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Abstract

Two formulas of great historical resonance in twentieth century theoretical physics- the
Kramers dispersion formula of 1924, the immediate precursor of Heisenberg's matrix
mechanics, and the Veneziano dual amplitude of 1968, the direct ancestor of the Nambu-
Goto-Nielsen string- are continuously connected by a conceptual strand of enormous
importance. The requirement of analyticity of quantum-mechanical amplitudes, intimately
related to the demands of causality, as a constraint on fundamental physics, is perhaps
second only to the emergence of the local gauge symmetry principle in guiding the
development of modern microphysical theories from relativistic quantum field theories to
string theory. In this talk, some of the important signposts along the path connecting these
two seminal formulas will be discussed.
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1

Introduction and background

In recent years there has been a move to ‘naturalize’ the philosophy of
science. This has meant basing work in the philosophy of science upon
the actual historical record of real scientific practice and stressing (in
varying degrees) the use of the methods of science in studying the
scientific enterprise. This attention to actual scientific practice has been
supported by traditional realists, an example being Ernan McMullin
(1984) who early on (1976a) argued for a central role for the history of
science in the philosophy of science; by philosophers of various
anti-theoretical bents, such as Nancy Cartwright (1983) and Ian
Hacking (1983); and by empiricists, like Bas van Fraassen (1980, 1985).
In the early 1960s, it was attention to the historical record that led
Thomas Kuhn (1970), in his The Structure of Scientific Revolutions, to
stress the importance of social factors in the practice of real science. The
spirit of the present work is that careful and detailed study must be made
of the actual development of science before conclusions are drawn about
the appropriateness of any particular methodology of science. Ours is
mainly a story about theory, but not one uncoupled from its relation to
experiment.

We claim that many of the philosophically interesting questions in
science, especially in regard to possible changes in the methodology and
goals of science, can be seen and appreciated only upon examination of
the technical details of that practice. So, in this chapter we discuss some
motivations for studying current scientific practice and then set the
problem background out of which the S-matrix program arose. This
sketch is somewhat ahistorical since we mention some field theory
developments that occurred after 1943 (when Heisenberg introduced
his §-matrix program). The formalism of classical particle mechanics
and of wave phenomena have been, in this century, successively
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reinterpreted to yield (nonrelativistic) quantum mechanics, relativistic
quantum field theory for electromagnetic phenomena and, finally,
relativistic quantum field theory for strong (or ‘nuclear’) phenomena.
The prototypical experimental arrangement (of either the real or
gedanken type) for studying the fundamental interactions of nature has
been a scattering process in which a target (such as a nucleus) is probed
by a projectile (such as an electron or a proton).

However, the development of these quantum field theories has not
always been a smooth one. In particular, in the 1930s and early 1940s,
the quantum field theory program had run into considerable technical
and experimental difficulties (Cassidy, 1981; Galison, 1983a). Mathe-
matical inconsistencies, most notably divergences or infinities produced
by calculations with the formalism, occurred for quantum electro-
dynamics (QED) at short distances (or, equivalently, at high energies)
of the order of the size of the electron. Similar problems plagued Fermi’s
theory of § decay and Yukawa’s meson theory of nuclear forces. Here
we have examples of three of the four basic forces in nature: the
electromagnetic, which is responsible for the atomic phenomena
producing those features of the world we commonly encounter; the
weak, which accounts for the spontaneous decay or conversion of a free
neutron into a proton; and the strong, which predominates at very
short distances for nuclear processes. The last is the gravitational force,
which plays no essential role in our story here. During the same period
of confusion in the arena of theory, experimental results from cosmic
ray data seemed to contradict expectations based on quantum field
theory (QFT). It appeared as though cosmic ray showers, or ‘explosive’
events, occurred (in contrast to the cascades built up from many
essentially pairwise events, which could be readily accounted for by
Dirac’s hole theory). Heisenberg took the existence of these multiple
processes to signal a breakdown of conventional quantum field theory
and to require the introduction of a fundamental length into the theory.
The field theory situation was further complicated by the confusion (in
the 1930s) caused when the mesons observed in cosmic-ray interactions
were at first identified with Yukawa’s nuclear-interaction n meson
(pion), before they were finally identified as p. mesons (muons), which
are essentially ‘heavy’ electrons. These difficulties encountered by the
quantum field theory program provided a significant part of the
motivation for Heisenberg’s proposing his S-matrix theory (SMT).

By the late 1940s, a mathematical technique (renormalization) had
been formulated which allowed one to circumvent the divergences of
QED and to make accurate predictions confirmed by experiment, This

Internal history of recent science 3

is the first cycle of the oscillation of theory between QFT and SMT.
Others occurred when QFT was stymied by the strong interactions,
from which it subsequently recovered with gauge field theories. This
back and forth between formalisms, with their corresponding para-
digms, is an important feature of the episodes we present. It will be
especially relevant for our evaluation of methodology in science (in
Chapter 10).

1.1 Internal history of recent science

This work is largely, but not exclusively, an internal history of an
extended episode in modern high-energy physics. That is, the published
physics literature is a major source for the technical developments we
present. Nevertheless, interviews and correspondence are also em-
ployed. The primary interest in and motivation for doing the research
necessary for this case study are philosophical. Some obvious questions,
that arise about the value and wisdom of doing an internal history of a
current (and hence not completed) episode in a highly technical (or
specialized) subject area, must be addressed.

Schweber (1984, p. 41), in his history of the early developments of
quantum field theory, has stated one of the problems of internal history
as follows:

[IInternal history faces the problem common to all good history: how
to avoid the pitfalls of Whiggish history, that is, the writing of history
with the final, culminating event or set of events in focus, with all prior
events selected and polarized so as to lead to that climax.

So, while the philosophy of science must be based on history (i.e., events
as they actually occurred), it can be important not to focus exclusively
on the form and content of ‘successful’ scientific theories alone, The
arguments and contingent events that inform the course of development
and selection of theories are essential. That is, how things might have
gone a very different way at certain crucial junctures and why they did
not may be as important as the reasons for the ‘right’ choices that
science has made. The present case study focuses,on a ‘failed’ program
that has never been proven to be incorrect. It is evident that one cannot
explain its rejection just in terms of falsification. Perhaps there is
something to be learned from the history of such a dead-end theory. The
relevance of such (‘sociological’) factors as the previous interests and
expertise of the participants becomes apparent enough.
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Historians may extol the virtues (in fact, necessity) of doing the
history of an episode only long after the clamor of the day has settled.
They can argue that once time and events have produced a stable
picture of the past, one feels some confidence that one may be able to
find ‘the objective truth’ in those long-dead events (or ‘corpse’)
(Burckhardt, 1963, pp. 74-76).! There is an old tradition of this attitude
in the history of science. Thus, in Whewell’s History of the Inductive
Sciences (1857, Vol. 11, p. 434) we find: ‘It is only at an interval of time
after such events have taken place that their history and character can
be fully understood, so as to suggest lessons in the Philosophy of
Science.” Even if one accepts that thesis (and it can be debated), he can
still feel that something (perhaps important, Burckhardt and Whewell
to the contrary notwithstanding) has slipped away. The detailed
dynamics of the events and the motivations of the protagonists have
been lost (in large measure, at least) behind the veil of time. Now if one
believes that all final scientific positions are reached ultimately through
rational judgments alone, then there is probably even virtue in waiting
until the flotsam has been swept away by time to leave a residue of
objective truth. But it is not clear that science operates (even in the long
run) quite as objectively as we might like to think. An examination of
the record of actual scientific practice may shed some light on that
question. The goal is not to clear up the rules and mechanisms that
regulate the eternal ups and downs of fashions and fads in theoretical
physics. It is not certain that there is a set of rules and mechanisms, but
we can learn what some of them might plausibly be,

There are inherent dangers in studying fairly recent episodes in
physics (or in anything else) (Brinkley, 1984). But, since the final
‘verdict’ is not yet in and since many of the participants are still alive,
there are opportunities here that are not available in more traditional
‘corpse dissections’. Most obviously, one can ask the major figures
involved what their motivations were, how they saw events at the time,
and what they recall about the interactions of other scientists. An
obvious danger in gathering such recollections is that people sometimes
feel (rightly at times, but often not) that their own contributions have
been slighted. This ‘interview’ approach can be taken too far, as when
sociologists of science monitor the day-to-day routine activities of
scientists. An additional useful dimension can be added by examining a
recent episode in science.

Many of the most interesting questions in the philosophy of science
come from studying actual scientific practice, rather than from
armchair a priori reasoning that philosophers sometimes engage in. 1
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have chosen the dispersion-theory and S-matrix theory program of
theoretical physics because I had some familiarity with the technical
literature of that program in the 1960s and 1970s, because the major
activity in that area was confined to a time period of several years and
that activity was reasonably localized (around relatively few central
theorists), and because several philosophically significant issues, such as
the origin, development and selection of theories, can be illuminated
with specific instances from a history of that program.

A difficulty in doing a case study of a major episode in modern
theoretical physics is that one of the traditional sources of corrobor-
ation —an extensive personal correspondence among the major creators
of the theories —is by and large no longer available. That is, historians of
science are wary of taking at face value and relying solely upon the
personal recollections of individuals. While such recollections are an
invaluable source for leads about what actually went on behind the
‘story’ as reconstructed from the published physics literature, those
recollections must be checked for support against other documents,
usually the published literature and the private correspondence among
key theorists. While the leading theorists of an earlier era (e.g., Einstein,
Bohr, Schrodinger, Heisenberg, Pauli) did correspond frequently and
extensively with one another (and much of that correspondence
survives), markedly increased use of the telephone and relatively
easily-available travel to many topical conferences have obviated the
need for such correspondence among already busy individuals. The
situation for the history of recent experimental physics is not so bad
since laboratory notebooks and, more often, research proposals to
funding agencies and the internal memoranda of large groups give
details of what was going on in the major experiments (cf., Galison,
1987). However, research proposals for theoretical work provide a less
reliable guide to what a theorist actually ends up doing.

This problem of a missing record of corrspondence among theorists is
especially bad with those generations of theorists who have begun
working since the end of the Second World War. Lacking a large body
of such correspondence, the only resource available appears to be
getting as many independent recollections as possible of key episodes in
the development of the disperison-theory and S-matrix programs and
then looking for the common overlap among these.

One can also question the value of studying a frontier area involving
the creation of new physical theories, since this may be a singular
exercise in science. Rigden (1987) has characterized such creative
developments as follows.
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When first-rate minds are engaged in the intellectual activity called
physics, as was the case in February 1927 when Heisenberg was
struggling with the ‘pq—qp swindle’, it is an activity with no equivalent
in any other natural science. In fact, there is no equivalent in any
intellectual arena except, possibly, first-rate theological thinking.
These special times in physics do not come often, but when they do,
physicists must often create new constructs for which neither previous
experience nor previous thought patterns provide guidance. New
words representing entirely new concepts must be created, words
whose meaning cannot be rendered even by the most deliberate use of
older words. The new meaning takes form slowly, but with a groping
awkwardness. Soon the new ideas become the basis for empirical
predictions and, in the process, a ‘sense of understanding” emerges.
However, in the end, the basic concepts of physics are aloof, they
remain outside our ability to convey their meaning.

Rather than taking this to mean that such activities in theoretical
physics are largely irrelevant to the philosophy of science, we can see in
these episodes a unique opportunity to examine how foundational
theories are created — perhaps at a time of singular flexibility and
underdetermination of the outcome.

