apart from general relativity, all known fundamental theo-
ries are quantum theories. It would thus seem awkward if gravity, which
couples to all other fields, should remain the only classical entity in a
fundamental description.

• Gravity as a regulator: Many models indicate that the consistent inclusion
of gravity in a quantum framework would automatically eliminate the
divergences that plague ordinary quantum field theory.

• Problem of time: In ordinary quantum theory, the presence of an external
time parameter t is crucial for the interpretation of the theory: “Mea-
surements” take place at a certain time, matrix elements are evaluated
at fixed times, and the norm of the wave function is conserved in time.
Since in general relativity, on the other hand, time as part of spacetime
is a dynamical quantity (as defined by the metric), both concepts of time
must be modified at a fundamental level.

But what does the “quantisation” of spacetime mean? In other words, to
which classical structures does one have to apply the superposition principle,
while the rest remains classical? Isham (1994) presents the following hierarchy
of structures where this decision can be made at each level:

Lorentzian manifold
↓

Causal manifold (“light cone”)

↓
Differentiable manifold

↓
Topological space

↓
Set of events
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A straightforward quantisation of general relativity, for example, would
dissolve spacetime as a fundamental classical entity, but would retain a fixed
three-dimensional manifold in the formalism. This canonical approach is briefly
described in the next subsection and will be the basis for the calculations pre-
sented below. Path integration, for example, would entail a superposition of
different manifolds. This should also be true in a “theory of everything” (for
which superstring theory is a candidate) which encompasses all interactions
of Nature in a single quantum framework. In such a fundamental theory it
is probably only very little structure, if any, that remains classical, although
this is not yet clear, cf. Seiberg and Witten (1999).

Quantum effects of gravity are expected to become relevant at the Planck
scale. This is the scale where, for an elementary particle, Schwarzschild radius
and Compton wavelength coincide. The Planck mass is given by

mP =

√

~c

G
≈ 10−5 g , (4.4)

while Planck length and Planck time are given by the following expressions,
respectively,

lP =

√

~G

c3
≈ 10−33 cm , tP =

√

~G

c5
≈ 10−44 s . (4.5)

As we discuss at length in this volume, quantum effects are not a priori
restricted to a particular scale. In Chap. 3 we have demonstrated that it is
not the large mass by itself that provokes classical behaviour for a quantum
object, but its interaction (whose strength of course depends on the mass)
with the environment. Analogously, it is not the smallness of the Planck
length by itself that a priori prevents quantum-gravity effects to occur at
larger scales. The classical appearance of spacetime at larger scales should
again be due to the unvoidable interaction with other degrees of freedom. It
is for this reason that we can restrict ourselves in the following discussion to
canonical quantum gravity, since this should be valid as an effective theory
for scales l ≫ lP , independent of whether this theory is also valid at the
Planck scale itself or not (in the latter case a unified theory such as string
theory must be invoked).

We mention that gravity is assigned a fundamental role also in approaches
which modify the formalism of quantum theory, see e.g. Károlyházy et al.
(1986), Penrose (1986), as well as Chap. 8, but this will not be considered in
this chapter.

4.2.2 The formalism of quantum cosmology

The basic intention in the canonical approach to quantum gravity is to derive
equations for wave functionals on an appropriate configuration space, analo-
gously to the Schrödinger picture in quantum mechanics. Technically, this is
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achieved by foliating, in the classical theory, the classical spacetime into spa-
tial hypersurfaces and choosing the spatial metric as a canonical variable (the
“q”). In the spacetime which is classically constructed by dynamically devel-
oping the initial data on a particular hypersurface, the canonical momentum
is linearly related to the embedding of the hypersurfaces into spacetime. (In
the case of a Friedmann universe, the radius, a, is the configuration vari-
able, while the canonical momentum corresponds to the Hubble parameter.)
The postulate of nontrivial commutation relations between these quantities
in quantum gravity then means that spacetime is no longer a fundamental
concept, since one cannot specify both the spatial metric and the embedding.
The role of spacetime is taken over by the space of all three-dimensional ge-
ometries, which is called superspace and which serves as the configuration
space for the theory. For a detailed physical introduction into these concepts
we refer to Zeh (2001); the details of the canonical formalism are presented,
for example, by Wald (1984). The central kinematical quantity is thus a wave
functional defined on superspace and on matter field degrees of freedom. It
is often labeled Ψ [3G, Φ], where 3G stands for “three-dimensional geometry”
(to express the fact that this wave functional is independent of particular
coordinates on the three-dimensional space, as being guaranteed by the three
“momentum constraints” of general relativity), and Φ symbolically denotes
all non-gravitational fields. The invariance of general relativity (called in-
variance under coordinate transformations or under diffeomorphisms) leads
to the presence of constraints: the total Hamiltonian must vanish.2 In the
quantum theory, the constraints are implemented à la Dirac as restrictions
on physically allowed wave functionals. The wave functional then obeys the
Wheeler-DeWitt equation (DeWitt 1967, Wheeler 1968),

HΨ = 0, (4.6)

where H denotes the full Hamiltonian for gravity and other fields. In classical
general relativity, spacetimes can be parametrised by some arbitrary time co-
ordinates (which have lost their absolute status). Since due to the uncertainty
relations no spacetimes exist anymore on the level of quantum gravity (only
a wave function for spatial metrics), there is no time parameter available to
parametrise them – the Wheeler-DeWitt equation is “timeless”. This gives
rise to the problem of time in quantum gravity which is extensively discussed
in the literature, see e.g. Barbour (1994a,b), Isham (1992), Kuchař (1992),
Zeh (1986, 2001), Kiefer and Zeh (1995), and Kiefer (2000, 2003).

We have to emphasise that this approach at present exists only on a
formal level, since the explicit treatment of (4.6) is unclear.3 In this respect
the discussion in the present section is different from the rest of the book and

2 We consider only the case of spatially closed hypersurfaces. In the asymptotically
flat case, the total Hamiltonian can be written as a surface integral.

3 It is known that (4.6) does not give rise to a unitary evolution in a Fock space
built over three-dimensional slices.
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should be considered of heuristic value only. However, from general arguments
like reparametrisation invariance one would expect the fundamental equation
to be of the constraint form (4.6), although the exact form of H may be
different. Therefore, the main interpretational part of the discussion in this
section would remain unaffected, and only the details of the calculations
would have to be changed.

The main features of the canonical approach can already be recognised in
a simple two-dimensional model – a closed Friedmann universe characterised
by its scale factor a, containing a homogeneous massive scalar field ϕ as
a representation of matter, cf. Kiefer (1988) and Halliwell (1991). Taking
the units 2G = 3π, the classical action for this model is the sum of the
gravitational part and the matter part,

S =

∫

dt L(a, ȧ, ϕ, ϕ̇, N)

≡ 1

2

∫

dt Na3

(

− ȧ2

N2a2
+
ϕ̇2

N2
+

1

a2
−m2ϕ2

)

. (4.7)

This action is invariant with respect to arbitrary reparametrisations of the
time variable t, a fact which is encoded in the presence of the non-dynamical
lapse function N which appears undifferentiated in the action. A characteris-
tic feature of the gravitational field is the occurrence of an indefinite kinetic
term in the action.

The standard canonical formalism proceeds with the definition of the
canonical momenta,

pN =
∂L

∂Ṅ
= 0, pa =

∂L

∂ȧ
= −aȧ

N
, pϕ =

∂L

∂ϕ̇
=
a3ϕ̇

N
. (4.8)

The canonical Hamiltonian is then given by

H = pN Ṅ + paȧ+ pϕϕ̇− L

=
N

2

(

−p
2
a

a
+
p2

ϕ

a3
− a+m2ϕ2a3

)

≡ N

2
GABpApB + V (a, ϕ) . (4.9)

The important point is that pN = 0 is a constraint that should hold at all
times. Therefore, from Hamiton’s equations of motion one gets ∂H/∂N = 0
which gives the constraint

H = 0 ⇔ ȧ2 = −1 + a2(ϕ̇2 +m2ϕ2) . (4.10)

This is nothing but the classical Friedmann equation which is well known
from cosmology. Variation of (4.7) with respect to a and ϕ give the classical
equations of motion. The equation for ϕ, in particular, reads

ϕ̈+
3ȧ

a
ϕ̇+m2ϕ = 0 . (4.11)
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This is the Klein-Gordon equation for a homogeneous field in an evolving
universe, whose effect on ϕ is the second (“friction”) term.

Following Dirac’s procedure, the classical constraint (4.10) is then turned
into the Wheeler-DeWitt equation (4.6). Using a particular factor ordering,4

the explicit form of this equation in the present model reads

Hψ ≡
(

~
2a

∂

∂a

(

a
∂

∂a

)

− ~
2 ∂2

∂ϕ2
+m2ϕ2a6 − a4

)

ψ(a, ϕ) = 0 . (4.12)

Note that the indefiniteness of the kinetic term has led to a hyperbolic equa-
tion for ψ – in contrast to the Schrödinger equation. In the next subsection, a
more complicated model is used in which the variables a and ϕ play the role
of the background, supplemented by additional degrees of freedom (“higher
multipoles”) {fn}. (In the following we set again ~ = 1.)

The Wheeler-DeWitt equation (4.6), (4.12) does not contain a classical
time parameter. This is not surprising, since the classical metric is known
to determine time. An approximate concept of time-dependence of a wave
function can be recovered in a Born-Oppenheimer type of approximation
scheme in which part of the degrees of freedom are semiclassical (given by
WKB wave functions), while the rest is fully quantum. This limit is obtained,
for example, if the full wave functional in (4.6) is of the form

Ψ [3G, Φ] ≈
∑

(n)

C(n)[
3G]eiS

(n)
0 [3G]/G~ψ(n)[3G, Φ] ≡

∑

(n)

ψ
(n)
0 ψ(n), (4.13)

where the S
(n)
0 are solutions to the gravitational Hamilton–Jacobi equations

which are fully equivalent to Einstein’s field equations. The gravitational part
of the total state is thus treated semiclassically. The semiclassical part may
also comprise part of the matter degrees of freedom. In fact, in the discussion
of decoherence in Sect. 4.2.3, the scalar field ϕ will belong to this part. Note
the analogy to Equation (??) discussed in the last section.

The sum in (4.13) runs over a whole set of indices (n) (which may also
be continuous). It turns out that the matter states ψ(n) obey the following
approximate equation in each component,

i∇S(n)
0 · ∇ψ(n) ≈ H(n)

m ψ(n), (4.14)

where H
(n)
m denotes the Hamiltonian for the non-gravitational fields (which

of course depends on the particular solution S
(n)
0 chosen for the gravitational

field). Note the analogy of H
(n)
m to Hφ discussed in the last section. The

expression ∇S(n)
0 · ∇ ≡ ∂/∂t(n) is a directional derivative in the gravita-

tional part of the full configuration space, which parametrises the family of

4 The chosen factor ordering is given by the Laplace-Beltrami operator in the
configuration space spanned by a and ϕ.
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classical spacetimes described by S
(n)
0 . The parameters t(n) are often called

WKB times – they control the “dynamical evolution” of the states χ(n) along
the WKB trajectories. Equation (4.14) is thus nothing but the Schrödinger
equation, while t represents our phenomenological time. Details of the semi-
classical approximation to quantum gravity are described in Kiefer (1994),
see also Kiefer (1993), Giulini and Kiefer (1995).

