Decoherence limits quantum computation

Or does it?

Robert Raussendorf, University of British Columbia

Seven Pines, May 7, 2010

Outline

Fighting decoherence:

• Magic state distillation

Befriending decoherence:

- Measurement-based quantum computation
- Quantum computation by dissipation

Part I:

Quantum computation with magic states

S. Bravyi and A. Kitaev, Phys. Rev. A, 2005

Undoing decoherence

Capstone result:

Threshold theorem. Given [fill in a suitable error model], if the error per elementary gate in a quantum computer is below a critical threshold, arbitrarily long and arbitrarily accurate quantum computation is possible.

Q: What is the noise threshold?

Noise threshold for fault-tolerance

... exact value may be hard to calculate. Instead derive

- **Upper bound:** For a given set of computational primitives, if the noise level exceeds the upper bound, then *no method*, however clever, can achieve fault-tolerance.
- Lower bound: For a given set of computational primitives, if the noise level is less than the lower bound, then at least *one method* makes the computation fault-tolerant.

Quantum computation using magic states

We consider the computational primitives

$\{CNOT-gate, Hadamard-gate, |T\rangle\}$

Therein,

$$|T\rangle = \frac{|0\rangle + e^{i\pi/4}|1\rangle}{\sqrt{2}}.$$
(1)

is the "magic" state.

Computational primitives - CNOT

• The CNOT gate is a two-qubit gate. It acts as

$$\mathsf{CNOT}_{c,t} = |0\rangle_c \langle 0| \otimes I^{(t)} + |1\rangle_c \langle 1| \otimes \sigma_x^{(t)}.$$
(2)

• The CNOT is the only computational primitive in the set which has the power to *entangle*.

Computational primitives - Hadamard

• The Hadamard gate ${\cal H}$ acts as

$$H = |+\rangle \langle 0| + |-\rangle \langle 1|, \tag{3}$$

where $|\pm\rangle := 1/\sqrt{2}(|0\rangle \pm |1\rangle).$

• The Hadamard gate rotates the Bloch sphere of a qubit by an angle of π about the axis in the middle between x and z.

Computational primitives - magic state $|T\rangle$

• State $|T\rangle = \frac{|0\rangle + e^{i\pi/4}|1\rangle}{\sqrt{2}}$ implements gate $T = \exp(i\pi/8Z)$.

- Gate construction is probabilistic. Repeat until success.
- The used primitives are universal for quantum computation! Any unitary in U ∈ SU(2ⁿ), for any n, can be built as a sequence of the above gates.

Decoherence model

Computational primitive	Quality
CNOT-gate	perfect
Hadamard-gate	perfect
magic state $ T angle$	noisy

- Instead of pure states $|T\rangle$ have states $\rho_T \approx |T\rangle\langle T|$. Use fidelity $F(\rho_T) = \sqrt{\langle T | \rho_T | T \rangle}$ as measure for quality.
- Motivation for this noise model: certain versions of topological quantum computation which are non-universal.

Bravyi & Kitaev's results

Result 1. If the noisy magic states ρ_T are inside the octahedron P_8 inscribed in the Bloch sphere, then quantum computation using the primitives {CNOT, H, ρ_T } can be efficiently classically simulated.

Result 2 [*Magic state distillation*]. If the noisy magic states ρ_T are such that $F(\rho_T) \ge 0.927$, then arbitrarily long and accurate universal quantum computation is possible with the primitives $\{\text{CNOT}, H, \rho_T\}$.

Derivation of Result 1

- How powerful is the gate set $\{CNOT, H, S = \exp(2 \times i\pi/8Z)\}$?
- Not powerful at all. It is efficiently classically simulatable.

First, consider the one-qubit gates H, $S = \exp(i\pi/4Z)$:

- H, S leave the octahedron invariant.
- H, S generate the octahedral group. Not dense in SU(2), hence no 1qubit universality.

Heisenberg picture

Consider the action of *H*, $S = \exp(i\pi/4Z)$, *CNOT* on Pauli operators:

- Above gates map Pauli operators onto Pauli operators.
- \Rightarrow Evolution easily trackable in Heisenberg picture.

Gottesman-Knill theorem

⇒ Evolution easily trackable in Heisenberg picture. Leads to Gottesman-Knill Theorem:

Theorem 1. Quantum computation with {CNOT, H, S}, on initial qubit states $|0/1\rangle$, $|\pm\rangle$, $|\pm_y\rangle$, and with readout measurements in the X, Y or Z-basis can be efficiently classically simulated.

Result 1 of Bravyi & Kitaev

- The only computational primitive that evades the Gottesman-Knill theorem is the magic state $|T\rangle$.
- Can the noisy state ρ_T be described as a *probabilistic mixture* of $\{|0,1\rangle, |\pm\rangle, |\pm_y\rangle\}$?
- If yes, then the computation can be efficiently simulated using the Gottesman-Knill theorem + Monte Carlo sampling.

Result 1. If the noisy magic states ρ_T are inside the octahedron P_8 inscribed in the Bloch sphere, then quantum computation using the primitives {CNOT, H, ρ_T } can be efficiently classically simulated.

Result 2: Magic state distillation

Result 2 [*Magic state distillation*]. If the noisy magic states ρ_T are such that $F(\rho_T) \ge 0.927$, then arbitrarily long and accurate universal quantum computation is possible using the primitives {CNOT, H, ρ_T }.