1.2 Philosophical issues and the Forman thesis

Since a primary interest of ours here is certain philosophical questions,
references are not given to every technical development in S-matrix and
dispersion theory. By examining in detail a major episode in contem-
porary physics, we hope to illuminate somewhat the processes by which
theories are generated and selected by the scientific community. A
question of central interest for us is the relative importance of internal
versus external factors in the development of a scientific theory. Forman
(1971) initially raised this issue with regard to the origin and acceptance
of the concept of acausality in physics in Germany after the First World
War when modern quantum mechanics was being formulated. We shall
often use the expression ‘Forman thesis’ to refer more generally to the
role of social and sociological influences in the development and
acceptance of a scientific concept or theory. It does seem evident that,
once we ‘buy’ into a set of starting assumptions, then the ‘internal’ logic
of a formalism can largely take over (Raine and Heller, 1981). However,
the origin of hypotheses central to a theory often lies in very specific and
technical developments, having little, if anything, to do with overarch-
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ing philosophical schemes. For that reason some fairly extended
discussion of technical details is necessary. (The reader can get an
overview of the philosophical issues and conclusions from Chapters 1
and 10 alone, aided perhaps by the introductions and brief summaries at
the end of each intervening chapter.) Retrospectively, the central tenets
of a theory may be put into or associated with a particular philosophical
world view. Furthermore, the acceptance (or the effective infectivity) of
a theory can be greatly influenced by the social environment and by
generally accepted overarching principles. This case study does not
support the radical Forman (1971) thesis that the social milieu plays a
central role in the creation of scientific theories, but it is consonant with
the more modest Forman-type thesis (Forman, 1979; Hendry, 1980)
that social factors are relevant for the acceptance of a theory. There does
remain an important distinction for science between internal factors
(such as formalism, logic and experiment) and external ones (such as
group interests and social influences).

Another set of issues to be discussed in the context of this episode in
physics is the interplay between the discovery and the justification of a
scientific theory (both initially and later in the program) and the
symbiosis between theory and experiment in the development of a
program. This is just one case study and its conclusions may or may not
have any general applicability to the way other scientific theories have
developed. It is by no means clear that there is a (i.e., one) scientific
rationality that applies usefully to all science in all eras (in spite of some
claims made, for example, by Popper, with his emphasis on falsification,
and Lakatos, with his representation of the dynamics of science in terms
of progressive and degenerating research programs).

1.3 The purview of this case study

Because this case study is intended mainly for historians and philos-
ophers of science who have an interest in the modern scientific
enterprise, I have attempted to give an essentially accurate representa-
tion on technical matters, but have usually avoided telling the whole
truth (i.e., giving all the technical details). Rather, the central concepts
and techniques are often illustrated with simple mathematical
examples. Although I do not want to reconstruct past developments
from the biased vantage of today’s state of knowledge, I have
nevertheless employed a unified notation in these mathematical
examples in order to make the line of argument more accessible to a
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wider audience. Along the way I do point out important notational and
conceptual differences between my illustrative examples and the
original presentations found in the physics literature.

The last introductory comment concerns my use of the expression -

‘S-matrix program’. I do not mean to equate the dispersion-theory
program and the S-matrix theory (SMT) program? nor do I wish to
obfuscate the distinction between the ‘bootstrap condition’ as a
uniqueness criterion and the much broader implications that term has
in the program associated with Geoffrey Chew and his collaborators.
This case study should make it clear (1) that at any given time the term
‘bootstrap’ has not had a unique, universally accepted meaning among
theoretical physicists (if, indeed, it has any specific meaning at all) and
(2) that within a given group or school of theorists the meaning of that
term has evolved over the years. To respect this caveat, I shall use the
designation ‘autonomous S-matrix program’ to distinguish the radical
or fundamentally revisionary conjecture from the more general
S-matrix and dispersion-theory program?.

Much of the S-matrix program discussed in this study will appear as a
largely American project and this may give the entire project too much
of an American, even ‘Chewtian’, flavor. It is true that major develop-
ments in several areas took place in Europe or have been made by
Europeans. I attempt to point this out in the narration that follows.
Nevertheless, it does remain that much of the major activity of the
S-matrix program was centered around Geoffrey Chew and his
collaborators in Berkeley.

14 Quantum field theory (QFT) background

A brief sketch of the development of quantum field theory (QFT) is
necessary in order to place S-matrix theory (SMT) in some historical
context for the reader. More complete discussions of the history of QFT
can be found in Cushing (1982), Darrigol (1984, 1986) and Schweber
(1984, 1990). Philosophical problems associated with QFT have been
addressed by Stdckler (1984). In fact, the following is largely a summary
from my (1982) paper on high-energy theoretical physics. Detailed
references to the relevant physics literature can be found there, so that
we shall not repeat those references here. This condensed outline is
essentially ahistorical in that it presents only the central ideas of QFT
without any pretense at maintaining a strict historical sequence. Let us
begin by reproducing (Cushing, 1987a) a chronological outline of the
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sequence of developments (Schweber, 1987) we shall take as back-
ground for the following chapters in this case study. Some of these
topics will be elaborated here, others in subsequent chapters.

1925-1927: formulation of nonrelativistic quantum mechanics
1927-1947: formulation of relativistic quantum field theory (QFT)
1947-1950: renormalization program for quantum electrodynamics
(QED)
late 1950s—1970: a period of serious problems for perturbative QFT,
with various alternative avenues pursued
(a) axiomatic QFT (Wightman school)
(b) local, asymptotic QFT (LSZ formalism)
(¢) dispersion relations and S-matrix theory (SMT)

l

duality program
1970s—present: gauge QFT

strings

The transition from classical mechanics to (nonrelativistic) quantum
mechanics in the period 1925-27 can be seen (at least now, retrospec-
tively) as a reinterpretation of the equations and of the formalism of
classical mechanics to represent phenomena in the atomic domain. In
the Hamiltonian formulation of classical mechanics (for a single particle
here), the time evolution of the canonical variables g(t) (‘position’) and
p(t) (‘momentum’) is governed by Hamilton’s equations of motion

oH
Ji 1.1¢
q - (1.1a)
—0H
= —— 1.1b
P P (1.1b)

Here H{(q,p) is the Hamiltonian and is (in our case) just the total
mechanical energy of the system. For example, a particle of mass m
moving in a conservative force field F(q)= —aV/dq has the Hamil-

tonian
2

Hig.p)=3—+ V(@) ‘ (12)

in terms of the potential energy function V(g). For a classical system,
q(t) and p(t) are simply ordinary functions of the independent time
variable . They are solutions to the coupled set of differential equations
(1.1) subject to the initial conditions g,=4(t,), po=p(t,) at some



10 Introduction and background

(arbitrary but definite) initial time t=t,. In this simple example, Eqs.
(1.1) are nothing more or less than (equivalent to) Newton's second law
of motion

-V
oq

In the early part of the present century, it became evident that for
atomic systems not all of the solutions (or ‘orbits’ for particle motion)
are in fact allowed or realized in nature. For example, only certain
orbits, or energy levels, for a bound electron in a hydrogen atom are
permitted (as evidenced by the discrete spectrum of the light emitted or
absorbed by a hydrogen atom). The program of the old quantum theory
(say, 1913-1925) was to find a set of rules that would allow one to select
from the (continuous) infinity of classically-allowed solutions (or
‘orbits’ or energy levels) those actually realized in nature. Bohr’s classic
1913 paper gave one such rule in terms of the quantization of the orbital
angular momentum /,

iI=nh, n=0,1,2,... (1.4)

Here h is h/2r, where h is Planck’s constant. The old quantum ‘theory’
amounted in essence to a set of quantization rules, that were general-
izations of Eq. (1.4). It consisted of a set of ad hoc guesses guided by
Bohr's correspondence principle, which was initially a requirement that
certain quantities derived in the (old) quantum theory should pass over
into their classical counterparts in a suitable limit.

Heisenberg’s 1925 paper laid the foundations of a systematic
quantum mechanics by reinterpreting the classical g and p variables as
quantities satisfying the commutator relation (in units with h=1)

mi=ma=——=F(q). (1.3)

qp—pq=[q.p]=1. (1.5)
(We make no claim that Heisenberg, Schrodinger or Dirac originally
presented their ideas in the form we represent them here. This is
‘Whiggish’ history, which we avoid in our study proper.) Hamilton’s
equations (1.1) and the Hamiltonian (1.2) were to be retained, but the
(operators) g and p were now required to satisfy the {commutator)
condition of Eq. (1.5). That is, one must seek solutions to the eigenvalue
problem

H(q,p)¥=EY¥ (1.6)

for the allowed eigenvalues E. Here (to make a long story short) ¥ is the
(Schrodinger) eigenfunction (or eigenvector). One typically finds a
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representation for ¢ and p (e.g., g—q, p— —id/0q) which satisfies
Eq. (1.5) and then uses this in the H{(g, p) of Eq. (1.2) to re-express
Eq. (1.6) as (in units with 2m=1)

62
[_E;E+ V(Q):I ¥Y(0)=E¥(q). (1.7)

This particular representation of Eq. (1.7) is usually referred to as the
Schrédinger equation (which Schrédinger in 1925 arrived at indepen-
dently and by a route different from that indicated here). Dirac in 1925
produced an elegant general set of rules for passing directly from the
classical Hamiltonian formulation of a problem to the corresponding
quantum-mechanical equations by replacing the classical Poisson
brackets {q, p} with the commutator [gq, p] as

1
{a.r}~<14.7] (1.8)

Schrodinger also established the formal equivalence of his wave
mechanics and of Heisenberg’s matrix mechanics. We use the term
‘quantum mechanics’ to refer to either of these representations without
distinction.

Quantum field theory — really, quantum electrodynamics (QED) -
was born in 1927 when Dirac applied perturbation theory to an atomic
system (such as a hydrogen atom) in a radiation field (such as the
clectromagnetic field of light). The stationary state problem (e.g., the
energy levels in the hydrogen atom) had been solved by quantum
mechanics, but the mechanics or details of light emission and absorp-
tion remained to be handled. The quantum-mechanical problem
considered was

0¥
i=-=(Ho+V)¥, (1.9)
which is just the standard time-dependent Schrédinger equation for an
atomic system (whose unperturbed Hamiltonian is H,) acted upon by
an external potential V (here the radiation field due to light). (Similar
applications of Schrodinger theory are discussed in more detail in the
Appendix which should be consulted if the reader feels at a loss for
specifics.) The equations of motion (i.e., Maxwell’s equations) for the
free electromagnetic field can be transformed into an equivalent set
having the form of a denumerably infinite set of uncoupled harmonic
oscillators, which can easily be quantized in terms of a set of creation
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(a') and annihilation (@) operators satisfying the commutation relation
[a,a']=1. (1.10)

That is, if ¥ is a state having n quanta (say, photons), then a' ¥ is a state
having (n+1) quanta and a¥ is a state having (n—1) quanta.
Straightforward perturbation theory (think, say, in terms of the
strength or intensity of the radiation field as the expansion or
‘smallness’ parameter) can be applied to compute the transition
probability from one atomic (or hydrogen atom) level to another (under
the stimulus of the radiation field). Calculations to lowest order in this
expansion (or perturbation) turned out to be finite and reasonable.
However, when this formalism was applied to the problem of the
dispersion (or scattering) of light by a collection of atoms, divergent
terms were present. During the period from the late 1920s throughout
the 1930s, theoretical physicists were occupied with these and other
serious consistency problems of quantum field theory, as well as with
attempts at formulating a satisfactory relativistic quantum field theory.
For our present telescoped ‘history’ of QFT, we simply pass over this
period and turn to the major developments that occurred immediately
after the Second World War,

1.5 Renormalized quantum electrodynamics (QED)

Lamb and Retherford in 1947 determined experimentally that two
energy levels of hydrogen (the 2s, and the 2p,) which should have been
degenerate in one-electron Dirac theory are in fact separated by a small
but finite energy difference. For here and for reference later, it may be
worth pointing out that the energy-level notation is nl;, where n is the
principal quantum number of the Bohr theory (that is, the nof Eq. (1.4))
and takes on values (in units of h)n=1,2,3,...; I is the orbital angular
momentum and takes on values 0 <I<n— 1 (with the old spectroscopic
notation I=0«ss, I=1ep, I=2¢d,...); and j is the total angular
momentum (! plus s=4, the spin of the electron). Thus, 2s, stands for
n=2,1=0,j=4%. In Dirac’s relativistic theory of the hydrogen atom, the
energy levels E,;, depend only upon n and j, but not explicitly upon 1.
For I=1 (and s=1, of course), there are two possible values for j (where
j=l+s): j=4% and j=3. Hence, the 25, (1=2, j=1}) and 2p, (n=2, =
energy levels should be the same (or ‘degenerate’). In Figure 1.1 we
show the Dirac-theory predictions for the energy level E,; with solid
lines and the actually observed 2p, level with a dotted line. The
experimentally observed split between the 25, level and the (dotted line)
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2p, level is the Lamb shift. This difference is observed as a splitting or
displacement of the spectral lines emitted when electrons make
transitions from one level to a lower one.