We note that due to the central input of the Born-Oppenheimer expansion
the situation here is analogous to that of Sect. 4.1.2 only (“measurement” of
fields by charges), since the reverse effect (which would here correspond to
“measurement” of matter by the gravitational field) is too weak to become
important.

4.2.3 Decoherence in quantum cosmology

In quantum cosmology, all variables are fundamentally quantum and there is
no classical spacetime. How does a classical spacetime emerge? It has been
suggested that global degrees of freedom such as the volume of the Universe
appear classical after the interaction with other degrees of freedom is taken
into account (Zeh 1986). The role of such additional variables may be played
by density fluctuations and gravitational waves. All these degrees of free-
dom are of course within the Universe, but they are “environmental” to the
volume-degree of freedom in configuration space. From the viewpoint of a “lo-
cal” observer who can measure the size of the Universe but has no access to
small fluctuations, these other degrees of freedom have to be traced over. In
this sense they are able to produce decoherence for the volume degree of free-
dom. We have emphasised before that the issue of classicality only arises after
a quantum system has been chosen, for which the straightforward applica-
tion of the superposition principle would lead to a macroscopically entangled
state. In a sense, a classical spacetime thus arises by a “self-measurement” of
the Universe.

Calculations for decoherence in quantum cosmology can be done with
the help of the Wheeler-DeWitt equation (4.6), see Kiefer (1987). As a nec-
essary prerequisite, the semiclassical approximation to quantum gravity is
employed, in which an approximate Schrödinger equation is recovered for the
cosmological fluctuations (see Sect. 4.2.2). The time parameter corresponding
to this equation is defined by the semiclassical degrees of freedom (Halliwell
and Hawking 1985). In Kiefer (1987) the relevant system was taken to be the
scale factor (“radius”) a of the Universe together with a homogeneous scalar
field ϕ, cf. the model discussed in Sect. 4.2.2. The field ϕ plays a crucial role
in modern cosmological theories where an exponential, “inflationary”, expan-
sion is assumed to have happened in an early phase of the Universe, starting
about 10−33 s after the big bang. It is in fact the “inflaton field” ϕ itself that
causes inflation. The inhomogeneous modes of the gravitational field and the
scalar field (gravitational waves and density fluctuations) can then be shown
to decohere the global variables a and ϕ.
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An open problem in these early papers was the issue of regularisation; the
number of fluctuations is infinite and would cause divergences, which is why
a cutoff was suggested. The issue was again addressed in Barvinsky et al.
(1999a) where a physically motivated regularisation scheme was introduced.
In the following we shall briefly review this approach.

As a (semi)classical solution for a and ϕ one may use

ϕ(t) ≈ ϕ, (4.15)

a(t) ≈ 1

H(ϕ)
coshH(ϕ)t , (4.16)

where H(ϕ) = 8πV (ϕ)/3m2
P is the Hubble parameter generated by the in-

flaton potential V (ϕ). It is approximately constant during the inflationary
phase in which ϕ slowly “rolls down” the potential. We take into account
fluctuations of a field f(t,x) which can be a field of any spin. Space is as-
sumed to be a closed three-sphere, so f(t,x) can be expanded into a discrete
series of spatial orthonormal harmonics Qn(x),

f(t,x) =
∑

n

fn(t)Qn(x) . (4.17)

One can thus represent the fluctuations by the degrees of freedom fn.
Our intention now is to solve the Wheeler-DeWitt equation (4.6) in the

semiclassical approximation. This leads to the following solution:

Ψ(t|ϕ, f) =
1

√

v∗ϕ(t)
e−I(ϕ)/2+iScl(t,ϕ)

∏

n

ψn(t, ϕ|fn) . (4.18)

The time t that appears here is the semiclassical (“WKB”) time and is defined
by the background-degrees of freedom a and ϕ through the “eikonal” Scl

which is a solution of the Hamilton-Jacobi equation; t is formally identical
with the time that appears in the classical equations (4.15) and (4.16). Since
ϕ is thus determined by a, only one variable (a or ϕ) occurs in the argument
of Ψ . The wave functions ψn for the fluctuations fn obey each an approximate
Schrödinger equation (4.14) with respect to t, and their Hamiltonian Hn has
the form of a (“time-dependent”) harmonic-oscillator Hamiltonian. The first
exponent contains the euclidean action I(ϕ) from the classically forbidden
region (the “De Sitter instanton”) and is independent of t. Its form depends
on the boundary conditions imposed. In the present case the so-called Hartle-
Hawking condition is chosen, see e.g. Halliwell (1991), which amounts to
I(ϕ) ≈ −3m4

P /8V (ϕ). The detailed form is, however, not necessary for the
discussion below. The function vϕ(t) is the so-called basis function for ϕ and
is a solution of the classical equation of motion. In the following we shall
choose units such that G = c = ~ = 1.

For the ψn we shall take – in analogy to (??) – Gaussian states that cor-
respond to the so-called De Sitter-invariant vacuum state (Starobinsky 1979,



10 C. Kiefer

Allen 1985). This is the maximally symmetric state which possesses proper-
ties very similar to the standard vacuum state in Minkowski space. (In the
massless case, this state is invariant only under a subgroup of the De Sitter
group.) It is given by

ψn(t, ϕ|fn) =
1

√

v∗n(t)
exp

(

−1

2
Ωn(t)f2

n

)

, (4.19)

Ωn(t) = −ia3(t)
v̇∗n(t)

v∗n(t)
. (4.20)

The functions vn are the basis functions of the De Sitter-invariant vacuum
state; they satisfy the classical equation of motion

Fn

(

d

dt

)

vn ≡
(

d

dt
a3 d

dt
+ a3m2 + a(n2 − 1)

)

vn = 0 (4.21)

with the boundary condition that they should correspond to a standard
Minkowski positive-frequency function for constant a. In the simple special
case of a spatially flat section of De Sitter space one would have

avn =
e−inη

√
2n

(

1 − i

nη

)

, (4.22)

where η is the conformal time defined by adη = dt. We note that the cor-
responding negative-frequency function enters the exponent of the Gaussian,
see (4.20).

An important property of these vacuum states is that their norm is con-
served along any semiclassical solution (4.15), (4.16),

〈

ψn|ψn

〉

≡
∫

dfn|ψn(fn)|2 =
√

2π[∆n(ϕ)]−1/2, (4.23)

∆n(ϕ) ≡ ia3(v∗nv̇n − v̇∗nvn) = constant . (4.24)

Note that ∆n(ϕ) is just the (constant) Wronskian corresponding to (4.21).
(The corresponding Wronskian for the homogeneous mode ϕ is
∆ϕ ≡ ia3(v∗ϕv̇ϕ− v̇∗ϕvϕ).) We must emphasise that ∆n is a nontrivial function
of the background variable ϕ, since it is defined on full configuration space and
not only along semiclassical trajectories (it gives the weights in the “Everett
branches”.) It is therefore not possible to normalise the ψn artificially to one,
since this would be inconsistent with respect to the full Wheeler-DeWheeler
equation (Barvinsky et al. 1999a).

The solution (4.18) forms the basis for our discussion of decoherence.
Since the {fn} are interpreted as the environmental degrees of freedom, they
have to be integrated out to get the reduced density matrix for ϕ or a (a and
ϕ can be used interchangeably, since they are connected by t). The reduced
density matrix thus reads

ρ(t|ϕ,ϕ′) =

∫

dfΨ(t|ϕ, f)Ψ∗(t|ϕ′, f) , (4.25)
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where Ψ is given by (4.18), and it is understood that df =
∏

n dfn. After the
integration one finds

ρ(t|ϕ,ϕ′) = C
1

√

v∗ϕ(t)v′ϕ(t)
exp

[

− 1

2
I − 1

2
I ′ + i(S − S′)

]

×
∏

n

[

v∗nv
′
n(Ωn +Ω′∗

n )
]−1/2

, (4.26)

where C is a numerical constant. The diagonal elements ρ(t|ϕ,ϕ) describe the
probabilities for certain values of the inflaton field to occur. In an appropriate
model, one can find that these probabilities are peaked at the onset of inflation
around values of ϕ that lead to phenomenologically satisfying results (for
example, with respect to structure formation) without having to invoke the
anthropic principle, see Barvinsky et al. (1999b) and the references therein.

It is convenient to rewrite the expression for the density matrix (4.26) in
the form

ρ(t|ϕ,ϕ′) = C
∆

1/4
ϕ ∆

′1/4
ϕ

√

v∗ϕ(t)v′ϕ(t)
exp

(

−1

2
Γ − 1

2
Γ

′ + i(S − S′)

)

×D(t|ϕ,ϕ′), (4.27)

where

Γ = I(ϕ) + Γ 1−loop(ϕ) (4.28)

is the full Euclidean effective action including the classical part and the one-
loop part. The latter comes from the next-order WKB approximation and is
important for the normalisability of the wave function with respect to ϕ. The
last factor in (4.27) is the decoherence factor

D(t|ϕ,ϕ′) =
∏

n

(

4ReΩn ReΩ′∗
n

(Ωn +Ω′∗
n )2

)1/4
(

vn

v∗n

v
′
∗

n

v′n

)1/4

. (4.29)

It is equal to one for coinciding arguments. While the decoherence factor is
time-dependent, the one-loop contribution to (4.27) does not depend on time
and may play only a role at the onset of inflation. In a particular model with
non-minimal coupling (Barvinsky et al. 1997), the size of the non-diagonal
elements is at the onset of inflation approximately equal to those of the
diagonal elements. The Universe would thus be essentially quantum at this
stage, i.e. in a non-classical state.

The amplitude of the decoherence factor can be rewritten in the form

|D(t|ϕ,ϕ′)| = exp
1

4

∑

n

ln
4ReΩn ReΩ′∗

n

|Ωn +Ω′∗
n |2 . (4.30)
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The convergence of this series is far from being guaranteed. Moreover, the
divergences might not be renormalisable by local counterterms in the bare
quantised action. We shall now analyse this question in more detail.