Results 1 & 2

X/Y - equator of the Bloch sphere

But where's the magic?

Part II:

Measurement-based quantum computation

R. Raussendorf and H.J. Briegel, PRL 86, 5188 (2001).

Measurement-based Quantum Computation

Unitary transformation

deterministic, reversible

Projective measurement

probabilistic, irreversible

The one-way quantum computer

measurement of Z (\odot), X (\uparrow), $\cos \alpha X + \sin \alpha Y$ (\nearrow)

- Universal computational resource: cluster state.
- Information written onto the cluster, processed and read out by one-qubit measurements only.

Trading entanglement for output

• Intuition: Entanglement = Resource

Part III: Quantum computation by dissipation

F. Vertraete, M. Wolf and J.I. Cirac, Nature Phys. 5 (2009).

 Cooling into the ground state of a simple (3-body, say) Hamiltonian were an incredibly powerful computational tool ...

If one could avoid local minima.

- **Bold task:** Solve NP-complete problems by cooling.
- *Task:* Universal quantum computation by cooling.

Result 3. Consider a quantum circuit of n qubits and T gates, $|\Psi_{OUt}\rangle = U_T U_{T-1} .. U_2 U_1 |0\rangle$. The output of this quantum computation can be efficiently simulated by local *dissipative* evolution on n + T qubits.

Why n + T qubits?

Total Hilbert space
$$\mathcal{H} = \underbrace{\mathcal{H}_{Q}\text{-register}}_{n \text{ qubits}} \otimes \underbrace{\mathcal{H}_{clock}}_{T \text{ qubits}}$$

*: Image adapted from Nature Physics.

Consider dissipative evolution described by Lindblad equation with a Liouville operator

$$\mathcal{L}(\rho) = \sum_{k} L_{k} \rho L_{k}^{\dagger} - \frac{1}{2} \left\{ L_{k}^{\dagger} L_{k}, \rho \right\}_{+}, \qquad (4)$$

where

 $L_{i} = |0\rangle_{i}\langle 1| \otimes |0\rangle\langle 0|, \qquad \forall i = 1..n, \qquad \text{(initialize QR)} \\ L_{t} = U_{t} \otimes |t+1\rangle\langle t| + \text{h.c.}, \quad \forall t = 1..T, \qquad \text{(advance clock)}$ (5)

The above dissipative evolution has the following properties

1. Unique fixpoint is a *history state*

$$\rho_0 = \frac{1}{T+1} \sum_t |\psi_t\rangle \langle \psi_t| \otimes |t\rangle \langle t|, \qquad (6)$$

where $|\psi\rangle_t =$ state of QR at time t.

2. Liouville operator has a spectral gap $\Delta \sim 1/T^2$. Good approximation to ρ_0 is reached in poly time $\tau \sim T^2$.

Final step of the computation: After evolution for time τ , measure the clock register. If obtain t = T then read out $|\Psi_{\text{out}}\rangle$. Otherwise start over.

Why decoherence did not hurt in Ex. II, III? • Closing remark on entanglement

Why did decoherence not hurt in Ex. II, III ?

Because we only depleted coherences that we didn't care about.

Example III - Universal AQC vs. DQC

Dissipative QC

 $H(t)=H_{\rm I}(1-t)+H_{\rm F}t$

initial Hamiltonian: GS easy to prepare final Hamiltonian: encodes comp. result in its ground state

 H_I , H_F exist such that¹

- 1. GS is history state: $|\Psi\rangle = \frac{1}{\sqrt{T+1}} \sum_{t} |\psi_t\rangle |t\rangle$
- 2. Min gap $\sim 1/T^2$.

 $\ensuremath{\mathcal{L}}$ exists such that

- 1. FP is history state: $\rho_0 = \frac{1}{T+1} \sum_t |\psi_t\rangle \langle \psi_t| \otimes |t\rangle \langle t|$ 2. Gap ~ $1/T^2$.
- 1: D. Aharonov et al., arXiv:quat-ph/0405098 (2004).

Example III - Universal AQC vs. DQC

Adiabatic QC:

- H_I , H_F exist such that
 - 1. GS is history state: $|\Psi\rangle = \frac{1}{\sqrt{T+1}} \sum_{t} |\psi_t\rangle |t\rangle$
- 2. Min gap $\sim 1/T^2$.

Dissipative QC:

- \mathcal{L} exists such that 1. FP is history state: $\rho_0 = \frac{1}{T+1} \sum_t |\psi_t\rangle \langle \psi_t| \otimes |t\rangle \langle t|$ 2. Gap $\sim 1/T^2$.
- Adiabatic QC: history state is a coherent superposition, Dissipative QC: history state is a mixture.
- Recall: Measure clock at end of computation.
- \Rightarrow Coherence between clock states is not important.

Example II - Measurement-based QC

Instead of the one-way QC, look at simpler example:

Recall: $S = \exp(i\pi/4Z)$, $T = \exp(i\pi/8Z)$

- Decohered is only the post-measurement state or the lower qubit, which we discard.
- Again, decoherence does not affect the computational degrees of freedom.

Remark on entanglement

Do the dissipative evolutions discussed in Examples II, III drive the respective system to a "classical" state?

- One-way QC: Yes. Final state is a product state.
- Dissipative QC: No. Final state is highly entangled*.

*: The entanglement of the history state ρ_0 equals the time-averaged entanglement of the circuit quantum register.