In a remarkable calculation that same year, Bethe made a nonrelativ-
istic perturbation calculation of the self-energy of an electron in a bound
state of a hydrogen atom. The most singular term was a linearly
c!ivergent integral that Bethe realized was present for a free electron. (By
linearly divergent we simply mean that the calculation yielded an
c.xpression involving an integral of the form [*dk, which diverges
linearly (i.e., as a first power of k) as klim k—c0.) Arguing that this

—+an

should be included in the physically observable mass of the electron, he
discarded it as a not-separately observable effect. There still remained a
logarithmic divergence (i.e., of the form [* dk/k) of the type already
known from Dirac’s hole theory which he also discarded in the hope
that a relativistic calculation would produce the same logarithmic term
plus, possibly, an additional small finite correction. Bethe took the finite
remainder of his calculation to be the Lamb shift. His calculation
produced a result

AW /h=1040 megacycles s ! (1.11)

to be compared with the early experimental value of 1000 Mcs™!. The
extreme accuracy of these measurements becomes clear when we
appreciate that AW, nu/Wenergytever 1077,

bnl 35_;_ e el el 3p"}
3ps
2p3
251 ———— 2ps :
T ; } Lamb shift
actual
energy
level
ls,lI
1=0 =1
Figure 1.1 Hydrogen atom energy levels in one-electron Dirac

theory and the Lamb shift (not drawn to scale).
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Kramers pointed out at the 1948 Solvay Conference that observable
effects calculated in quantum electrodynamics depend upon e and m
only as measured experimentally (that is, upon these structure-
independent properties of the electron). At this time people were able to
do some higher-order corrections to electron scattering cross sections
by subtracting out (that is, really, just throwing away) these divergences
as they occurred in calculations. However, the answers obtained, while
finite, were not unique and the entire procedure was a delicate and
ambiguous one. Kroll and Lamb in 1949 made a relativistic quan-
tum-electrodynamics calculation of the level splitting for 25, — 2p, and
obtained 1051 Mcs ™~ 1. The results were still somewhat ambiguous since
subtraction of infinite terms to yield finite ones was not unique because
there was no subtraction procedure independent of a specified Lorentz
frame. Also, these calculations were carried out to order e? in these
so-called radiative corrections and were not yet known to remain finite
in higher order. ‘Radiative correction’ is the term used to refer
generically to any virtual process in which a photon, say, is radiated
(perhaps from an electron) and then reabsorbed (by the same emitter)
before it can be observed directly. Virtual processes are essentially those
that are allowed by the QED formalism but that cannot be seen directly.
We shall give illustrations of several of these below.

Since the Lamb shift remains one of the showpieces of QED, let us
give some indication of recent experimental and calculational results.

experimental: AE=AE(2s,)—AE(2p,)
=1057.77+0.01 Mcs ™. (1.12)

theoretical: self-energy 1011.45
vacuum polarization —27.13
vertex modification 67.82

1052.14 (1.13)

Bethe in his initial calculations had estimated only the electron
self-energy modification (due to the emission and reabsorption of a
virtual photon) which, it turns out, gives the overwhelmingly major part
of the contribution. The result in Eq. (1.13) is the theoretical correction
to order 2. Subsequent to the experimental discovery of the Lamb shift
and to Bethe’s calculation, a slight departure of the magnetic moment
from its value, predicted on the basis of single-particle electron theory,
was detected experimentally by Foley and Kusch in 1948. That is,
according to Dirac (single-electron) theory, the electron should have an
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intrinsic magnetic moment of

_eh

#_2mc’

(1.14)

whereas the experimental value is

.ru'exp=ﬂ+‘51u (115)
with
5= (0.001 165+0.00001 1. (1.16)
The QED prediction is to order e*
.
Su=>5=0.0011614 (1.17)

as shown by Schwinger prior to the experimental measurement.

In his report to the 1948 Solvay Conference, Oppenheimer gave a
masterful summary of the state of QED at the time. The first problem
was to find a manifestly Lorentz-invariant and gauge-invariant method
(o.r prt.escription) for subtracting (or neglecting) infinite quantities that
arise in corrections made to finite order in a=e?/hc(=1/137), the
fine-structure constant (beyond the already-finite terms that are
'ﬁ‘rst-order in o). The basis for this was provided by Schwinger and by
.I omonaga apd applied by Schwinger to calculating, to various orders
In a, corrections to the magnetic moment of the electron and to the
ss:mtering of electrons by a Coulomb field. Several of these results were
simply ‘announced’ by Schwinger in a 1947 work with no calculational
details given. In these formulations a perturbation series expansion in «
?Nus essential and the renormalization was proved to remove the
fllﬁnities only in lowest order. In contrast to the highly formal theory of
I'omonaga and of Schwinger, which stressed the wave aspect of the
problem, Feynman, whose early papers involved a modification of
divergent integrals that ultimately disappeared from the final result
developed diagrammatic techniques that were based on concept;
emphasizing the particle-like aspect of the interactions of electrons and
!1?][)10!15. Subsequently, Dyson in 1949 showed the equivalence of the
| un:lonaga—Schwinger and Feynman formalisms. Feynman'’s diagram-
matic expansion has the great virtue that it makes QED relatively
simple and straightforward for calculations. Dyson also established the
validity of the renormalization program to all orders in a. That is, he
proved that, after mass and charge renormalization, every term in the
perturbation expansion is finite, although the convergence of the series
itsell has never been established.
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The renormalization program in QED consists basically of the
following. In doing a perturbation correction to the scattering ampli-
tude to first order in a=e?/hc(=1/137), one obtains two types of
divergent integrals, one of which can be associated with an electromag-
netic mass ém which modifies the ‘bare’ mass m,. One simply takes the
(finite) physically observed mass m to be

m=mg+ om. (1.18)

Only m appears in calculated quantities which correspond to physically
observable processes, but never mg, or dm separately. Similarly, to first
order corrections in o another divergent term occurs which again
appears only in a suitable linear combination with the ‘bare’ charge e,
of the electron. This can be interpreted as a modification of the charge
due to (vacuum) polarization effects and the combination is taken to be
the physically observed charge e of the electron. Here, too, neither ¢,
nor the polarization term appears separately, but only the combination
making e. Therefore, up through and including all terms of order a and
a? in the scattering amplitude, charge and mass renormalization may be
employed to make the calculated theory finite. It is important to realize
that this procedure can be carried out in a completely covariant, and
therefore unambiguous, fashion and that these results agree extremely
well with experiment (see, for example, Eqgs. (1.12)—(1.13) and
(1.16)—(1.17) above). The crucial question now becomes what happens
when higher-order terms in o are calculated in the perturbation
expansion. Divergent terms again appear, but they can all be written in
terms of those of mass and charge renormalization, and no others. In
fact, to every order ", the same procedure of mass and charge
renormalization will remove all infinite quantities, leaving finite
corrections. This is a remarkable circumstance and is necessary for
QED to be useful as a calculational tool. If new types of divergences
were to occur in each successive order of perturbation, then, even il we
could associate each of these infinities with a renormalization or
redefinition of various physically observable quantities, the theory
would have no predictive power. Any field theory for which a finite
number of redefinitions is sufficient to remove all the divergences to all
orders of perturbation theory is termed renormalizable.

The renormalized QED program can be summarized as follows. The
time evolution of the state vector ®(t) is governed by the interaction
Hamiltonian H; as (in units with h=1)

od(t)

i——=H®() (1.19)
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which has the formal solution

cb(:):(p(—oo)—if dt, Hy(t,)d(¢,) (1.20)

satisfying the initial condition
() — &(— o). (1.21)

Here @(— oo0) is the initial state in which the system was prepared. For a
scattering process we are interested in the state vector in the remote
future @ (+ co0) and this is connected to the initial state vector &(— o)
via the S operator (or S matrix) as

®(+ 00)=SP(—0). (1.22)

Once the S matrix (or scattering amplitude) is known, the scattering
cross section (or probability) for a given reaction can immediately be
calculated (essentially as the square of the modulus of S). If we
recursively iterate Eq. (1.20), we obtain the formal expression for S in
terms of the Hamiltonian density H(x) as

5= ZU { n:) d*x, ... jd‘an{H,(xl) CCH()). (123)
Even though we have not specified the precise meaning of all the
operations on the right-hand side of Eq. (1.23), we have stated it to
indicate both that, once the interaction has been specified in terms of
H(x), then S can be computed and that the (infinite) series is an
expansion in ascending powers of H,(x) (the perturbation expansion so
often referred to in this section). In QED, H,(x) contains an overall
multiplicative constant e, the electron charge.

It is basically an historical accident that the first quantum field theory
(QED) compared with experiment turned out to be renormalizable.
Salam, in 1952, proved the renormalizability of certain other field
theories (in which more than just two renormalization constants
appeared), but many (in some loose sense, ‘most’) quantum field
theories are nonrenormalizable. In fact, Fermi's 1933 B-decay theory
(the paradigm process of which is the spontaneous decay of a free
neutron into a proton with the emission of an electron (or ‘f ray’))
provides an example of a nonrenormalizable theory. A concise state-
ment of any renormalization program has been given by Matthews and
Salam as consisting of three steps:

I. the number of types of infinities must be shown to be finite;
2. asubtraction procedure must be found to remove the infinities:
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3. atheoretical justification for this procedure must be found (i.e.,
it must be shown to hold to all orders in perturbation theory).

Even if a theory is renormalizable, though, this does not necessarily
make it useful for calculations since the renormalization program and
the calculations themselves can be carried out explicitly only within the
framework of perturbation theory. For QED this is fine since the
expansion parameter (or coupling constant) a=1/137 is small and the
first few terms in the series might reasonably be expected to give a good
approximation (even if the series itself should only be an asymptotic
one). However, in field theories relevant to nuclear and elemen-
tary-particle physics, the coupling constant (which measures the
strength or rate of a process)is of the order g~ 15,so thata perturbation
expansion is useless to obtain numerical results. These difficulties for
strong-interaction theory were amply apparent by the early 1950s. The
numerical results were in terrible disagreement with experiment. This
was one of the motivations for theorists’ turning to other programs,
such as dispersion theory and S-matrix theory in the late 1950s and
throughout the 1960s. These alternative avenues of research are the
subject of the following chapters in this case study.