We start with a minimally coupled massive scalar field. Equation (4.21)
for the basis functions reads

d

dt

(

a3 dvn

dt

)

+ a3

(

n2 − 1

a2
+m2

)

vn = 0 . (4.31)

The appropriate solution to this equation is (Barvinsky et al. 1992)

vn(t) = (coshHt)−1P−n

− 1
2+i

√
m2/H2−9/4

(i sinhHt) , (4.32)

where P denotes an associated Legendre function of the first kind. The ex-
pansion of (4.32) for large masses was derived in Barvinsky et al. (1992). The
corresponding expression for (4.20) is given by

Ωn = a2

[

√

n2 +m2a2 + i sinhHt

(

1 +
1

2

m2a2

n2 +m2a2

)]

+O

(

1

m

)

.(4.33)

The leading contribution to the amplitude of the decoherence factor is there-
fore

ln |D(t|ϕ,ϕ′)| ≃ 1

4

∞
∑

n=0

n2 ln
4a2a′2

√
n2 +m2a2

√
n2 +m2a′2

(

a2
√
n2 +m2a2 + a′2

√
n2 +m2a′2

)2 .(4.34)

The first term, n2, in the sum comes from the degeneracy of the eigenfunc-
tions. This expression has divergences which cannot be represented as addi-
tive functions of a and a′. This means that no one-argument counterterm to
Γ and Γ

′ in (4.27) can cancel these divergences of the amplitude (Paz and
Sinha 1992). One might try to apply standard regularisation schemes from
quantum field theory, such as dimensional regularisation. The corresponding
calculations have been performed in Barvinsky et al. (1999a) and will not be
given here. The important result is that, although they render the sum (4.34)
convergent, they lead to a positive value of this expression. This means that
the decoherence factor would diverge for (ϕ − ϕ′) → ∞ and thus spoil one
of the crucial properties of a density matrix – the boundedness of tr ρ̂2. The
dominant term in the decoherence factor would read

ln |D| =
π

24
(ma)3 +O(m2), a≫ a′ (4.35)

and would thus be unacceptable for a density matrix. Reduced density ma-
trices are usually not considered in quantum field theory, so this problem has
not been encountered before. A behaviour such as in (4.35) is even obtained in
the case of massless conformally invariant fields, for which one would expect
a decoherence factor equal to one, since they decouple from the gravitational
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background. How, then, does one have to proceed in order to obtain a sensible
regularisation?

The crucial point is to perform a redefinition of environmental fields and
to invoke a physical principle to fix this redefinition. The situation is some-
what analogous to the treatment of the S-matrix in quantum field theory:
off-shell S-matrix and effective action depend on the parametrisation of the
quantum fields (Vilkovisky 1984), in analogy to the non-diagonal elements of
the reduced density matrix. In Laflamme and Louko (1991) and Kiefer (1992)
it has been proposed within special models to rescale the environmental fields
by a power of the scale factor. It was therefore suggested in Barvinsky et al.
(1999a) to redefine the environmental fields by a power of the scale factor
that corresponds to the conformal weight of the field (which is defined by the
invariance of the conformally invariant wave equation). For a scalar field in
four spacetime dimensions this amounts to a multiplication by a:

vn(t) → ṽn(t) = a vn(t) , (4.36)

Ω̃n = −ia d
dt

ln ṽ∗n . (4.37)

An immediate test of this proposal is to see whether the decoherence factor
is equal to one for a massless conformally invariant field. In this case, the
basis functions and frequency functions read, respectively,

ṽ∗n(t) =

(

1 + i sinhHt

1 − i sinhHt

)
n

2

, (4.38)

Ω̃n = −ia d
dt

ln ṽ∗n(t) = n . (4.39)

Hence, D̃(t|ϕ,ϕ′) ≡ 1. The same holds also for the electromagnetic field
(which in four spacetime dimensions is conformally invariant). It is interesting
to note that the degree of decoherence caused by a certain field depends on the
spacetime dimension, since its conformal properties are dimension-dependent.

For a massive minimally coupled field the new frequency function reads

Ω̃n =

[

√

n2 +m2a2 + i sinhHt

(

1

2

m2a2

n2 +m2a2

)]

+O(1/m) . (4.40)

Note that, in contrast to (4.33), there is no factor of a in front of this expres-
sion. Since (4.40) is valid in the large-mass limit, it corresponds to modes
which evolve adiabatically on the gravitational background, the imaginary
part in (4.40) describing particle creation.

It turns out that the imaginary part of the decoherence factor has at most
logarithmic divergences and, therefore, affects only the phase of the density
matrix. Moreover, these divergences decompose into an additive sum of one-
argument functions and can thus be cancelled by adding counterterms to the
classical action S (and S′) in (4.27) (Paz and Sinha 1992). The real part
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is simply convergent and gives a finite decoherence amplitude. This result is
formally similar to the result for the decoherence factor in QED (Kiefer 1992).

For a≫ a′ (far off-diagonal terms) one gets the expression

|D̃(t|ϕ,ϕ′)| ≃ exp

[

− (ma)3

24

(

π − 8

3

)

+O(m2)

]

. (4.41)

Compared with the naively regularised (and inconsistent) expression (4.35),
π has effectively been replaced by 8/3 − π. In the vicinity of the diagonal,
one obtains

ln |D̃(t|ϕ,ϕ′)| = −m
3πa(a− a′)2

64
, (4.42)

a behaviour similar to (4.41).
An interesting case is also provided by minimally coupled massless scalar

fields and by gravitons. They share the basis- and frequency functions in their
respective conformal parametrisations:

ṽ∗n(t) =

(

1 + i sinhHt

1 − i sinhHt

)
n

2
(

n− i sinhHt

n+ 1

)

, (4.43)

Ω̃n =
n(n2 − 1)

n2 − 1 +H2a2
− i

H2a2
√
H2a2 − 1

n2 − 1 +H2a2
. (4.44)

They differ only by the range of the quantum number n (2 ≤ n for inhomo-
geneous scalar modes and 3 ≤ n for gravitons) and by the degeneracies of
the n-th eigenvalue of the Laplacian,

dim(n)scal = n2 , (4.45)

dim(n)grav = 2(n2 − 4). (4.46)

For far off-diagonal elements one obtains the decoherence factor

|D̃(t|ϕ,ϕ′)| ∼ e−C(Ha)3 , a≫ a′, C > 0 , (4.47)

while in the vicinity of the diagonal one finds

|D̃(t|ϕ,ϕ′)| ∼ exp

(

−π
2

32
(H −H ′)2t2e4Ht

)

, (4.48)

∼ exp

(

−π
2H4a2

8
(a− a′)2

)

, Ht≫ 1 . (4.49)

These expressions exhibit a rapid disappearance of non-diagonal elements
during the inflationary evolution.

It is interesting that the behaviour of fermions concerning decoherence is
different from the behaviour of bosons (Barvinsky et al. 1999c). Since their
conformal weight is −3/2 in four dimensions, the environmental fermionic
fields are reparametrised by a factor a−3/2. For m = 0 this does, as in the
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bosonic case, render the decoherence factor finite and, due to conformal in-
variance, makes it equal to one. The situation for m 6= 0 is, however, dif-
ferent. In spite of the conformal reparametrisation, the decoherence factor
is divergent. Moreover, dimensional regularisation would again spoil crucial
properties of the density matrix and make it inconsistent. There remains,
however, a freedom of reparametrisation in the fermionic case (Barvinsky et
al. 1999c): this is a Bogoliubov transformation that is analogous to a Foldy-
Wouthuysen transformation in Minkowski space (the decoupling of spinor
components in the nonrelativistic limit). Since it is explicitly n-dependent,
it corresponds to a nonlocal field redefinition. Instead of m one has now an
effective n-dependent mass m̃ depending on the transformation. How can one
fix this field redefinition? In Barvinsky et al. (1999c) the principle was put
forward that decoherence should be minimal in the absence of particle cre-
ation. This is already implemented in the massless case. In the massive case,
it means that decoherence is absent for a stationary spacetime which exhibits
no particle creation. This leads to a decoherence factor

|D̃(t|ϕ,ϕ′)| ∼ exp
(

−C′m2H2a2(a− a′)2
)

, C′ > 0 . (4.50)

While decoherence is thus absent in the absence of particle creation, for
bosons it is minimal in the sense that it is absent in the conformally-coupled
case, but still present in the massive case – the expressions (4.41) and (4.42)
do not depend on H . Formally, this is due to the fact that in the fermionic
case one has m2 instead of m3 in the exponent; since one would expect to
find factors of a in the nominator of the exponent (as is suggested by the
coupling in the action), they have to be accompanied by corresponding fac-
tors of H for dimensional reason. Comparing (4.50) with (4.41) and (4.42)
(which are valid for m≫ H), one recognises that fermions are less efficient in
producing decoherence. In the massless case, there influence is totally absent.
The point that decoherence is linked with particle creation has been made
before (Calzetta and Hu 1994, Hu and Matacz 1995). Using the influence-
functional approach to decoherence, see Chap. 5, one can derive an explicit
formula connecting the decoherence factor with the Bogoliubov coefficients
describing particle creation (Hu and Matacz 1995).5 Given a special initial
state (a “vacuum”), this encodes the irreversible aspect of decoherence. In
the massless bosonic case, (4.47) and (4.49), the effect may be interpreted as
arising from a cutoff at a mode number n ≈ aH , i.e., a cutoff of modes whose
wavelength a/n is smaller than the Hubble scale H−1 (Halliwell 1989). As we
shall see in the next subsection, these are exactly the modes that experience
particle creation.

5 The decoherence factor in the massive bosonic case, (4.41) and (4.42), comes
from the adiabatic part of Ω̃n and is not directly related to particle creation.
This is not in conflict with Hu and Matacz (1995), since there the assumption
is being made that the state separates between system and environment in the
past, which is not the case here.
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The above analysis of decoherence was based on the state (4.18). One
might, however, start with a quantum state that is a superposition of many
semiclassical components, i.e. many components of the form exp(iSk

cl), where
each Sk

cl is a solution of the Hamilton-Jacobi equation for a and ϕ. Decoher-
ence between different such semiclassical branches has also been the subject
of intense investigation (Halliwell 1989, Kiefer 1992). The important point is
that decoherence between different branches is usually weaker than the above
discussed decoherence within one branch. Moreover, it usually follows from
the presence of decoherence within one branch. In the special case of a super-
position of (4.18) with its complex conjugate, one can immediately recognise
that decoherence between the semiclassical components is smaller than within
one component: in the expression (4.29) for the decoherence factor, the term
Ωn + Ω′∗

n in the denominator is replaced by Ωn +Ω′
n. Therefore, the imagi-

nary parts of the frequency functions add up instead of partially cancelling
each other and (4.29) becomes smaller. One also finds that the decoherence
factor is equal to one for vanishing expansion of the semiclassical universe
(Kiefer 1992).

We note that the decoherence between the exp(iScl) and exp(−iScl) com-
ponents can be interpreted as a symmetry breaking analogously to the case
of sugar molecules, see Sect. 3.2.4 and Chap. 9. There, the Hamiltonian is
invariant under space reflections, but the state of the sugar molecules ex-
hibits chirality. Here, the Hamiltonian in (4.6) is invariant under complex
conjugation,6 while the “actual states” (i.e., one decohering WKB compo-
nent in the total superposition) are of the form exp(iScl) and are thus in-
trinsically complex. It is therefore not surprising that the recovery of the
classical world follows only for complex states, in spite of the real nature of
the Wheeler-DeWitt equation (see in this context Barbour 1993). Since this
is a prerequisite for the derivation of the Schrödinger equation, one might
even say that time (the WKB time parameter in the Schrödinger equation)
arises from symmetry breaking.