However, it remained clear that even QED was at base a mathe-
matically inconsistent theory. There had been some hope that the
infinities that arose were a result of the approximate nature of the
perturbation calculations rather than of the theory itself. As a rather
naive analogy, consider the following power series expansion for x>0

e‘”"=1—1+L+ (1.24)

x  2x? ) )

In the limit x—0*, every term in the series (except the first) diverges, but
the exact result is zero. However, that such is not the case for the
renormalization constants of QED was indicated in 1953 by Kiillen.
Independent of any perturbation theory, he argued that in an exact
formulation of QED not all of the renormalization constants of QED
can be finite. Dyson (1952) and Edwards (1953) have questioned the
convergence of the perturbative expansion. Landau (1955) and his
coworkers (Landau, Abrikosov and Khalatnikov, 1954a, 1954b, 1954c,
1954d; Landau, 1965) stressed the importance (at high energies) of
singularities that are not handled by renormalization. Schwinger has
pointed out the fundamental inconsistency of assigning operators for
definite-mass fields at localized space-time points (e.g., (x, t)) since a
precise measurement of these properties would resultin arbitrarily large
field fluctuations via the uncertainty principle (i.e., the interaction
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energy cannot be limited while using an exact space-time description),
Also, the actual magnitude of the electron’s charge is explainable only
once we understand the strong interaction because charge renormaliz-
ation must, in principle, be linked to every charged field with which the
electron can interact. Dirac has discussed similar difficulties with QED.

1.6 Feynman diagrams

For reference in later chapters, we now introduce some elementary
concepts associated with Feynman diagrams. Before that, though, we
define some terminology appropriate to describing scattering phenom-
ena. Some of the best-known and most precise predictions of QED are
quantities like the Lamb shift and the anomalous magnetic moment of
the electron and these would seem to have little to do with scattering of
one particle by another. Nevertheless, most of our basic information
about fundamental interactions is gained through scattering processes,
as we shall see throughout this book. Figure 1.2 represents a typical
scattering event in which an incoming projectile (with initial velocity v,)
is scattered (or deviated) by a target, which will itself recoil (through an
angle ¢ with a final velocity V) during the interaction. How the
projectile is scattered (as indicated by the angle & and the final velocity v'
in the figure) is determined by the interaction or force between the target
and the projectile. And, conversely, it is through a study of such
scattering reactions that we learn something about the details of the
forces acting between the particles. In Chapter 2 we discuss scattering
formalism in some detail. Feynman diagrams will prove useful for
treating scattering reactions.

projectile =

target oo

Figure 1.2 The scattering of a projectile by a target.
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Basically, Feynman constructed a diagrammatic representation of
the perturbation expansion of Eq. (1.23) for the § matrix (or for the
scattering amplitude) and a set of rules that allow one to assign a
definite mathematical expression to each of these diagrams. That is,
there is a one-to-one correspondence between the terms in the
perturbation expansion of Eq. (1.23) and the Feynman diagrams (or
‘pictures’) for any given scattering process. A few simple examples will
illustrate the points we shall need for future reference. Figure 1.3 shows
the lowest-order Feynman diagram for (free) electron—photon scatter-
ing (also known as Compton scattering). This can be pictured as (taking
time to flow upward in the figure) the absorption of a photon (y) by the
initial electron (e;"), the propagation of a virtual electron (e7) in the
intermediate state and then the subsequent emission of a photon (y)
leaving the final electron (¢, ). The complete Compton scattering
amplitude is obtained by summing all possible Feynman diagrams (of
which there are infinitely many), allowing for arbitrarily many virtual
electrons and photons in the intermediate states. At each e”e™y vertex
one picks up a factor e in the perturbation expansion. Thus, the
Feynman diagram of Figure 1.3 would make a contribution of order e*
(or @) to the scattering amplitude. We shall not state in any detail the
specific Feynman rules for recovering the mathematical form of the
contribution to the perturbation expansion from the corresponding
diagram. A great virtue of the Feynman diagram technique is that it
allows one to ‘picture’ a scattering process in terms of the exchange of
virtual particles.

Figure 1.4 shows two lowest-order Feynman diagrams for elec-
tron-electron (or Meller) scattering. If we denote by p;,j=1,2,3,4, the
four momenta of the incident and scattered electrons, then (neglecting

gt
]

Figure 1.3 Electron-photon (Compton) scattering.
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clcc:tron spin and photon polarization complications here) the contri-
bution to the scattering amplitude corresponding to Figure 1.4(a) is
proportional to

e).

(P, ‘_Pa)z
and that of Figure 1.4(b) to

(1.25)

&'2

(p1—Pa)*
Figure 1.5 is an example of a higher-order contribution to e —¢~
scalte_nng (of order e* or o?). Finally, Figure 1.6 is a renormalization
contribution (a ‘vertex’ radiative correction) that contributes to charge
renormalization. The integral corresponding to this diagram diverges,

but the renormalization procedure allows one to assign a finite
contribution to the scattering amplitude.

(1.26)

(2) )

Figure 1.4 Electron-electron (Meller) scattering.

-5 e

Figure 1.5 A higher-order diagram for electron—electron scattering,.
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Figure 1.6 A renormalization contribution.

1.7 Gauge field theories

We have already indicated that by the late 1950s even renormalized
QFT was unable to cope with strong-interaction phenomena, thus
producing interest in the S-matrix program. However, QFT did make a
strong comeback in the 1970s, in the form of gauge field theories. To
complete our brief historical sketch, we now mention some of the key
developments in that program. The basic idea used in modern gauge
field theories was put forward in 1954 by Yang and Mills. Although
their argument concerned a symmetry between protons (p) and
neutrons (n) in the strong interactions, the line of reasoning is most
directly explained for a simpler case. Just as in classical particle
mechanics any invariance or symmetry of the Lagrangian implies the
existence of a conserved quantity (or generalized momentum), so in a
field theory. (Think, for example, of rotational symmetry implying
conservation of angular momentum or of translational symmetry
yielding conservation of linear momentum.) Noether’s theorem
guarantees that, corresponding to any transformation or invariance
group that leaves the Lagrangian density (representing the interactions)
for the theory invariant, there exists a conserved quantity or constant of
the motion (that is, a quantity whose time derivative vanishes by virtue
of the equations of motion). As an example, the Lagrangian, which
yields the nonrelativistic Schrodinger equation via the Euler-Lagrange
variational equations, is left invariant under the phase transformation
of the wave function y(x)

P(x)—= ¢ (x)=e"Y(x) . (1.27)

where « is a constant. (This « should not be confused with the fine
structure constant.) This is known as a global gauge transformation
since, once o has been chosen, the phase is fixed at every space-time
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point (i.e., globally). Essentially, what Yang and Mills argued was that
such a ‘nonlocal’ fixing of the phase (in their case, the fixing of the
proton p relative to the neutron n) should be avoided in a local field
theory by requiring local gauge invariance as

W(x)—y' (x) =e™(x) (1.28)

where a(x) is now an arbitrary function of the space-time variable x.
However, the Lagrangian for the coupled electromagnetic field (A ,,(x))
nnd the electron wave function (¥(x)) is no longer invariant under Eq.
(1.28) unless the electromagnetic four-potential A ,(x}is simultaneously
subjected to the transformation

1 oo(x)
e Ox

H

A, (x)> A (x)=A,(x)+ ; (1.29)
In the context of electromagnetic theory, this is just Weyl's gauge
Invariance.

Yang and Mills were able to show how to implement a general
nymmetry group by means of such local gauge fields. The only problem
wis that each gauge field had associated with it a massless particle, just
W8 A, (x) has the photon. This simply produced too many massless
particles that were not found experimentally. For well over a decade,
the Yang-Mills theory was considered an interesting but essentially
likeless curiosity. It is worth noting that their motivation for introducing
such local gauge transformations was an abstract or purely theoretical
one, not really required by any empirical evidence.

The other problem that provided impetus for the current gauge
theories of weak interactions was the fact that the original 1933 Fermi
theory of weak interactions is nonrenormalizable and its lowest-order
term eventually violates unitarity (or conservation of probability) at
high enough energy, a fact realized long ago by Heisenberg in 1936. It
wis conjectured that Fermi’s form of the interaction in which the
neutron n decays directly into a proton p and electron e and a neutrinov
na

n—p+e +v (1.30)
might be only an approximation to the actual two-step process

n—-p+Ww
L, e +v (1.31)

where W is the so-called (massive) intermediate vector meson. Salam in
1960 had shown that neutral (i.¢., uncharged) vector meson theory was
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renormalizable. Unfortunately, the (charged) W meson theories are
known to be nonrenormalizable unless certain very specific cancella-
tions of divergent terms happen to take place. The problem was to find a
renormalizable charged vector meson theory that could describe the
weak interactions.

The resolution began when Goldstone in 1961 showed that, even
though a Lagrangian (or, equivalently, the equation of motion) for a
ficld theory might possess a certain symmetry, this symmetry could be
spontaneously broken so that the solution had a lower degree of
symmetry than the Lagrangian. (Spontaneous magnetization of a solid,
which does pick out a preferred direction in space, is an example of a
solution, or physical situation, having a lower degree of symmetry than
the fundamental equations describing the system. The physical solution
has only axial symmetry, whereas the equations themselves have
complete spherical symmetry (i.e., complete rotational invariance).)
Goldstone proved that this can occur whenever the Lagrangian is
invariant under a continuous symmetry group but enly if zero-mass
bosons (that is, integer-spin particles) are present. This spontaneous
symmetry breaking seemed to offer a plausible mechanism for explain-
ing the broken symmetries (such as SU(3) of Gell-Mann and of
Ne’eman) that exist in strong-interaction dynamics, except for the fact
that massless particles would again be present, and none were observed
experimentally. The proof of this theorem was generalized by Gold-
stone, Salam, and Weinberg in 1962. In a series of papers Higgs not only
established that the proof of the Goldstone theorem breaks down in
theories which couple a conserved current to gauge fields but also
exhibited a particular model field theory in which the Goldstone boson
acquires mass and becomes part of a vector meson field (which had
initially been massless) so that no massless particles exist in the (broken)
solutions to the model.

In the late 1960s Weinberg, and independently Salam, combined the
Yang-Mills gauge fields with the Higgs mechanism to produce a unified
theory of the weak and electromagnetic phenomena. An analogy
between many properties of weak and electromagnetic interactions was
used as motivation. In this Weinberg-Salam model the Yang-Mills
vector boson field responsible for the weak interactions is put on an
equal footing with the photon field (i.e., the electromagnetic four-
potential) and both are initially massless, as are the electron and
neutrino fields. A Higgs field breaks this symmetry, giving the electron
its mass as well as the intermediate vector boson its mass. The massless
Yang-Mills vector bosons and the Goldstone bosons conspire 5o that
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the physically observed ‘broken’ theory has a massive charged spin-1
field W, (the charged intermediate vector boson), a neutral massive
spin-1 field Z, (the neutral intermediate vector boson), and the massless
spin-1 photon field 4, in addition to a massive electron and a massless
neutrino. Initially it was a hope that this theory would be renormal-
izable. In 1971 't Hooft proved that such is indeed the case. It is precisely
the gauge vector—meson theories that are the renormalizable ones. The
Higgs meson plays a peculiar role in the Salam—Weinberg model since it
is essential to provide the spontaneous symmetry-breaking mechanism
and yet, since these Higgs bosons have not to date been observed
experimentally, its mass must be made extremely high so that it has
essentially no effect on many of the predictions of the theory.