The above considerations thus lead to the following picture. The Universe
was essentially “quantum” at the onset of inflation. Mainly due to bosonic
fields, decoherence set in and led to the emergence of many “quasi-classical
branches” which are dynamically independent of each other. Strictly speak-
ing, the very concept of time makes only sense after decoherence has occurred.
In addition to the horizon problem etc., inflation also solves the “classicality
problem”. It remains of course unclear why inflation happened in the first
place (if it really did). Looking back from our Universe (our semiclassical
branch) to the past, one would notice that at the time of the onset of infla-
tion our component would interfere with other components to form a timeless
quantum-gravitational state. The Universe would thus cease to be transpar-
ent to earlier times (because there was no time). This demonstrates in an

6 We ignore here alternative approaches which use a complex Hamiltonian from
the very beginning (Kiefer 1993).
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impressive way that quantum-gravitational effects are not restricted to the
Planck scale.

It is interesting that a similar kind of constructive interference would oc-
cur near the turning point of a classically recollapsing universe (Kiefer and
Zeh 1995). This is a direct consequence of the consistent way in which bound-
ary conditions have to be imposed in this case. Again, this demonstrates that
quantum effects are not restricted a priori to a particular scale and that it is
a quantitative question referring to the dynamics when and to which extent
classical properties emerge.

Our analysis has been restricted to the case where the “system” is taken
to be a Friedmann universe containing a homogeneous scalar field. This is jus-
tified from phenomenological grounds, since our Universe appears isotropic
and homogeneous on largest scales. Again, this may be traced back to the
presumed occurrence of an inflationary phase and the validity of the cosmic
no-hair conjecture. In spite of this, one can discuss decoherence in the con-
text of anisotropic models, too (Gangui et al. 1991, Camacho and Camacho-
Galván 1999), and find classical properties for the corresponding scale factors.

We want finally to stress the importance of decoherence for the origin
of irreversibility in our Universe (Zeh 2001; Kiefer and Zeh 1995). Since the
entropy of the present Universe (defined by its “relevant” degrees of freedom)
is still extremely small compared to its maximal possible value (which would
be achieved if the whole mass of the Universe were present in the form a
black hole), the evolution of the Universe must have been started with a
state of almost zero entropy (Penrose 1981). A possible explanation of this
fact must necessarily invoke the fundamental quantum theory of gravity. It
has been argued in the above references that a simple boundary condition at
a→ 0 for the wave function of the Universe may be sufficient to explain the
observed arrow of time, and may even lead to macroscopic quantum effects
near the turning point of a classically recollapsing universe as well as for black
holes. Such a boundary condition was proposed, for example, in Conradi and
Zeh (1991). It roughly states that the wave function for small a depends
only on a itself, but not on further degrees of freedom. This is consistent
with the special form of the potential in the Wheeler-DeWitt equation. The
wave function is thus independent, in this limit, of the “higher multipoles”
introduced in this section. For increasing size of the Universe, the total state
becomes entangled with these further degrees of freedom, and the decoherence
for the “relevant subsystem” can be recognised after the “irrelevant” part is
integrated out. The local entropy connected with the scale factor and other
“relevant” variables, as calculated from the reduced density matrix in the
standard way, S = −kBtr(ρ ln ρ), thus increases and gives rise to the observed
arrow of time in the Universe. An interesting consequence is the occurrence
of recoherence in the case of a classically recollapsing universe (Kiefer and
Zeh 1995).

. . .
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Polarski, D. (1999): “Primordial fluctuations from inflation: A consistent
histories approach.” Phys. Lett. B446, 53–57.

Polarski, D. and Starobinsky, A.A. (1996): “Semiclassicality and decoherence
of cosmological perturbations.” Class. Quantum Grav. 13, 377–92.

Prokopec, T. (1993): “Entropy of the squeezed vacuum.” Class. Quantum
Grav. 10, 2295–2306.

Sakagami, M. (1988): “Evolution from Pure States into Mixed States in de
Sitter Space.” Progr. Theor. Phys. 79, 442–453.

Santos, E. (1994): “Objectification of classical properties induced by quan-
tum vacuum fluctuations.” Phys. Lett. A188, 198–204.

Santos, E. (1995): “Reply to comments on ‘Objectification of classical prop-
erties induced by quantum vacuum fluctuations’.” Phys. Lett. A197, 185–
186.

Schumaker, B. (1986): “Quantum mechanical pure states with Gaussian wave
functionals.” Phys. Rep. 135, 317–408.

Seiberg, N. and Witten, E. (1999): “String theory and noncommutative ge-
ometry”. JHEP 9909, 032.

Shaisultanov, R.Zh. (1995): “Backreaction in scalar QED, Langevin equation
and decoherence functional.” Report hep-th/9509154 (unpublished).

Starobinsky, A.A. (1979): “Spectrum of relict gravitational radiation and the
early state of the universe.” JETP Lett. 30, 682–85.

Vilkovisky, G.A. (1984): “The unique effective action in quantum field the-
ory.” Nucl. Phys. B234, 125–37.

Wald, R.M. (1984): General relativity (University of Chicago Press).
Walls, D.F. and Milburn, G.J. (1994): Quantum Optics (Springer, Berlin).
Wheeler, J.A. (1968): “Superspace and the nature of quantum geometrody-

namics.” In: Battelle rencontres, ed. by C.M. De Witt and J.A. Wheeler
(Benjamin, New York), p. 242–307.



24 C. Kiefer

Wightman, A.S. (1995): “Superselection rules: old and new.” Nuovo Cim.
110B, 751–769.

Zeh, H.D. (1986): “Emergence of classical time from a universal wave func-
tion.” Phys. Lett. A116, 9–12.

Zeh, H.D. (2001): The Physical Basis of the Direction of Time (Springer,
Heidelberg).



ar
X

iv
:0

81
0.

00
87

v2
  [

as
tr

o-
ph

] 
 8

 M
ay

 2
00

9

Why do cosmological perturbations look classical to us?
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According to the inflationary scenario of cosmology, all structure in the Universe can be traced
back to primordial fluctuations during an accelerated (inflationary) phase of the very early Universe.
A conceptual problem arises due to the fact that the primordial fluctuations are quantum, while the
standard scenario of structure formation deals with classical fluctuations. In this essay we present a
concise summary of the physics describing the quantum-to-classical transition. We first discuss the
observational indistinguishability between classical and quantum correlation functions in the closed
system approach (pragmatic view). We then present the open system approach with environment-
induced decoherence. We finally discuss the question of the fluctuations’ entropy for which, in
principle, the concrete mechanism leading to decoherence possesses observational relevance.
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I. INTRODUCTION

It is often emphasized these days that the field of cos-
mology has entered a golden age. There is no doubt that
the main reason for this statement is the accumulation of
observations of ever increasing accuracy. In this way cos-
mological models aiming to describe the evolution of the
Universe from the Big Bang until today are no longer
purely speculative: their predictions can be tested and
some models can indeed be ruled out.

With the advent of inflationary models, according to
which the Universe underwent a phase of accelerated ex-
pansion at a very early stage, we now have at our disposal
theoretical tools to apprehend such fundamental prob-
lems as the origin of cosmological perturbations and the
eventual formation of large-scale structures like galax-
ies. There are many ways in which inflationary models
address fundamental physical theories. As inflation is
supposed to take place at very high energies in the early
Universe, these models offer a unique window on energy
scales of the order of 1015 GeV. Another intriguing as-
pect of these models is that inflationary perturbations
originate from quantum fluctuations though we do not
see this quantum nature in the Universe nowadays. It is
this aspect of inflationary perturbations that we want to
describe in our essay.

We could, of course, as well consider non-inflationary
cosmological models in which perturbations are assumed
to be classical from the beginning on. However, such
models are plagued with problems of causality as dis-
tant points on the last-scattering surface, about 350.000
years after the Big Bang, were never in contact before.
Hence the impressive homogeneity of the Cosmic Mi-

∗
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†
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crowave Background (CMB) would have to be put in by
hand in the absence of an inflationary stage. Inflationary
models are thus much more natural – and they can be
observationally tested.

The main part of our essay consists of four parts. We
shall first give in Sec. II a brief review of inflationary
cosmology and its mechanism for the generation of per-
turbations. We then discuss in Sec. III the quantum-
to-classical transition in the closed system approach (we
call it also the pragmatic view) which focusses on the
indistinguishability of quantum expectation values and
classical stochastic averages. Sec. IV presents the suc-
cessful observational predictions which emerge from this
scenario. Sec. V, then, is devoted to environmental deco-
herence. We discuss the problem of the classical variables
(the pointer basis) as well as the entropy of the fluctua-
tions and its observational significance. We end with a
brief conclusion.

II. INFLATION

We give here a brief review of the way in which infla-
tionary models give an elegant solution to many funda-
mental problems occuring in non-inflationary Big-Bang
cosmology, see, for example,1. As we shall see, these
models do also make characteristic predictions, by which
we mean that in the absence of certain observable signa-
tures most if not all inflationary models would be ruled
out. We shall first describe the evolution of the homo-
geneous background for inflation and then turn to the
generation of perturbations.

http://arxiv.org/abs/0810.0087v2
mailto:kiefer@thp.uni-koeln.de
mailto:polarski@lpta.univ-montp2.fr
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A. Background expansion

The crucial point here is that inflation is a stage of
accelerated expansion. In this stage, proper (physical)
scales are stretched by a huge factor so that scales in-
side the Hubble radius during inflation will eventually
end up at the end of inflation far outside the Hubble ra-
dius. Today these scales can correspond to cosmological
scales, and typically scales corresponding to the Hubble
radius today have exited the Hubble radius during infla-
tion about 65 e-folds before the end of inflation. Typi-
cally, inflationary stages are quasi-de Sitter stages during
which the Hubble parameter is nearly constant. As we
shall see below, inflation provides a mechanism for the
causal generation of perturbations.

It is a basic assumption that our Universe is on large
scales homogeneous and isotropic. The metric is of the
form

ds2 = dt2 − a2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θ dφ2)

]

;

(1)
a spatially flat universe corresponds to k = 0, a closed
universe to k = 1, and an open universe to k = −1. (We
set the speed of light c = 1 throughout.) In an expanding
universe, the scale factor a(t) is a growing function of
time, which starts close to zero at the Big Bang about
13.7 billions years ago. The dynamics of the scale factor
is given by the Friedmann equations,

(

ȧ

a

)2

=
∑

i

8πG

3
ρi −

k

a2
, (2)

ä

a
= −4πG

3

∑

i

(ρi + 3pi) , (3)

where the index i stands for any isotropic (comoving)
perfect fluid. For radiation we have pr = ρr/3, for dust
pm = 0. For the recent accelerated expansion caused
by some smooth dark energy component we would have
pDE = wDE ρDE, where wDE < −1/3 is still unknown
and in many models time-dependent. ¿From (3) the ex-
pansion is typically decelerated, ä < 0, unless at least
one of the components satifies ρi + 3pi < 0.

A space-independent scalar field φ(t) can be viewed as
a comoving perfect fluid with

ρφ =
1

2
φ̇2 + V (φ) , (4)

pφ =
1

2
φ̇2 − V (φ) . (5)

Hence, a scalar field φ(t) can induce an accelerated ex-
pansion provided

φ̇2 < V (φ) . (6)

The field φ(t) driving the inflationary stage is called the
inflaton and evolves according to the Klein-Gordon equa-
tion

φ̈ + 3Hφ̇ +
dV

dφ
= 0 , (7)

which is the form taken by the conservation of energy
for a perfect fluid defined by (4) and (5), and we have
introduced the Hubble parameter H ≡ ȧ/a. In most
inflationary models, the inflaton field φ(t) satisfies the

slow-roll conditions φ̈ ≪ 3Hφ̇, and hence

3Hφ̇ ≈ −dV

dφ
. (8)

It is easy to show that the conditions for slow-roll to hold
are

Ḣ ≪ 3H2 ,
d2V

dφ2
≪ 9H2 , (9)

in which case the condition (6) is amply satisfied so that
accelerated expansion – inflation – takes place.

We conclude this brief summary on the background
evolution during inflation by discussing the relative evo-
lution of physical scales. The Hubble radius RH ≡ H−1

defines an important scale in cosmology. If a ∝ tp, we
have RH ∝ t, and it is clear that RH grows faster than
a physical scale λ ∝ a during a decelerated expansion,
which has p < 1. Hence physical scales greater than
the Hubble radius, which we shall call “superhorizon” or
“super-Hubble” scales, will eventually enter the Hubble
radius, by which we mean that they will become smaller
than RH: this is the situation in standard cosmology.
This picture changes dramatically during inflation; to il-
lustrate this we take a purely de Sitter stage, which is
characterized by H = constant and a(t) ∝ exp(Ht). Now
it is clear that physical scales inside the Hubble radius,
which we shall call “subhorizon” or “sub-Hubble” scales
will eventually become larger than the Hubble radius.

If a scale is said to cross the “horizon” 65 e-folds before
the end of inflation, this means that at the end of inflation
(where t = te) one has a = ae = e65ak or Nk = 65 with

Nk =
ae

ak
; (10)

here, ak ≡ a(tk) if tk is the “horizon-crossing” time of
that particular scale with physical wavelength (2π/k)a.
(Sometimes the factor 2π is omitted.) In a pure de Sit-
ter stage this would mean that H(te − tk) = 65. If we
can compute the present physical scale evolving from the
Hubble radius during inflation, we know to which phys-
ical scale today a scale with given Nk corresponds. De-
pending on the details of the model, the Hubble radius
today corresponds typically to a scale with Nk ≈ 65. It
can be shown that in slow-roll models Nk can be com-
puted from the value φ(tk) and that it depends on the
potential V (φ).

In consistent inflationary scenarios, inflation is fol-
lowed by a standard cosmic expansion during which
scales that went outside RH become again smaller than
RH; they “re-enter the horizon”. For a given scale, the
number of e-folds between the first horizon crossing time
tk during inflation and the second horizon crossing time
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during the radiation or matter stage at t = tk,f is given
by the parameter rk,

rk ≡ ln
a(tk,f)

ak
≡ ln

ak,f

ak
. (11)

We shall see in Sec. III that rk coincides with the squeez-
ing parameter for a quantum state2. For typical cosmo-
logical scales today, rk ∼ 100 and even larger. Physi-
cally this corresponds to an enormous expansion of the
universe, while a given scale k was outside the Hubble
radius. As we shall see below, the ensuing huge amount
of squeezing for the quantum state plays a crucial role in
the quantum-to-classical transition of inflationary quan-
tum fluctuations. It also means that the quantum state
originating from inflation is a very peculiar one.

B. Generation of perturbations

During an inflationary stage, quantum field fluctua-
tions evolve according to the general principles of quan-
tum field theory. Inflation is supposed to take place at an
energy scale where space-time can be described as a clas-
sical curved space-time on which the quantum field fluc-
tuations are defined. The inflaton fluctuations δφ(x, t)
can be treated as a massless scalar field. This is an ex-
cellent approximation when the inflaton field satisfies the
slow-roll conditions (9) and it is even exact when we con-
sider primordial gravitational waves.

It is convenient to consider the rescaled quantity aδφ ≡
y(x, t) and to work with conformal time η =

∫

dt/a(t); a
prime will be used to denote a derivative with respect to
η. The formalism presented here is exact for gravitational
waves, but can be extended in a straightforward way to
the primordial density perturbations.

The quantization of the real perturbation y(x, η) pro-
ceeds with the usual canonical quantization scheme. We
start from the classical Hamiltonian describing the per-
turbations,

H ≡
∫

d3x H(y, p, ∂iy, η)

=
1

2

∫

d3k[p(k)p∗(k) + k2y(k)y∗(k) (12)

+
a′

a
(y(k)p∗(k) + p(k)y∗(k))] , (13)

where p is the momentum conjugate to y,

p ≡ ∂L(y, y′)

∂y′
= y′ − a′

a
y . (14)

In (13) we have introduced the (time-dependent) Fourier
transform y(k, η) of the rescaled fluctuation y(x, η). (We
sometimes keep the dependence on η.) In the Lagrangian
formulation, it obeys the following classical equation of
motion:

y′′(k, η) +

(

k2 − a′′

a

)

y(k, η) = 0 . (15)

Upon quantization, the Fourier transforms are promoted
to operators on which we impose the canonical commu-
tation relations,

[y(k, η), p†(k′, η)] = iδ(3)(k − k′) . (16)

(We set ~ = 1.) We can write the Hamiltonian operator
in the following way:

H =

∫

d3k

2

[

k
(

a(k)a†(k) + a†(−k)a(−k)
)

+

i
a′

a

(

a†(k)a†(−k) − a(k)a(−k)
)]

. (17)

The time-dependent annihilation operators a(k) (we of-
ten skip the argument η for conciseness) appearing in
(17) are defined as usual,

a(k) =
1√
2

(√
k y(k) +

i√
k

p(k)

)

, (18)

so that

y(k) =
a(k) + a†(−k)√

2k
, (19)

p(k) = −i

√

k

2

(

a(k) − a†(−k)
)

. (20)

It is easily seen from (16) that a and a† satisfy the com-
mutation relations

[a(k, η), a†(k′, η)] = δ(3)(k − k′) . (21)

Let us consider the time evolution of these operators.
¿From the Hamiltonian (17) we get

(

a′(k)
(a†(−k))′

)

= k

(

−i aH
k

aH
k i

)(

a(k)
a†(−k)

)

. (22)

The second piece of the Hamiltonian (17), which is pro-
portional to a′/a, is responsible for a mixing between
creation and annihilation operators. In the Heisenberg
representation it corresponds to a Bogolubov transfor-
mation; physically it means that particles are produced
in pairs with opposite momenta. For reasons that will
become clear later, this phenomenon is called squeezing
in the Schrödinger picture; the corresponding squeezing
parameter rk turns out to be given by the expression
(11) above. ¿From (22) one can see that mixing of cre-
ation and annihilation operators is efficient when the
off-diagonal terms dominate, in other words, on super-
Hubble scales when aH/k ≫ 1.

Using (20) and (22), one obtains after a little algebra,

y(k, η) ≡ fk(η) ak + f∗
k (η) a†

−k
, (23)

where ak ≡ a(k, η0), and the field modes fk obey Equa-

tion (15) and satisfy fk(η0) = 1/
√

2k. At the initial time
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η0, the field modes are deep inside the Hubble radius.
Equation (23) can be written in the suggestive way

y(k, η) =
√

2k fk1(η) yk −
√

2

k
fk2(η) pk , (24)

where yk ≡ y(k, η0) and pk ≡ p(k, η0), fk1 = ℜfk, fk2 =
ℑfk. We have in an analogous way momentum modes
gk(η), with gk(η0) =

√

k/2,

p(k) =

√

2

k
gk1(η) pk +

√
2k gk2(η) yk . (25)

We shall now address the first step in understanding why
and to which extent these quantum field modes appear
classically.

III. QUANTUM-TO-CLASSICAL TRANSITION:
THE PRAGMATIC VIEW

In the last section we have described the evolution of
the quantum modes in the Heisenberg representation, in
which operators evolve in time and quantum states do
not. While the quantum-to-classical transition is in gen-
eral formulated in the Schrödinger picture, for the in-
flationary perturbations the Heisenberg picture provides
deep insight, too.

To see this, let us assume that there is a limit in which
fk2 and gk1 (or fk1 and gk2) vanish. Then it is clear from
(24) that the non-commutativity of the operators yk and
pk is no longer relevant. What is the physical meaning of
such a limit? Let us consider a classical stochastic system
where the dynamics is still described by equations of the
form (24), but with now y(k, η0) and p(k, η0) representing
random initial values (c-numbers). If fk2 and gk1 vanish,
we get

p(k, η) ≡ pcl(y(k, η)) =
gk2

fk1
y(k, η) . (26)

This is true for the quantum system (in the operator
sense) and for the classical stochastic system (in the
c-number sense). Therefore, for a given realization of
the perturbation y(k, η), the corresponding momentum
pcl(k, η) is fixed and equal to the classical momentum
corresponding to this value y(k, η). Then the quantum
system is effectively equivalent to the classical random
system, which is an ensemble of classical trajectories with
a certain probability associated to each of them3.

This is, in fact, what happens for the primordial fluctu-
ations. The field modes obey (15), and this equation has,
on super-Hubble scales, solutions that become dominant
and solutions that become negligible (so-called “growing”
and “decaying” modes). Eventually the decaying mode
can be neglected and one in left with the growing mode.
It turns out that fk2 and gk1 are decaying modes, and
one is left with (26).

From the Heisenberg representation it follows that the
operational equivalence with the classical stochastic sys-
tem does not depend on the initial state; this was indeed

shown explicitly for a wide class of initial states (and
extended to some gauge-invariant quantities)4.