Renormalization assumes a distinctly different status in gauge
theories from what it had in previous QFT. In QED, for instance, one
proved renormalizability. In gauge theories, as is particularly clear in
Salam’s writing, renormalizability is used as a criterion for constructing
an acceptable theory. It provides a guide to writing down a suitable
Lagrangian just as Lorentz invariance and conservation laws (via
Noether’s theorem) restrict the possible forms of the Lagrangian. This
constraint severely limits the choice of Lagrangians.

This fairly complete and well-confirmed Salam—Weinberg model for
the unification of the weak and electromagnetic interactions has
prompted an attempt to unify these with the strong interactions in a
grand unified field theory (or GUT in the trade). One first attempts to
build a gauge theory of strong interactions. The basic ingredients in
such a theory are quarks (that is, fractionally charged, spin 4 elementary
particles), implementation of SU(3) symmetry via Yang-Mills gauge
fields, the spontaneous breaking of this symmetry by the Higgs
mechanism, and the requirement of renormalizability. At first sight one
might expect such gauge theories of strong interactions to be of little
value for making numerical calculations since ordinary QFT perturba-
tion series diverge for the large coupling constants of the strong
interaction. However, a remarkable property of such gauge theories
(often referred to as quantum chromodynamics, QCD), known as
nsymptotic freedom, was proved by Politzer. This means that for
certain high-energy scattering processes the lowest-order perturbation
calculations provide the major contribution to the cross sections (which
ire a measure of scattering reactions). The structure, or identifying
characteristics, of scattering processes governed by QCD have been
calculated using asymptotic freedom and have been confirmed by
experiment, One can further attempt to unify these two gauge theories
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(Salam—Weinberg and QCD) into one overarching grand unified
theory of weak, electro-magnetic and strong interactions (GUT).
Discussion of that work is not necessary for our present purposes. There
has recently been a merging of ideas from the duality program (from
S-matrix theory) and from gauge QFT in the superstring theories of
current interest. String theories and duality are part of the material of
Chapter 8.

1.8 Summary

To give the general reader an overall picture of the problem background
out of which the S-matrix program emerged, we have presented a sketch
of the highlights in the developments of quantum field theory (QFT) in
this century. The central theme in that story is one of successive
reinterpretations of the formalism (or of the equations) of classical
(Hamiltonian and Lagrangian) mechanics: first (Heisenberg in 1925) by
promoting the canonical variables g, p of classical mechanics to the
noncommuting operators, [g¢, p]=i, of nonrelativistic quantum mech-
anics; then (Dirac in 1927) by considering the (Schrédinger) wave
function ¥ itself to be a quantized field operator. The long struggle
(1927-47) with mathematical inconsistencies in QFT culminated
(1947-50) in the highly successful renormalization program of quantum
electrodynamics (QED). As we shall see, Heisenberg (in 1943) proposed
his initial S-matrix theory (SMT) as a possible means of circumventing
the (pre-renormalization) divergences of QFT. Subsequently, renor-
malization procedures proved adequate for the electromagnetic interac-
tions. The Feynman diagram technique (of 1949) provides a useful
pictorial representation of the physical scattering processes correspond-
ing to the mathematical expansion of the perturbation series of
quantum field theory. When the perturbation-series expansion method
of calculation proved inadequate for the strong interactions (mid to late
1950s), theorists turned to dispersion relations and again to the
S-matrix program. After some initial successes, SMT encountered
calculational difficulties at a time (1970s) when QFT made a dramatic
comeback in the guise of gauge field theories. Today’s (1980s)
superstring theories can be seen as a merging of ideas from the duality
program of SMT and from gauge field theories.

In this chapter we have defined the scope and context of an historical
case study of an episode in modern theoretical physics. The sources of
this largely internal history will be the published scientific literature and
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correspondence from the participants themselves. Cognizance is also
taken of the larger social context, such as the structure of the scientific
community, within which the theoretical activity took place. The
relevance of historical developments to pertinent philosophical issues
will be pointed out in the narrative itself. Results of this study will then
be used to address questions about the construction, selection and
Justification of theories in science. The central subject of this book is the
S-matrix program, from its beginnings in the late 1930s and early 1940s
with Wheeler and Heisenberg, as an interim program from 1943 to
1955, as dispersion theory and mass-shell quantum field theory from the
mid 1950s to the 1960s, then as the bootstrap and duality models of the
1970s, leading finally to the current superstring theories. We shall
analyze the role of the S-matrix program played in generating these
theories of current interest.



2

Origin of the S matrix: Heisenberg’s program
as a background to dispersion theory!

A common perception of Heisenberg’s S-matrix program of the 1940s is
that it encountered difficulties quite early on and then quickly died out.
One can easily get the impression that the original Heisenberg program
was irrelevant for the theoretical developments that provided the
background out of which the dispersion-theory and later S-matrix
theory program emerged. In this chapter we wish to show that
Heisenberg’s original program posed a set of questions the criticism of
and response to which led to the dispersion-theory program of
Goldenberger and Gell-Mann. It is not our purpose to review all of the
elementary particle physics of the 1950s, or even all of what today, in
retrospect, is judged to have been the ‘best’ or most important physics of
that period.

In correspondence or in direct conversations, Geoffrey Chew?,
Marvin Goldberger®, and Murray Gell-Mann* all recall that Heisen-
berg’s old S-matrix program had essentially no direct influence on their
own work which led to the dispersion-theory and S-matrix theory
programs of the late 1950s and of the 1960s. All had known of
Heisenberg’s general ideas from some lectures given at the University of
Chicago by Gregor Wentzel or possibly from reading Heisenberg’s
papers. It was only later that they became aware of any relevance of
their work to Heisenberg’s S-matrix program.

We begin by reviewing Heisenberg’s program (Cushing, 1982, 1986a;
Grythe, 1982; Oehme, 1989; Rechenberg, 1989) and the considerable
theoretical activity related to it during the period from the mid-1940s to
the early 1950s. A summary of the theoretical background available in
the mid to late 1930s is given in the Appendix. There the reader can find
an elementary discussion of the main results we draw upon, as well as
several simple examples that we use later for illustration of subsequent
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developments. In the main body of this work there are many references
to the equations of the Appendix. Readers with little background in
theoretical physics, but with a general knowledge of undergraduate
physics, may find it helpful to begin with the Appendix. The ground
rules, here and in the rest of this work, for the technical level of the
presentation will be roughly the following. Fairly detailed technical
arguments will be confined to subjects requiring as background
undergraduate physics or what can be gleaned from the Appendix. The
discussion of more advanced topics will be less quantitative, although
some nodding or ‘popular’ acquaintance with the ‘pictures’ (or
diagrams) of Feynman will be assumed. The discussion in the latter part
of Chapter 1 will suffice for this. Furthermore, several fairly technical
developments in the text are set off in smaller type. The essentials of the
argument can be followed without studying those sections in detail.

Aside from the difficultics presented for quantum field theory by the
confusing status of cosmic ray experiments (in the late 1930s), the early
developments, pro and con, in the S-matrix program were theory
motivated. That is, the divergences present in the QFT formalism and
Heisenberg’s belief in the need for a fundamental length in such a
formalism (coupled with his or anyone else's inability to construct such
i theory) led to the formulation of the S-matrix program. That program
depended in an essential fashion on one’s ability to abstract hoped-for
general results (as principles of the program) from specific models and
incomplete theories. The importance of the early (1940s) S-matrix
program for subsequent developments in theoretical elementary-par-
ticle physics was a series of questions or problems that it gave rise to,
such as how causality (essentially as a first-signal principle) was to be
incorporated into a scattering formalism, what type of restrictions
causality could place on the mathematical form of the scattering
amplitudes (which in turn determine the predicted scattering cross
sections of experiment) and specifically how the results of scattering
experiments would determine the form of the interactions between the
scattered particles (at least in model situations governed by the
nonrelativistic Schrédinger equation).

An historically important and extremely fruitful interplay between
the general theoretical approach to scattering phenomena and experi-
mental practice in the 1930s and 1940°s was the study of resonance
wcattering in nuclear physics. Just as a mechanical system, such as a
bridge or even a child’s swing, will exhibit exceptionally large responses,
vibrations or oscillations when energy is fed into the system at the
proper frequency or rate (as by marching over a bridge or by
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rhythmically pushing the swing, in our two examples), so atomic and
nuclear systems also react particularly strongly to certain stimuli.
Hence, the blue color of the sky is due to the preferential (or strong)
scattering of light in the blue part of the visible spectrum by atomic
energy levels of air molecules. That is, the difference in energy between a
pair of bound-state energy levels of an electron in a molecule
corresponds to a frequency in the blue part of the spectrum. This
produces an especially strong interaction (here, absorption and subse-
quent reemission of ‘blue’ light) between the molecule and the light of a
certain frequency. In fact, a plot of the scattering cross section (or ‘rate’
of scattering) versus the frequency of the scattered light would show a
peak or ‘bump’ in the cross section at such a resonance frequency. These
resonance phenomena had long been known and understood (both
classically and quantum-mechanically) for the interactions between
light and atoms. When similar bumps or resonances were observed in
the scattering of, say, neutrons from nuclei, it was natural to exploit the
analogy with known resonance phenomena. At first the form of the
mathematical equation used for the atomic resonance formula was
essentially just carried over to provide a fit to the nuclear resonance
scattering data. This became known as the Breit-Wigner formula.
Subsequently, a profound connection was established among causality
{as an upper limit on the speed of propagation of a ‘cause’ to produce an
effect at a distant point), analyticity (as a mathematical statement of and
constraint upon the smoothness and singularity structure of the
function describing the scattering of a projectile by a nucleus) and the
resonance or bump structure of these nuclear cross sections. Causality
finally provided an underpinning for nuclear resonance formulas. This
relation between causality and analyticity would prove a key insight for
subsequent work in dispersion theory and S-matrix theory (a theme we
develop in later chapters).

The continuity in problems and the chain of workers from the early
S-matrix program to other advances in dispersion theory and quantum
field theory are major themes of our story. A fertile problem back-
ground was set by this early S-matrix theory.