We now look at the problem in the Schrödinger rep-
resentation where the state evolves in time, while the
operators are fixed. The initial quantum state of the
perturbations is the vacuum state |0, η0〉 satisfying

ak|0, η0〉 = 0 ∀k . (27)

At later times, due to the creation of particles, the time-
evolved state is annihilated by a more complicated oper-
ator,

{

yk + iγ−1
k (η)pk

}

|0, η〉 = 0 . (28)

The corresponding (Gaussian) wave function reads

Ψ[yk, y∗
k
, η] =

1
√

π|fk|2
exp

(

− |yk|2
2|fk|2

{1 − i2F (k)}
)

≡
(

2ΩR(η)

π

)1/4

exp
(

−[ΩR(η) + iΩI(η)]|yk|2
)

. (29)

In (28,29), we have

γk =
1

2|fk|2
[1 − 2iF (k)] ,

F (k) = ℑf∗
kgk = fk1gk2 − fk2gk1 . (30)

At the initial time η = η0, γk(η0) = k, and hence
F (k) = 0; in other words, we have a minimum uncer-
tainty wave function. This is no longer so later, as |F (k)|
becomes very large; the probabilities, however, remain
Gaussian. Another way to exhibit the physical meaning
of our state is to consider the Wigner function, W , which
can be considered as a kind of quasi-probability density
in phase space. For Gaussian wave functions, W has the
property to be positive definite. For the wave function
(29) one obtains

W =
|rk|→∞−→ |Ψ|2 δ(2) (pk − pcl(yk)) . (31)

The dynamics of the fluctuations leads to the large-
squeezing limit |rk| → ∞. One gets a highly elon-
gated ellipse whose large axis is oriented along the line
pk = pcl(yk) and whose width becomes negligible. This is
a direct vizualisation of the classical stochastic behaviour
of our system: the variable yk can take any value with
corresponding probability |Ψ|2, while pk takes the corre-
sponding value pk = pcl(yk). Instead of being essentially
located in phase space around one physical trajectory,
as for coherent states, the system behaves as if it fol-
lowed an infinite number of classical trajectories with a
definite probability to be on each of them. Interestingly,
an analogous situation happens for a free non-relativistic
particle5 possessing an initial Gaussian minimal uncer-
tainty wavefunction. As is well known, F ∝ t and be-
comes very large. At very late times, the position does
no longer depend on the initial position,

x(t) ≃ p0

m
t . (32)
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We get an equivalence with an ensemble of classical par-
ticles obeying (32), where p0 is a random variable with
probability P (p0) = |Ψ|2(p0). This illustrates the kind
of classicality we are dealing with. Moreover, when (32)
holds, position operators at different times approximately
commute (which, in quantum-optical language, corre-
sponds to a quantum-nondemolition situation).

Using the canonical commutation relations, the quan-
tum coherence between the growing and decaying mode
can be expressed as

fk1gk1 + fk2gk2 =
1

2
. (33)

Clearly, when fk2, gk1 are unobservable, this coherence
becomes unobservable as well. This is the case when the
decaying mode is so small that we have no access to it in
observations. For the ratio of the growing to the decaying
mode one has

fk2

fk1
∝ e−2|rk| , (34)

which is why a large squeezing parameter rk in the
Schrödinger picture implies a vanishing decaying mode in
the Heisenberg representation. The width of the Wigner
function is given by

〈(pk − pcl(yk))2〉 = g2
k1 , (35)

which becomes unobservable like the decaying mode. A
further consequence is that the typical phase-space vol-
ume occupied by the system becomes negligible, too.

Let us take the concrete and important example of a
perturbation on de Sitter space a ∝ eHt, with H being
constant. The exact solution of (15) with the correct ini-
tial condition (ground state for initial sub-Hubble modes)
then reads up to an unimportant constant phase factor

fk =
−i√
2k

e−ikη
(

1 − i

kη

)

, (36)

gk = −i

√

k

2
e−ikη , η ≡ − 1

aH
< 0 . (37)

Modes initially inside the Hubble radius become much
larger than the Hubble radius during inflation solely as a
result of their dynamics to satisfy kη ≪ 1: here we have
the limit mentioned above! This can be shown also to cor-
respond to the large-squeezing limit. Actually, this is a
particular case of the general situation when an equation
like (15) has a growing-mode solution and a decaying-
mode solution. Here the decaying mode becomes vanish-
ingly small; when it is neglected we are in the limit of a
random stochastic process. Perturbations are then given
by

δφ(k, η) =
H√
2k3

ek . (38)

We have set here
√

2k yk = ek, which assumes the role
of a classical Gaussian random variable with unit vari-
ance. From (38) we see that the perturbations tend to

a constant value (they become “frozen”). One should
realize that the true reason for the quantum-to-classical
transition in the sense discussed here is that the decay-
ing mode becomes vanishingly small. Primordial gravi-
tational waves follow exactly the behaviour (38) (up to
some factor)6, but after re-entering the Hubble radius
they will start oscillating. They retain their classical ap-
pearance because the decaying mode (which oscillates as
well by then!) is negligible3.

IV. OBSERVATIONAL PREDICTIONS

The perturbations produced during inflation have re-
markable properties which can be confronted with obser-
vations. This confrontation makes essential use of the
effective classical behaviour discussed in the last section.

Primordial inflaton fluctuations generate a primor-
dial Newtonian potential and the corresponding energy-
density fluctuations δρ. A central quantity is the power
spectrum, P (k), of the quantity δ ≡ δρ/ρ,

〈δ(k) δ∗(k′)〉 = P (k) δ(3)(k − k′) . (39)

When the statistical properties are isotropic, the power
spectrum depends only on k ≡ |k|. It can be shown
that the power spectrum is the Fourier transform of the
correlation function (in space), and it can be defined for
any quantity. Deep in the matter-dominated stage, P (k)
has the following expression on “super-horizon” scales in
slow-roll single-field inflation,

P (k) =
1024

75
π3G3

(

V 3

V ′2

)

tk

(aH)−4 k, (40)

where V ′ is the derivative of the inflaton potential with
respect to the inflaton φ, and the fraction has to be eval-
uated at the Hubble-radius crossing time k = a(tk)H(tk)
during inflation. Because of the quasi-exponential infla-
tionary expansion, it depends very weakly on k. Neglect-
ing this dependence, we get

P (k) ∝ k , (41)

which is the scale-invariant “Harrison–Zeldovich” spec-
trum that plays a crucial role in these investigations.
This spectrum is called scale-invariant for the following
reason: if we compute the r.m.s. relative mass fluctua-
tions 〈(δM/M)

2〉 at the time tk when a scale eventually
re-enters the Hubble radius, the same value is obtained
for all scales.

Using the expansion (23) and the commutation rela-
tions (21), it is straightforward to show that

〈δφ2〉 =
1

2π2

∫ ∞

0

dk k2 |δφk(η)|2 , (42)

with fk(η) = a δφk(η). This means that the power spec-
trum of δφ is just given by |δφk(η)|2. However, the aver-
age on the left is a quantum average; it is only by virtue
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of the quantum-to-classical transition mentioned above
that we can consider |δφk(η)|2 as the power spectrum of
a classical random variable, whose time evolution is con-
sistent with probabilities conserved along classical trajec-
tories. In the opposite case this would be impossible due
to quantum interferences. We note also the result in the
limit (38), which gives

d〈δφ2〉
d ln k

=

(

H

2π

)2

, (43)

where the derivative is with respect to some cut-off value.
Primordial fluctuations leave their imprint on the

CMB and this provides the best constraint on their prop-
erties and on the inflationary models in which they were
presumably produced. While the CMB is remarkably ho-
mogeneous with a black body spectrum, perturbations
induce very tiny inhomegeneities of the order 10−5. In
this regime, linear perturbation theory is very accurate so
that precise predictions can be made. The measurement
of the temperature anisotropies angular power spectrum,
the Cℓ’s,

Cℓ = 〈|alm|2〉 ,
∆T

T
(ϑ, ϕ) =

∑

l,m

alm Ylm , (44)

(which are in the isotropic case independent of m) will
culminate with the Planck satellite (ESA). The exquisite
data we have thus far, in particular those collected by
the WMAP collaboration (NASA), show excellent agree-
ment with a flat universe and adiabatic perturbations7,8.
Such perturbations respect the equation of state of the
background; for the baryon–photon plasma this is when
δT
T = 1

3
δnB

nB

, where n is the baryon number density. This
is a natural outcome of single-field inflation.

Before decoupling, the baryon–photon plasma is
tightly coupled and its density oscillates on scales inside
the Hubble radius, yielding oscillations similar to pres-
sure waves. These are often called acoustic oscillations.
The location of the first (Doppler) peak gives roughly the
angular scale of the Hubble radius at decoupling and is
consistent with a flat universe. The pattern of the an-
gular power spectrum is in agreement with primordial
adiabatic fluctuations. After decoupling, the baryons re-
tain the primordially induced acoustic “Sakharov” oscil-
lations, the baryonic acoustic oscillations (BAO); these
were detected in the galaxy power spectrum and are
presently used in order to constrain dark energy mod-
els.

To parametrize the departure from scale invariance,
one introduces the spectral index n with P (k) ∝ kn. Lat-
est CMB data constrain n to be very close, but slightly
lower than one7. Finally we see no clear evidence for
non-Gaussianity in the statistics of the perturbations.
All these data are in surprisingly good agreement with
the simplest single-field slow-roll inflationary models (see
e.g.9).

Let us return in more detail to the acoustic oscilla-
tions. They arise because of the standing-wave behaviour

of the perturbations inside the Hubble radius. There are
always two modes that are solutions to the equations and
they will both oscillate. One of the modes matches the
growing (dominant) mode, and the other the decaying
(subdominant) mode. For modes sufficiently long out-
side the Hubble radius, the decaying mode disappears
and the growing mode will match the corresponding os-
cillating mode inside the Hubble radius. At decoupling,
each mode has a given oscillation phase, and this gives
rise to the acoustic oscillations seen in the Cℓ’s. If we
had a way to generate classical perturbations that would
evolve outside the Hubble radius for very long, just the
same would be true. If these perturbations had random
initial conditions, obeying the same statistics as our ini-
tially quantum fluctuations, both systems would be indis-
tinguishable. Hence the presence of acoustic oscillations
is in no way connected to the quantum nature of the per-
turbations but rather to their primordial origin. But the
quantum-to-classical transition can only take place in a
system where the decaying mode is negligible enough so
that acoustic oscillations do arise. It is interesting that a
similar standing-wave behaviour is present in the primor-
dial stochastic gravitational waves background produced
during inflation. Unfortunately, to detect it in a direct
detection experiment today would require a resolution in
frequency of about 10−18 Hz,3 clearly beyond present or
foreseeable capabilities. The same property yields also
small superimposed oscillations in the power spectra of
the CMB temperature anisotropy and polarization. This
is similar to the acoustic oscillations but with a period
approximately twice as small (solely due to the differ-
ence between the light velocity and the sound velocity in
the baryon–photon plasma at the recombination time)3.
Their observation is very difficult but not hopeless if the
parameter characterizing the tensor-to-scalar ratio in the
CMB temperature anisotropy is not too small, see10 for
detailed estimates of the CMB polarization B-mode pro-
duced by primordial gravitational waves only.

We finally mention that calculations done for the cre-
ation of matter by parametric resonance after inflation
use the description of perturbations in terms of classical
stochastic fields. All the predictions mentioned above
and which were confirmed by observations are done in
the closed-system approach, that is, by taking the per-
turbations as an isolated system. Similar results were ob-
tained in various disguise by several authors11,12,13 and
even extended beyond the linear regime14. In this ap-
proach the system becomes indistinguishable, in an op-
erational sense, from a classical stochastic system solely
by virtue of its peculiar inflationary dynamics.

From a purely pragmatic point of view, the closed-
system approach is sufficient. In astrophysical observa-
tions one measures certain classical correlation functions
for which the above line of thought shows that they are
indistinguishable from the fundamental quantum expec-
tation values. Still, in the next section we shall go be-
yond the closed-system approach by taking into account
the interaction of the modes with other, “environmental”,
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degrees of freedom. This has several reasons. First, the
environment-induced decoherence process is generally in-
voked in order to explain the appearance of classical be-
haviour in quantum theory15. Second, since an environ-
ment is expected to be present anyway, it is important
to consider whether it does not spoil the successful pre-
dictions from the closed-system approach. It should, in
particular, not erase the acoustic oscillations. Moreover,
invoking large non-linear effects might irremediably mod-
ify the CMB angular power spectrum and induce large
non-Gaussianity. Finally, there is the question about the
entropy of the perturbations which by definition cannot
be addressed inside the closed-system approach.

We shall see that these questions and problems can
be successfully dealt with without spoiling the success-
ful predictions of the closed-system approach including
the quantum-to-classical transition in the pragmatic ap-
proach adopted in this section.

V. QUANTUM-TO-CLASSICAL TRANSITION:
DECOHERENCE

A. Decoherence and pointer basis

In the last section we have described the primordial
fluctuations in cosmology by a collection of independent
quantum states labelled by the wave number k. Since
no interaction between different k or between the fluc-
tuations and other fields have been considered, we deal
with a pure quantum state for each k. The initial con-
dition for each quantum state is the harmonic-oscillator
ground state with respect to k. During inflation, modes
with wavelengths larger than the Hubble scale H−1 as-
sume a squeezed Gaussian state. We focussed atten-
tion on the modes far outside the Hubble scale, which
experience an enormous squeezing. For these highly-
squeezed modes, which are the ones relevant for cosmo-
logical observations, all expectation values containing the
field-amplitudes or their momenta are indistinguishable
from classical stochastic averages3. It is this approxi-
mate coincidence between quantum and classical expec-
tation which is the basis of the pragmatic approach to
the quantum-to-classical transition discussed above for
the primordial fluctuations.

One can, however, adopt a more fundamental point of
view. It is far from realistic to assume that a primordial
fluctuation with wave number k is exactly isolated. We
must take into account its interaction with other degrees
of freedom (called the ‘environment’ for simplicity). The
main reason is the following. As one knows from standard
quantum theory, even a tiny interaction with other de-
grees of freedom can become important, in the sense that
an entanglement of a system with its environment can
form even without direct disturbance of the system. If
the environmental degrees of freedom are inaccessible to
observations (as they usually are), the ensuing entangle-
ment with the system leads to decoherence – interference

terms can no longer be observed at the system itself and
the system appears classical15. This is the fundamental
origin of the quantum-to-classical transition. The phe-
nomenon of decoherence is by now theoretically well un-
derstood and has been experimentally tested with high
precision15,16,17. Decoherence leads to an apparent en-
semble of wave packets for the observable with respect to
which the interferences vanish. A paradigmatic example
is the localization of a quantum particle due to scatter-
ing with photons, air molecules, or other particles15,17,22.
There the position basis of the particle is the approxi-
mate basis distinguished by the scattering process. The
basis distinguished by the environment is generally called
the pointer basis; the corresponding observable is called
pointer observable. Interferences between different mem-
bers of the pointer basis are suppressed by the decohering
influence of the environment.

One would expect, therefore, that decoherence is of
crucial importance for the primordial fluctuations, too.
This expectation is, moreover, supported by the fact that
the system by itself evolves into a highly squeezed state in
which squeezing is in the field momentum and broadening
is in the field amplitude (corresponding to the position
variable in quantum mechanics): one knows from quan-
tum theory that highly squeezed states are extremely sen-
sitive to any environment15. This is the reason why they
are so difficult to generate in the laboratory – it is very
hard to isolate them from any environment. In view of
their huge squeezing, this argument should apply to the
cosmological fluctuations a fortiori.

But could it be imaginable that the cosmological fluc-
tuations, in contrast to a typical quantum-mechanical
situation, are indeed strictly isolated? The answer is def-
initely no.

Firstly, in any fundamental theory (such as string the-
ory) there is an abundance of different fields with dif-
ferent interactions. Among them it will not be difficult
to find appropriate candidates for environmental fields
generating decoherence for the primordial fluctuations.

Secondly, even if one assumes to have no such fields,
there are two processes which cannot be neglected. The
first one is the interaction between modes with differ-
ent k; recall that the full theory is non-linear and that,
therefore, the various modes cannot be treated indepen-
dently of each other. Such non-linear interactions con-
cern both the interaction with the modes of the inflaton
and the perturbations of the metric (containing, in par-
ticular, gravitational waves).

The second process is the entanglement of the modes’
quantum state between different spatial regions: even
if the modes are independent in k-space, the Gaussian
wave functions for the amplitudes in real space are highly
correlated over spacelike regions (as in the Einstein–
Podolsky–Rosen situation). This leads, in particular,
to an entanglement between the regions inside and out-
side the Hubble radius. Famous non-cosmological ex-
amples are the Hawking and the Unruh effects, where
the thermal appearance of the corresponding radiation
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can be understood from the entanglement between in-
side and outside the event horizons and the tracing out
of the correlations into the horizon18. Even for space-
like surfaces which stay outside the horizon, the thermal
nature of Hawking and Unruh radiation can be under-
stood from the entanglement with other fields, leading
to decoherence19.

The process of decoherence is, moreover, needed to jus-
tify the results from the isolated (closed) system in the
first place. Even if the classical and quantum expecta-
tion values are indistinguishable, the presence of a pure
state means that one has a quantum superposition of all
possible field amplitudes, not an ensemble of stochasti-
cally distributed classical values. This situation is similar
to Schrödinger’s cat. In the pragmatic point of view of
Sec. III, the approximate coincidence of the expectation
values suffices. Such a coincidence is, however, not suffi-
cient for a realistic interpretation. Only decoherence can
eventually justify the pragmatic point of view in that it
leads to an apparent ensemble of wave packets for the sys-
tem variables itself (which, in our case, are the field am-
plitudes). The insufficience of approximately equal clas-
sical and quantum expectation values for a fundamental
interpretation has recently been clearly emphasized in a
different context (the quantum mechanics of classically
chaotic systems) by Schlosshauer20. In the presence of a
pure state one can always find an observable for which no
classical counterpart exists, that is, for which the com-
parison of quantum and classical expectation values is
meaningless.

The quantum-to-classical transition happens for the
highly-squeezed modes whose wavelengths exceed the
Hubble scale. It is for these modes where environmental
decoherence is most efficient21. How can this happen?
Would one not expect that no causal interaction can oc-
cur on scales larger than the Hubble scale? This is true
only for a direct disturbance of the system. But the cru-
cial point is that quantum entanglement can form with-
out direct disturbance. And this is all one needs for de-
coherence! In the context of the quantum measurement
process, the sole formation of entanglement is referred to
as an ‘ideal measurement’ or a ‘quantum non-demolition
measurement’: the system remains undisturbed, but the
environment is affected through the formation of entan-
glement. The general mechanism is as follows15.

Consider a quantum system which is initially in the
state |n〉 and a ‘measurement device’ (here: the environ-
ment) which is in some initial state |Φ0〉. (We assume
that |n〉 belongs to a set of eigenstates of a system ob-
servable.) The evolution according to the Schrödinger
equation is in the special case of an ‘ideal measurement’
given by

|n〉|Φ0〉 t−→ exp (−iHintt) |n〉|Φ0〉 = |n〉|Φn(t)〉 , (45)

where Hint denotes the interaction Hamiltonian (assumed
here to dominate over the free Hamiltonians) which cor-
relates the system state with its environment without
changing the system state.

In the general case, the quantum system can be in a
superposition of different eigenstates of the system ob-
servable. Then, due to the linearity of the time evolu-
tion, an initial product state with |Φ0〉 develops into an
entangled state of system plus apparatus,

(

∑

n

cn|n〉
)

|Φ0〉 t−→
∑

n

cn|n〉|Φn(t)〉 . (46)

But this is a highly non-classical state! Since the envi-
ronmental states {|Φn〉} are not accessible, they have to
be traced out from the full quantum state. One thereby
arrives at the reduced density matrix ρS which contains
all the information that is available at the system itself.
Since the environmental states {|Φn〉} can be assumed as
being approximately orthogonal (otherwise they would
not be able to serve as a ‘measurement device’), the re-
duced density matrix is of the form

ρS ≈
∑

n

|cn|2|n〉〈n|, (47)

that is, it assumes the form of an approximate ensemble
for the various system states |n〉, each of which occurs
with probability |cn|2.

In our case, the cosmological fluctuations represent
the system to be decohered. The environmental states
{|Φn〉} can be other fields or inaccessible parts of the fluc-
tuations themselves (see below). The system states |n〉
are given by the field-amplitude states |yk〉. The interac-
tion with the environment can, in the ideal-measurement
case, be described by the multiplication of an initial den-
sity matrix ρ0(y, y′) with a Gaussian factor in y − y′

(omitting here and in the following the index k in yk),

ρ0(y, y′) −→ ρξ(y, y′) = ρ0(y, y′) exp

(

− ξ

2
(y − y′)2

)

.

(48)
Here, the parameter ξ encodes the details of the in-
teraction between the modes and their environment.
Given a specific model with a specific interaction, ξ can
be calculated. The special decoherence process (47) is
typical for the description of localization in quantum
mechanics15,17,22.

One recognizes from (48) that interferences between
different values of the field amplitude y have been sup-
pressed by interaction with the environment. This is de-
coherence. So far we have just assumed without deriva-
tion that |y〉 is the pointer basis, that is, the relevant
robust system basis which is distinguished by the envi-
ronment. This must, of course, be justified. A detailed
derivation for the field-amplitude basis to be the pointer
basis has been presented in21 and25. We review here the
main arguments and refer the reader to these references
for more details.

According to the classical equations, for modes with
very large wavelength one has y ∝ a, that is, the physi-
cal fluctuations δφ are approximately constant (‘frozen’).
In the Heisenberg picture of the quantum theory, this
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means that the operator ̂δφ approximately commutes
with the Hamiltonian. Now comes the crucial point. Ad-
ditional (environmental) fields coupling with the cosmo-
logical fluctuations are expected to couple field ampli-
tudes, not canonical momenta of field amplitudes; that

is, the coupling is expected to involve ̂δφ, not its momen-

tum. Consequently, the fluctuations ̂δφ commute with
the whole Hamiltonian of system plus environment. Such
a variable is a pointer observable par excellence15,16,17. It
is stable (robust) in time because of this commutativity
which holds for the wavelengths much bigger than the
Hubble scale. The phenomenological expectation (48) is
thus fully justified. One must keep in mind, though, that
̂δφ is only an approximate pointer observable: although
the non-diagonal terms in (48) become exponentially sup-
pressed, they never vanish exactly, as would be the case

if the ̂δφ were the exact pointer observable. In fact, the
reduced density matrix can be decomposed into narrow
Gaussians in δφ-space. The whole situation is in strong
analogy to the localization of a massive particle by scat-
tering with the environment15,17,22.