2.1 The S matrix: Wheeler and Heisenberg

Wheeler (1937a,b), in the context of a theoretical description of the
scattering of light nuclei, introduced the concept of a scattering matrix.’
His motivation appears to have been pure nuclear physics and his
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§ matrix was a tool toward that end. In modern notation, the $ matrix
consists of elements Sges o, B=1,2,...,N, that give the relative
strengths of the asymptotic forms of the wave functions for various
channels (or types of reactions) as (cf. Eq. {A.33))

|)b ﬁ(rﬂ) R [‘Saﬁ e~ ikt Suﬂ Cik"r“}_ (2])

2“

Here e - represents the incident, or incoming, (spherical) wave and
e the scattered, or outgoing, (spherical) wave. It is the square of such
a wave function that is related to the probability of the corresponding
reaction taking place (as we show below). In order to keep notational
complications to a minimum, we outline the situation only for the [=0
partial wave (or angular momentum state) in Eq. (2.1) and later. There
are N possible entrance channels and also N possible exit channels. In
Wheeler’s paper the scattering matrix is simply an N2 array of elements
connecting the incident wave to possible exit channels. There is no sense
of using this S matrix as the central entity in an independent theory.
Even though Wheeler presents his scattering matrix essentially as a
convenient and powerful calculational tool, he does point out that the
clements of this scattering matrix are completely determined by the
(vanishing of the) Fredholm determinant of the linear integral equa-
tions (which are equivalent to the Schrédinger equation) so that the
asymptotic form of these wavefunctions themselves need not be found
explicitly.® Once these S-matrix elements are known, all the relevant
transition probabilities and cross sections can be calculated directly in
terms of them. This can be seen as follows.*

By the same type of argument that led from Egs. (A.20) to
Eqgs. (A.25) and (A.26), one can show (here for { =0) that, for
scattering in the channel f=« (i.c., elastic scattering), the
cross section is

Ou=73ISu—1  B=a

O X k 2

and for transfer from channel « to channel f (i.e., inelastic
scattering)

i3
Gy=rzISal% B

* Hereand throughout the text, we set offin smaller type technical material that can be passed
over without interrupting the continuity of the development,
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Both of these can be summarized as
T
Oup =E |S2s _5ms|2‘ (2.2)

The (net) reaction cross section (which takes flux out of the
entrance channel a) is

n
g!= Z G'aﬁ=F Z Iscﬂlz' (2.3)

Pt T fex
As we shall discuss in more detail in the next section,
conservation of flux (or probability) and the orthogonality of

the W,

<lj’ﬂ}'ﬁﬂ>=5ﬂﬂ‘ (2'4)
imply that

N

Z SuyShy=0ag @.5)

=1
or, as a matrix equation,
§5'=1, (2.6)

which is a statement of the unitarity of the S matrix.
Equations (2.3) and (2.5) together imply that

a,=£1(1 — 151" (2.7)
kﬁ
which is similar to Eq. (A.26). The total cross section is

0, =0+ o‘,=i—: (1—Re S“)=1—n Ith £.(0=0), (2.8)
& [ 4
since the /=0 part of the elastic scattering amplitude f,,(0) is
just (S,,—1)/2ik,. Here we have argued for the optical
theorem (Feenberg, 1932) of Eq. (2.8) only in s-wave
approximation. However, the proof goes through in general
so that Eq. (A.27) becomes

4n
5‘{k,)=k—lm S (0=0). 2.9)
This remarkable and important theorem states that the total

cross section is completely fixed once the (imaginary part of
the) forward scattering amplitude is known.

The point to be emphasized is that once the scattering matrix elements
S.p are given, then all the cross sections, or observables of interest here,
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can be calculated in terms of them. This gives some indication of the
power or importance of the S matrix.

In a series of papers, Heisenberg (1943a, 1943b, 1944, 1946) proposed
as an alternative to quantum field theory (QFT) a program whose
central entity was a matrix he denoted by § and termed the ‘characteris-
tic matrix’ of the scattering problem. Cassidy (1981) has shown how
Heisenberg interpreted cosmic ray showers or ‘explosions’ as indicating
the existence of a fundamental length, Oehme (1989) has briefly
outlined some results contained in Heisenberg’s S-matrix papers, and I
have previously discussed some of the difficulties with quantum field
theories in the 1930s which motivated Heisenberg to seek an alternative
o quantum field theory (Cushing, 1982, especially pp. 45-48).

In the period from the late 1930s to the late 1940s, the divergences
present in quantum electrodynamics indicated to some that quantum
ficld theory may have been a mistake. Both the theoretical and
experimental situations left the future of QED in doubt (Galison,
1983a). Cosmic ray showers (or ‘explosions’) and the divergence of
cross sections beyond a certain energy in a classical (nonlinear) field
theory version of Fermi’s f-decay formalism were taken by Heisenberg
(1936, 1938b) to indicate the existence of a fundamental length and the
need for a profound revision of elementary-particle dynamics. Not
knowing what that future theory would be, he proposed the S-matrix
theory as an interim program. Heisenberg wanted to avoid any
reference to a Hamiltonian or to an equation of motion and to base his
theory only on observable quantities. The point here is not that
leisenberg felt that the Hamiltonian (in the sense of the total energy) is
not a quantum-mechanical observable. Rather, the calculational route
from the basic Hamiltonian and the equations of motion of quantum
field theory to many of the important experimentally observable
quantities (such as bound-state energy levels and scattering cross
sections) was an ill-defined one, often producing infinities.” Heisenberg
wanted a theory based directly on finite, experimentally meaningful
quantities. Since Heisenberg wanted to base his theory on general
properties that were independent of any particular model, we can see
why the S matrix appeared a reasonable place to begin. The formalism
outlined in the Appendix indicates that, within the framework of
nonrealativistic potential theory, the potential V(r) determines the
& matrix and hence the experimentally measurable cross sections.
However, if one were given directly the S-matrix elements S_;, then one
would be able to compute the cross sections. In quantum field theory,
just as in nonrelativistic potential theory, once the Hamiltonian H for
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the system has been given, the scattering matrix is (at least formally)
determined. Heisenberg’s desire to base a theory on observable
quantities only was a return to an idea that had proven useful in his
earlier successful formulation of matrix mechanics (Cushing, 1982,
p. 19). That is, in his 1925 paper he set out to construct a quantum
mechanics wholly in terms of observable quantities. It worked pretty
well once — why not try it again!

2.2 Discussion of Heisenberg’s S-matrix papers

Heisenberg’s stated purpose in his seminal paper (1943a), ‘The
observable quantities in the theory of elementary particles’, was to
abstract as many general, model-independent features of S as possible.
In the abstract and introduction to that paper we read (Heisenberg,
1943a, p. 513):

The known divergence problems in the theory of elementary particles
indicates that the future theory will contain in its foundation a
universal constant of the dimension of a length, which in the existing
form of the theory cannot be built in in any obvious manner without a
contradiction. In consideration of such a later modification of the
theory, the present work attempts to extract from the foundation of
quantum field theory those concepts which are not likely to be
discarded from that future, improved theory and which, therefore, will
be contained in such a future theory.

In recent years, the difficulty, which still stands in the way of a theory
of elementary particles, has been pointed up in many ways. This
difficulty manifests itself surprisingly in the appearance of divergences
(infinite self energy of the electron, infinite polarization of the vacuum,
and the like), which hinders the development of a mathematically
consistent theory and must probably be perceived as an expression of
the fact that, in one manner of speaking, a new universal constant of
the dimension of a length plays a decisive role, which has not been
considered in the existing theory.’

This paper is remarkable for the number of new ideas it introduces,
many of which would be put on a firm mathematical basis only years
later. We outline below his proof of a key property of the § matrix —
namely, unitarity. This property would remain central to the S-matrix
program.
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Heisenberg proved the unitarity of the S matrix for any
system governed by a Hamiltonian. Unitarity, as an indepen-
dent principle, would remain a key ingredient in the S-matrix
program. Some details of his proof are given here. Heisen-
berg worked in a momentum-space representation outlined
by Dirac (1935, pp. 195-200)% and defined the S matrix as the
matrix coefficient of the outgoing waves.

Let us write this somewhat symbolically® (in analogy with
Eq. (2.1)) as

Y= b+ Sudik: (2.10)

Here the plane wave ¢;, has been decomposed into its
ingoing and outgoing components as

‘?5;.&:‘»5’;?& + ‘ﬁ:k‘ (2.11)
In this representation ¢, is real and
(‘ﬁ’:k)* = ‘f’ifk- (2.12)

Having defined the § matrix in general, Heisenberg then
established the unitarity of § within the framework of a
Schrédinger equation

Z<k|HU>¢Ij=E1‘¢’:ﬁ- (2.13)
i

Heisenberg expressed these solutions " as a formal oper-
ator limit of the solutions to the time-dependent Schrodinger
equation (cf. Eq. (A.1)) as

Wih=lim etf'Ckle 71, (2.14)
| Rt o]

This paper contains {in an often symbolic and certainly
nonrigorous fashion) the essential elements of formal
time-dependent scattering theory, which would later be
further developed, for example, by Lippmann and Schwinger
(1950), by Gell-Mann and Goldberger (1953) and by Brenig
and Haag (1959). Heisenberg’s ¢ * and  ~ are, respectively,
the in and out scattering states of later theory.'® Since
another solution ¥~ to (2.13) can be obtained from (2.14) by
letting t— — oo and since H is hermitian (H' = H), it follows
that ’

=Wl =l + Sk (2.15)

Heisenberg then observed that any linear combination of
these = must also be a solution, in particular, ¥ S/,
j
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whose outgoing part is just S,¢,%. Because the boundary
conditions make the solutions to Eq. (2.13) unique, this must
be y*, from which it follows that

sSt=1. (2.16)

The essence of this formal proof is that hermicity (H'=H)
implies unitarity for S. We shall later see that unitarity is also
related to conservation of probability.

Heisenberg’s development of the scattering matrix concept appears
to have been independent of Wheeler’s, although Heisenberg does
indicate in a footnote (1943a, p. 533) that Wick had mentioned to hima
paper by Breit on the use of the scattering matrix. In this footnote,
Heisenberg refers to this paper only as ‘Breit (Phys. Rev. 1941)". This is
almost certainly a reference to Breit’s ‘Scattering matrix of radioactive
states’ that appeared in the December 15, 1940, issue of The Physical
Review. There Breit applied Wheeler's (1937b) scattering matrix
formalism to unstable systems that have a resonance structure. (The
‘Breit-Wigner’ (1936) formula, Eq. (A.96), is used in this paper by
Breit.) Heisenberg thanks Wick for the information but also states that
he had not been able to see Breit’s paper. (The Physical Review did not
regularly reach Germany during the war.) He appears to have had no
prior or direct knowledge of Wheeler’s ideas on the scattering matrix.
Dr. Helmut Rechenberg states'! that, when he asked Heisenberg
directly about this, Heisenberg said ‘no’ to knowing about Wheeler’s
S-matrix at the time he wrote his own paper on that subject. Professor
John Wheeler is also of the opinion!? that Heisenberg was unaware of
Wheeler’s work at the time.

But, it does seem implausible that Heisenberg had not even seen
Wheeler’s 1937 Physical Review paper on the § matrix. As indicated
above, Heisenberg was certainly definite in claiming not to know about
(or to have been aware of) Wheeler’s work in 1941-42. However, it is
not wholly implausible that Heisenberg might not have been aware of
Wheeler’s scattering matrix concept even if he had come across
Wheeler’s 1937 paper since the title and context of Wheeler’s work
indicated a concern with models for light nuclei. Furthermore, Heisen-
berg’s main interests in 193740 appear to have been cosmic ray
showers and the problems they presented for quantum field theory as
then understood. Interestingly, though, Heisenberg (1938a) did publish
an article in 1938 in which he referenced a paper by Feenberg in Volume
52 (1937) of The Physical Review. This is the same volume that
contained Wheeler’s S-matrix paper. So, it appears unlikely that
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Heisenberg did not at least (literally) ‘see’ Wheeler’s paper, although its
content may not have attracted his attention.!® In any event, Heisen-
berg certainly brought the concept of the S matrix to the attention of
theoretical physicists. It has remained one of the central tools of modern
physics.