The approximate commutativity of ̂δφ with the full
Hamiltonian means in particular that the kinetic term,
that is, the p2-term, of the system becomes irrelevant in
the large-squeezing limit. If this term were relevant (as it
is for modes with smaller wavelength), the pointer basis
would not be the field-amplitude basis, but the coherent-
state basis25. But this is not the case here. The coherent-
state basis is, in particular, unstable under the time evo-
lution.

So far we have restricted our attention to a special ini-
tial state: the vacuum state. This is, however, not neces-
sary. In25 we have presented a formalism that is general
enough to encompass a wide range of initial states and
interactions. A central role in this formalism is played by
a master equation for the reduced density matrix, which
is of the Lindblad form. More concretely, the density
matrix is assumed to satisfy15

dρ̂

dt
= −i[Ĥ, ρ̂] + L̂ρ̂L̂† − 1

2
L̂†L̂ρ̂ − 1

2
ρ̂L̂†L̂ , (49)

where L̂ is the Lindblad operator. Most of the partic-
ular models discussed in the literature lead to a master
equation of this form. It is thus of interest to study this
equation as general as possible. We have assumed that
the Lindblad operator is linear in our variables p and
y, but kept it general otherwise. The Hamiltonian Ĥ is
given by the expression (17).

The results of our discussion in25 can be summarized
as follows. It turns out that the behaviour of the master
equation is qualitatively different for modes outside the
Hubble radius (as is the case here) and the modes inside.
The decoherence time td for the modes with wavelengths
much bigger than the Hubble radius is during inflation
of the order

td ∼ H−1
I ln

H−1
I

t0
, (50)

where HI is the (approximately constant) Hubble param-
eter during inflation, and t0 is a typical time characteris-
tic for the details of the interaction. We emphasize that
(50) is approximately independent of these details. It
is basically given by the Hubble time, with the details
only entering logarithmically. The time td also gives the
timescale for the Wigner function to become positive.
The reduced density matrix can then be decomposed into
an apparent ensemble of narrow Gaussians for the values
of the field amplitude, cf.26 for a general discussion. For
the large-wavelength modes in the radiation-dominated
phase one obtains instead

td ∼ HIt
2
L

2
, (51)

where tL depends again on the details of the interaction.
One has now a more sensitive dependence on the inter-
action. Moreover, for HItL ≫ 1 one has a much longer
decoherence time than during inflation. This means that,
depending on the interaction, decoherence can be much
less efficient than during inflation.

For modes smaller than the Hubble scale, the situation
is very different25. Taking as a representative example a
photon bath as the environment (realized e.g. by the
CMB), the decoherence time is independent of the Hub-
ble parameter and strongly dependent on the coupling to
the bath. Dissipation now becomes the dominant source
of influence, in contrast to the case of the super-Hubble
modes for which only entanglement occurs.

Decoherence is often connected with symmetry
breaking15, see also27, section 6.1. This is also the case
here. The initial de Sitter-invariant vacuum state for the
fluctuations is highly symmetric. But the observed clas-
sical fluctuations are certainly non-symmetric. This can
easily be understood and does not require new physics
(as e.g. demanded in28). The initial vacuum state devel-
ops into a squeezed vacuum, which can be understood as
a superposition of different field-amplitude eigenstates.
Decoherence then makes this indistinguishable from an
ensemble of (approximate) field-amplitude eigenstates,
each of which is highly inhomogeneous. The situation
resembles the case of spontaneous symmetry breaking in
field theory, where the symmetric initial state evolves into
a superposition of ‘false vacua’. After decoherence one is
left with an apparent ensemble of different false vacua,
one of which corresponds to our observed world.

B. Entropy

In Sec. III the primordial fluctuations were treated as
isolated and thus described by a pure (squeezed) state.
Consequently, they possess zero entropy: all information
is contained in the system itself. But as we have seen,
the primordial fluctuations are an open quantum system;
they are entangled with their environment. Because of
this entanglement, the fluctuations are described by the
reduced density matrix (48). They thus possess positive
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entropy because the information about the correlations
with the environment are unavailable in the system itself.
The local entropy is calculated from the standard von
Neumann formula,

S = −tr(ρξ ln ρξ) , (52)

where ρξ is given in (48), and where we have set kB = 1.
Considering one (real) mode with wave number k, the
maximal entropy, Smax, would be 2rk, where rk is again
the squeezing parameter29 (we skip again the index k
in the following). We have calculated and discussed the
entropy for the fluctuations in23,25. To display the result,
it is convenient to introduce the dimensionless parameter
χ = ξ/ΩR, where ΩR is the width of the Gaussian (29);
it controls the strength of decoherence. (In the case of
pure exponential inflation one has χ = ξ(1+4 sinh2 r)/k.)
Inserting (48) into (52), one gets the explicit expression25

S = − ln
2√

1 + χ + 1
− 1

2

(

√

1 + χ − 1
)

ln

√
1 + χ − 1√
1 + χ + 1

= ln
1

2

√
χ −

√

1 + χ ln

√
1 + χ − 1√

χ
.

(53)

One recognizes that the entropy vanishes for ξ → 0, as it
must for a pure state. In the limit χ ≫ 1 (large decoher-
ence) one gets

S = 1 − ln 2 +
ln χ

2
+ O(χ−1/2) . (54)

This asymptotic value is readily attained.
As we have emphasized above, modes with wavelength

bigger than the Hubble scale can only experience pure
entanglement, not direct disturbance. In such a case the
entropy obeys the bound

S <
Smax

2
= r . (55)

The same bound follows from the general discussion of
the Lindblad equation25. It can also be interpreted in the
following way25: in spite of decoherence, some squeezing
compared to the vacuum state (which has ΩR = k) re-
mains. In the language of the Wigner function it means
that the Wigner ellipse is not smeared out to become
a circle, but still exhibits an elongated and a squeezed
part. And this has important consequences for obser-
vation! If the bound (55) were violated, there would no
longer be any coherences between the field amplitude and
the momentum and, consequently, no coherences in the
coupled baryon–photon plasma (Sec. IV). There would
then not be any acoustic peaks in the anisotropy spec-
trum of the CMB – in contrast to observation! The fun-
damental questions of the quantum-to-classical transition
have thus observational relevance.

The upper bound Smax/2 corresponds to the case when
the pointer basis is the exact field-amplitude basis. (For
S = Smax, the pointer basis would be the particle-number

basis.) As our pointer basis consists of narrow packets
in field amplitudes, the entropy of the fluctuations ap-
proaches the upper bound asymptotically.

The existence of the bound (55) shows, again, how pe-
culiar the case of fluctuations in an inflationary universe
is. According to a theorem by Page30 (see also31), if a
total quantum system with dimension mn is in a ran-
dom pure state, the average entropy of a subsystem of
dimension m ≤ n is almost maximal. But this is not the
case for our system: the situation for the fluctuations
during inflation is very special, and their entropy cannot
exceed half of the maximal entropy, which leaves enough
information for the formation of the acoustic peaks.

Our results for the entropy in23 and25 also yield the fol-
lowing simple formula for the entropy production during
inflation:

Ṡ ≈ ṙ ≈ HI . (56)

For chaotic systems, the entropy production rate is pro-
portional to the Lyapunov parameter. This would corre-
spond in our case to the Hubble parameter HI. However,
our system is not chaotic, but only classically unstable,
so the analogy is not complete.

Using (50), one can find the amount of entropy pro-
duced after the decoherence time td,

S ∼ HItd ∼ ln
H−1

I

t0
. (57)

In the radiation-dominated phase following inflation, a
relation similar to (56) holds, with HI replaced by the
Hubble parameter H ∝ t−1. The entropy thus only in-
creases logarithmically in time, not linearly as in infla-
tion.

C. Specific models

So far, we have kept the discussion as general as possi-
ble. We have reviewed the arguments which lead to the
result that cosmological fluctuations appear like a classi-
cal ensemble of field amplitudes. Necessary requirements
are the inflationary expansion of the universe and the fo-
cus on modes that are highly squeezed. An interaction
with some environment is needed, but the details of it
are unimportant. Still, it is of interest to discuss specific
examples for such interactions. Our paper25 gives an ex-
tended list of references; here we shall restrict ourselves
to some recent examples.

The purely spatial entanglement between the modes
inside the Hubble scale and outside the Hubble scale was
discussed in32, see also33. It was shown there that this
entanglement is, by itself, sufficient to produce the de-
sired decoherence. This is analogous to the black-hole
case where the decoherence from the tracing out of the
modes behind the horizon leads to the thermal radia-
tion of the Hawking effect18,19. The authors of32 also
showed that the entropy scales with the volume inside
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the Hubble scale and satisfies an upper bound of S ≈ r
per mode, which coincides with the upper bound (55) dis-
cussed above. It is thus not in conflict with the observed
acoustic peaks in the cosmic microwave background.

Instead of pure spatial entanglement one can consider
the entanglement of our strongly squeezed super-Hubble
modes with sub-Hubble modes (which then play the role
of the environment). This was discussed, for example,
in34. The authors take the short-wavelength modes to be
in their ground states and find that decoherence is not
sufficient during inflation. This happens because vacuum
states are usually ineffective to lead to decoherence15.
Our arguments above and in25 can thus only be applied
to this model if at least some modes are not in their
ground states. But such modes can be found: one can
interpret the fluctuations with wavelengths λ & H−1

I
as an appropriate environment; they assume a role in-
termediate between ground state and state with large
squeezing. Ideas similar to the ones in34 have been pur-
sued in35,36, and elsewhere, with results that are con-
sistent with our general discussion above. A variant of
this system-environment split is presented in37 using a
two-field model of inflation. There, the system consists
of curvature perturbations, and the environment consists
of isocurvature modes. Finally, another possible source
of sub-Hubble modes being in non-vacuum states is the
secondary gravitational wave background (“foreground”
in astronomical terminology) emitted by matter after the
end of inflation23.

VI. CONCLUSION

Inflation is a robust scenario which gives an elegant
solution to some oustanding problems of Big-Bang cos-
mology, and its predictions are in agreement with present
observations, in particular the accurate CMB anisotropy
data. It is gratifying that this scenario offers also the pos-
sibility to deal with such fundamental and subtle ques-
tions as to why quantum perturbations produced in the
early Universe give rise to classical inhomogeneities to-
day. We believe that this aspect is no less fascinating
than its other successful predictions.

We expect that models of the quantum-to-classical
transition for the primordial fluctuations will continue
to appear in the literature. But we are convinced that
the general mechanism of this transition presented in this
essay will hold true for all scenarios based on inflation.
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