A reader today looking at Heisenberg’s original article (1943a) is
amazed at what he ‘sees’ there (sometimes clearly only in retrospect,
l!wugh.) There are the removal of the energy-momentum é-function
singularities to yield a true ‘function’ for S, the derivation of expressions
for scattering and production cross sections in terms of the elements of S
(cf. Eqgs. (2.2) and (2.3) above), the proof of the unitarity of S, the
Lorentz invariance of S, the separation of S as!4

S=1+2iT (2.17)

with T representing the effects produced by interactions, discussion of
the fact that S respects the usual connection between spin and statistics,
und expression of § as

S=eh (2.18)

“Ifhere n is an hermitian phase matrix. With the decomposition of
Eq. (2.17), the unitarity condition of Eq. (2.16) becomes

-%(T— Thy= T, (2.19)

The diagonal element of this equation is just
Im T, =3 | T, (2.20)
I

This relation was derived by Heisenberg and is essentially the optical
theorem (Eq. (2.9)) relating the total cross section o, to the imaginary
part of the forward elastic scattering amplitude. It is an elegant and
qu!lc ‘modern’ derivation. The form of Eq. (2.20) makes the meaning of
unitarity and the origin of the optical theorem particularly transparent.
The quantum-mechanical probability amplitude T}, represents the
offects of scattering from channel i to channel j (e.g., pajrticles aandbin
channel i going to or scattering into particles ¢ and d in channel j:
i+ b-c+d; or, more compactly, i—j). So, |T,.J-|2 is the probability
l"rulc'. ‘chance’ or cross section) for the reaction i—j. The expression
)TI'I'UIZ. summed over all possible outcomes (or final states) , is the total

feaction rate (or cross section). Equation (2.20) relates this total cross
Kection to the imaginary part of T, the elastic (e.g., a+b—a+b)
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scattering amplitude. That is the optical theorem. Furthermore, Eq.
(2.20) shows that a particular amplitude, here T}, is related to all other
amplitudes T;;, representing channels (j) that can be connected to
channel i. This coupling, or ‘entanglement’, of reactions with each other
will be an important feature of S-matrix dynamics.

The hermitian phase matrix # was the primary quantity to be
determined in the theory (Cushing, 1982; Grythe, 1982), essentially by
guessing at that time. Its determination would replace equations of
motion, such as the Schrédinger equation or the Hamiltonian formal-
ism of quantum field theory. Heisenberg also indicated (1943a) how the
matrix # could actually be calculated in those cases where a Hamil-
tonian H was known, as in quantum mechanics and field theory. In his
second paper (1943b) he computed S for particular models of 7 (i.e.,
essentially for certain enlightened guesses for the form of n).

An important point for the subsequent development of the S-matrix
program is the following. Heisenberg (1944, p. 94, footnote) thanks
Kramers for the suggestion that S be considered as an analytic function
of the energy variable. (Heisenberg (1946, p. 612) later acknowledged
discussing this with Kramers in Leiden in 1942. Grythe (1982) also
references some correspondence between Heisenberg and Kramers on
this point.) This analyticity suggestion was related to earlier un-
published work by Kramers and Wouthuysen. Here the stationary (or
bound) states correspond to the zeros of the S matrix on the (negative)
imaginary k axis, where the energy is E=k*. (We shall discuss below
poles versus zeros of the S matrix and their connection with bound
states.) Wouthuysen, whose association with Kramers began as a
graduate student in 1937, recalls:*®

In 1940, if I remember well, he [Kramers] proposed to me a subject of
research: the study of nuclear resonances, in relation with papers by
Breit and Wigner, Kalckar, Oppenheimer and Serber, Kapur and
Peierls. A later paper by Seigert (1939) inspired me very much: he
pointed out the relations between ‘radioactive states’ (in the sense of
Gamow) and resonance scattering. The Gamow states appeared as
singularities for complex energy of the scattering amplitude as well. 1
proceeded to show the analyticity of the Schrodinger scattering
amplitude and in this way found the bound states as singularities with
negative energy. These properties I illustrated by simple examples, like
square well potentials with square potential barriers. After a seminar I
gave on the subject, Kramers’ verdict was ‘it is interesting and new’.
Shortly afterwards, summer 1942, [ had to abandon my studies, due to
the war circumstances. Later, in 1943, [ learned indirectly from
Kramers ‘that he made good use of my work during a visit of
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Heisenberg in Leiden’. Clearly (now by hindsight!) Kramers had seen
much wider implications of my work than I myself had dreamt of.

Heisenberg (1944) demonstrated this connection explicitly in specilic
model calculations. A simple example of this correspondence can be
seen in the S matrix S(k) for the scattering by a square well (Egs.
(A.39b), (A.42) and the comment following (A.42)). This important
reflection by Kramers implied that the scattering matrix not only
determined those observables related to cross sections but could also fix
the bound-state energies of the system. However, the difficulty was that,
since no Hamiltonian was assumed, there were no correspondence rules
with classical theory to guide one in constructing (or guessing) S (or p).

23 Heisenberg’s subsequent role in the program

Heisenberg did not remain a major player in S-matrix theory beyond
the late 1940s. The program influenced theoretical physics through the
work of others. So, before we detail the history of these developments,
let us indicate the path taken by Heisenberg’s subsequent research. In
1946 he (Heisenberg, 1946) summarized his S-matrix program and
promised a fourth paper in this series. Interestingly enough, this paper
appears never to have been published.'® That manuscript discusses the
many-body problem in the S-matrix framework. As we indicate below,
the many-body problem posed difficulties for Heisenberg’s program.
Heisenberg himself soon lost interest in the S-matrix program and
turned to the theory of turbulence (1947-48) and then to nonlinear field
theory (Heisenberg 1949a, 1950a, 1950b, 1951, 1952, 1953, 1954, 1957,
1958; Heisenberg, Kortel, and Mitter, 1955; Ascoli and Heisenberg,
1957) in which there would be just one fundamental field that would
underlie all of particle physics. That Heisenberg’s interests had shifted
back to quantum field theory by the late 1940s is not surprising since the
renormalization program had shown how to cope with divergences.
One of Heisenberg's earlier motivations for studying a nonlinear field
theory was that he believed such a theory could account for the
‘explosive’ cosmic ray events we mentioned in the last chapter (see also
Cassidy, 1981, pp. 19-21). That there was a connection between the
turbulence and nonlinear quantum field research is already made
plausible even by the title of Heisenberg’s (1952) paper (‘Meson
production as a shock wave problem’) in which he used previously
proposed nonlinear equations to discuss meson production. His view
(a8 summarized much later, Heisenberg, 1966, 1967) seems to have been
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that nonlinear problems are overwhelmingly more common in nature
than are linear ones. Hence, a nonlinear equation was much more likely
to describe a fundamental law of nature than would be a linear one.

Neither Heisenberg’s S-matrix program (as a serious, independent
program), nor his theory of superconductivity (Heisenberg, 1949c), nor
his nonlinear spinor field theory was well received by the majority of
theoretical physicists. His attempts at foundationally new theories no
longer commanded the attention they once had. For example, Pauli was
at first quite enthusiastic about Heisenberg’s S-matrix program (as
evidenced even in the present chapter by the number of people he
described the program to; cf., also, Jost, 1984). But, Pauli was never
convinced by the theory and eventually thought the program rather
empty. Still, while Pauli remained at Princeton during the war, ‘... he
engaged several of his collaborators at Princeton to explore the
S-matrix’ (Grythe, 1982, p. 200). Similarly, Pauli was initially interested
in Heisenberg’s nonlinear spinor theory but soon became an almost
derisive critic of it. For example, in his comments on Heisenberg’s
(1958) paper given at the 1958 CERN Conference, Pauli was very
negative (Ferretti, 1958, pp. 122-6).

1 reached the conclusion that [Heisenberg's papers on the spinor
model] are mathematically objectionable.

I disbelieve all the more in the possible excuses for such a contradic-
tion.

This I discussed already in April and [ wonder that you again repeat it
all.

Well, I think that it is superfluous.

Moller also eventually became disenchanted with Heisenberg’s
S-matrix program (Grythe, 1982, p. 201). In this same vein, Jost
states:'”

Heisenberg’s reputation was of course enormous. He was trusted with
an unfailing intuition and with the ability to be able to do almost
anything ... His fame began to fade after 1945,

... Heisenberg's futile attempt at a theory of superconductivity ...
dispelled once and for all the spell which he exerted on his friends (and
even his enemies).

I was present at H[eisenberg]’s seminar in Princeton (fall 1950) and
witness to the violent attack against Heisenberg. Oppenheimer had
warned ... [us] ... before the seminar, to treat the speaker kindly.
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The lion had lost his claws.

Since we do not wish to pursue Heisenberg’s nonlinear field theory
here, let us indicate briefly his final position in which he had abandoned
the S matrix as the fundamental entity in a new theory. In a review
article on the quantum theory of fields, he stated (1957, p. 270):

To avoid . . . fundamental difficulties . . . the efforts of many physicists
have in recent years been concentrated on the § matrix. The § matrix is
the quantity immediately given by the experiments.

The S-matrix formalism does not by itself guarantee the requirements
of relativistic causality.

It is perhaps not exaggerated to say that the study of the § matrix is a
very useful method for deriving relevant results for collision processes
by going around the fundamental problems. But these problems must
be solved some day and one will then have to look for a mathematical
formalism that allows one to calculate the masses of the particles and
the S matrix at the same time. The § matrix is an important but very
complicated mathematical quantity that should be derived from the
fundamental field equations; but it can scarcely serve for formulating
these equations.

Some small comment is appropriate on the first two paragraphs of this
quotation. First, it would be an overstatement to claim that all S-matrix
clements are given directly by experiment. Some, such as those with two
bodies in the initial state, have a reasonably direct relation to
experimentally measurable quantities. However, there are many
S-matrix elements that one would be extremely hard pressed to find any
plausible way to measure. Second, Fierz (1950) had criticized Heisen-
berg’s (1950a, 1950b) attempt to construct a ‘convergent field theory’
expression for § and had shown it to be not causal. This emphasized the
difficulty of implementing causality without having a new Hamiltonian
theory.

At the Solvay Conference (Stoops, 1961, pp. 174-5) Heisenberg also
reflected upon his reasons for abandoning the S-matrix program:

When I had worked on the S-matrix for a while in the years 1943 to
1948 1 came away from the attempt of construction of a pure S-matrix
theory for the following reason: when one constructs a unitary
S-matrix from simple assumptions (like a hermitian n-matrix by
assuming S=e"), such S-matrices always become non analytical at
places where they ought to be analytical. But I found it very difficult to
construct analytical S-matrices. The only simple way of getting (or
guessing) the correct analytical behaviour seemed to be a deduction
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from a Hamiltonian in the old-fashioned manner. ... My criticism [of
the original program] comes only from the practical point of view. |
cannot see how one could overcome the enormous complications of
such a program.

Here, as later, complexity would be a recurrent theme of and problem
for the S-matrix program.

24 Work on the program just after WWII

Let us now return to the historical sequence of developments. Some
sense of the status of Heisenberg’s early S-matrix program can be gotten
from Kramers’ remarks for a symposium at Utrecht in the spring of
1944 (Kramers, 1944, 139-40; 1956, p. 838):

I11. Heisenberg’s recent investigations concerning the possibility of a
relativistic description of the interaction that is not based on the use of
a Hamiltonian with interaction terms in a Schrddinger equation.
Heisenberg considers only free particles and introduces a formalism
(‘scattering matrix’) by means of which the resuit of a short interaction
(scattering) between these particles can be described. Formerly the
scattering matrix could be derived from the Hamiltonian, but now we
are to consider the scattering matrix as fundamental. We do not care
whether a Schridinger equation for particles in interaction exists; we
do care which correspondence requirements exist and how the
scattering matrix can obey them. It is interesting that the scattering
matrix is also able in principle to answer the question in which
stationary states the particles considered can be bound together.
These are related to the existence and the position of zeros and poles of
the eigenvalues of the scattering matrix, considered as a complex
function of its arguments. Heisenberg could already give a (very
simple) model of a two-particle system, in which a perfectly sharply
relativistically determined stationary state occurs, while there are no
divergence difliculties whatsoever.

However promising, this is still only a beginning, and in particular
with regard to a correct description of the electromagnetic fields of
photons I expect difficulties, which the investigations in this direction
will have to overcome. Fortunately, Heisenberg’s program is still open
in several respects, and one may perhaps expect a great deal from a
fortunate combination with further ideas.

In two lengthy papers and in a briefer note, Msller (1945, 1946a, 1946b)
studied the properties of Heisenberg’s § matrix and fleshed out many of
Heisenberg’s original arguments. (Grythe (1982) has some interesting
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comments about the correspondence between Heisenberg and Moller
during the period when these papers were written.) In the first paper, he
considered the quantum-mechanical dynamics of an arbitrary number
of identical interacting particles, gave a careful treatment of the
unitarity of §, showed that the results of scattering processes (at real
positive values of E=k?) are independent of the bound-state energies
(1945, p. 18), pointed out the completeness condition for the wave
matrix states, proved the Lorentz invariance of S from cross-section
invariants, and discussed the ‘collision constants’ (or conserved quanti-
ties) arising from the invariance of S under sets of transformations (such
as the Lorentz transformations). In the second paper, Moller restricted
himself mainly to a two-body system and developed extensively the
analytic properties of the wave matrix to establish the connection
between the zeros of § and the bound-state energies. There Moller
proved (for a two-body system) that at a zero of S in the lower half k
plane at k,=ix, x>0

i(—1)— 0 .
| )dk ko> (2.21)

for any given partial wave ! (1946a, p. 29) and showed how resonance
energies and half-lives were determined by the poles (or singularities) of
the analytic S matrix in the lower half energy plane at E —il'/2, where T’
is the reciprocal of the lifetime of the state (cf. Eq. (A.101)). He
established that for a given matrix S there might exist either no
Hamiltonian H or many Hamiltonians that would yield the same S. In
other words, even when the usual equations of motion exist, there
would not necessarily be a unique correspondence between S and H.
The square-well and Coulomb-potential S matrices were given ex-
plicitly. Meller was fairly optimistic about the general applicability of
results that had been proved in special cases (1946a, p. 45):

The results obtained for two particle systems in this paper may be
supposed to hold also in the general case of a many particle system
with possibilities for creation and annihilation processes, the only
difference probably being that the number of collision constants . . . is
then larger than in the case of a simple two particle system.

In 1946 Heisenberg (1946) summarized the status of the S-matrix
program as sel forth in his three papers (1943a, 1943b, 1944) and in
Moller’s two papers (1945, 1946a).
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There Heisenberg used the completeness of the =0 wave
functions

J‘CUC gtk Wt (k) Y W () =7(r—r')
) 2.22)

to express the constants c, for the bound-state wave func-
tions (k,= —ik,,x,>0)

¢
Vplt) — —= 6™ (2.23)
P \/5
in terms of the contour integral of the § matrix

Ic“12=§dk S(k) (2.24)

where the integral encloses only the pole at k, =ix, . This was
another example of using Hamiltonian-independent, general
principles to obtain specific dynamical results about bound
states [rom the § matrix. The point is that the completeness
condition of Eq. (2.22) is just a statement that the states
{¥:(k)} can be used as a basis for expanding ‘any’ function. It
is essentially Fourier’s theorem that allows the expansion of
an arbitrary function, f(x), in terms of sines and cosines or of
exponentials, e**, It is a property the y’s would be expected
to have.

Heisenberg (1946, p. 613) acknowledged that Meller had essentially this
result in the summer of 1944. Equation (2.24) can also be derived
directly by an older method due to Kramers (1938; Ma, 1947). In this
paper (1946, p. 609) he also promised the fourth paper (which we
referred to above) on many-particle systems. This and his Cambridge
lecture at the end of 1947 (Heisenberg, 1949b) appear to have been
about the last of Heisenberg’s publications on the S matrix. Even at this
time, though, Maller (1947, p. 195) remained quite pessimistic about
the prospects for a successful conventional quantum field theory.

[I]t seems that divergencies are intrinsic difficulties of all relativistic
quantum field theories of the Hamiltonian form and that the frame
offered by the Hamiltonian scheme of quantum mechanics is too
narrow.

[I]t even seems doubtful that in any strictly relativistic theory of the
future a Hamiltonian and a Schrddinger equation will exist at all in
general.
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Now that we have indicated what the central concepts of the
Heisenberg S-matrix program were, let us consider the impact these
ideas had. Since our chief interest in Heisenberg’s early S-matrix theory
lies in the proposed responses to a series of questions it provoked, we
begin by focusing on the work of two theorists, Walter Heitler and Ernst
C. G. Stiickelberg.

As early as 1941 Heitler (1941) proposed a quantum theory of
radiation damping (which refers to the effects caused by the radiation or
emission of quanta by a particle) to do for the strong-interaction
mesons what classical and quantum theory had done for light. By
analogy, the mesons were seen as the quanta of the nuclear force just as
the photon was the quantum of the electromagnetic field. The
time-dependent theoretical treatment was very much in the spirit of that
for the interaction of a quantized atomic system with the electro-
magnetic field as done by Weisskopf and Wigner (1930) and by
Weisskopf (1931). (See Egs. (A.86)—(A.95) and the discussion following
them.) Heitler and Peng (1942) then proposed a scheme for omitting all
the divergent terms in the perturbation expansion but still retaining
effects of radiation damping. They (1943) used this procedure to make
approximate calculations of the matrix elements for meson production
in cosmic rays. In the late 1940s Pauli visited the United Kingdom and
spoke on the difficulties in quantum field theories (Pauli, 1947) at the
1947 Cambridge Conference. This review included a summary of
Heisenberg’s S-matrix theory and of Heitler’s ad hoc recipe for keeping
only the finite terms in the perturbation expansion for S. Prior to Pauli’s
discussions with Heitler about Heisenberg's recent work, the S-matrix
program seems to have been unknown at the Dublin Institute for
Advanced Studies where Heitler was. Heitler and Hu (1947, p. 124)
thank Pauli for having given them an outline of Heisenberg’s work.
After this exchange, Heitler and Hu (1947) used the approximate matrix
elements of Heitler and Peng (1943) to calculate the S matrix and hence
the bound states or the (isobar) particle spectrum for the meson—
nucleon system. As Heitler and Hu (1947, p. 140) acknowledge, Pauli
pointed out that an analytic continuation of an approximate expression
for S from real k to imaginary values of k need not give reliable values for
the zeros (and hence for the isobar masses). However, Heitler and Hu
had indicated how bound-state masses could (in principle) be calculated
oven when a complete Hamiltonian theory is not known.

We can summarize Heitler’s procedure as follows (Heitler,
1947; Wentzel, 1947). If the Hamiltonian H is written as
H=H,+ H', where H' (representing the effects of radiation)
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causes a perturbation on the eigenstates of H,, then a
12 8
reduced matrix element of the operator H' is defined as®

SiH'j

GIH - (2.25)
The matrix K (sometimes termed the reaction matrix) is
defined as

K= i (HYH'. (2.26)

n=0

The equation for the T matrix of Eq. (2.17) takes the form

K(1+iT)=T (2.27)
whose (formal) solution is

T=(1—-iK) 'K. (2.28)
Heisenberg’s S matrix (cf. Eq. (2.17)) can be expressed as

S=(1-iK)" (1 +iK). (2.29)

If the interaction Hamiltonian H’ is characterized by a coupling
constant (or coupling strength) g, then Eq. (2.26) can be. seen as an
expansion in powers of g. The first non-vanishing term is finite, whert?as
higher-order ones diverge (i.e., are infinite). Heitler’s ad hoc recipe
consisted in keeping only this lowest-order, finite term for K and
dropping (or ‘subtracting’) all the rest. He (1941) cxprcs:sed the hope
that these equations, which still included radiation damping, could be
exact, although he later (1947, p. 189) relegated this to a (perhaps
interim) working hypothesis:

The attempt to be described below aims not at a final solution to this
difficult problem, but rather at obtaining a preliminary working

hypothesis from which can be derived physical results which sfhall be
reasonable and, as far as possible, in agreement with the experiments.

Heitler had generated a relativistically invariant procedure for produc-
ing a finite K and hence a f(inite S matrix whose zeros should give the
bound states of the system. Still, this was not a procedure based on some
more general principle that eliminated the divergences, but rather a
pragmatic rule for simply throwing away all the troublesome tcrrn‘s.
Stiickelberg'® had worked on a consistent classical model for a point
electron (1938, 1939, 1941) and later (1942) extended this to a qua:ntlzed
theory. He applied (1944, 1945) Heisenberg’s S-matrix fOl’ma]]S]'n. to
these problems and proposed a series of correspondence rules (i.e.,
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previously-known results to which the quantum expressions must pass
over in suitable limits) to guide one in writing down Heisenberg’s #
matrix, or Heitler’s K matrix. These matrices are related as

tan (g) =K. (2.30)

He also (1946) imposed the constraint that, in a scattering process, a
particle cannot appear in the final asymptotic state before the incident
particles collide. These correspondence and ‘causality’ constraints
eliminated some of the arbitrariness and the divergences in K (or in #),
but still did not determine uniquely the structure of the higher-order
terms. This program was an attempt, however, to eliminate the
divergences on the basis of independent, generally accepted principles.
Stiickelberg and his co-workers (Rivier and Stiickelberg, 1948; Stiickel-
berg and Rivier, 1950a, 1950b; Stiickelberg and Green, 1951) continued
in their efforts to develop a quantum field theory free of the divergences
present in the Schwinger—Tomonaga—Feynman—Dyson theory, but
without ultimate success. Wentzel (1947) gives a nice review of the
status of strong-interaction field theory just after the Second World
War and, in particular, of the Heisenberg—Stiickelberg-Heitler theory.
Wentzel’s evaluation of Heisenberg’s program at that date is that this
scheme . .. is very incomplete; it is like an empty frame for a picture yet
to be painted’ (p. 15). He saw Heitler’s and Stiickelberg’s work as
attempts to fill this frame.

However, before we continue the historical development of work
directly related to Heisenberg’s S-matrix program, let us make a few
observations about how the S matrix had entered theoretical physics as
a practical and important calculational tool by the late 1940s. Most
important for theoretical elementary-particle physics was Schwinger’s
(1948) introduction of the unitary operator U(t, t,) that gives the time
evolution of the state vector ¥(to) at some initial time ¢, to the ¥(z) at a
later time as2®

F(O)=Ult,£,)¥ () (2.31)

8o that the Lorentz-invariant collision operator S connecting the initial
and final states is?!

§=U(o0, —o0). (2.32)

Schwinger also expressed this S in terms of the hermitian reaction
operator K by Eq. (2.29). Dyson (1949a, 1949b) made explicit the
relation of Feynman's (1949a, 1949b) method for calculating the
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elements of Heisenberg’s S matrix and also recalled (1949b, p. 1736)
that Stiickelberg had anticipated several of Feynman’s results. In
1946-47 Dyson had studied under Nicholas Kemmer at Cambridge.
Kemmer had Dyson read Heisenberg’s S-matrix papers as well as
Gregor Wentzel’s (1943) Einfithrung in die Quantentheorie der Wellen-
felder (published in Vienna during the War). When Dyson came to
America in 1947, he was well acquainted both with S-matrix theory and

with quantum field theory. Dyson recalls®?:

I was well prepared by Kemmer to put this knowledge [of the § matrix
and of quantum field theory] to use in the reconstruction of quantum
electrodynamics. 1 well remember the joy of recognition when I
suddenly realized that Feynman’s rules of calculation were just the
practical fulfilment of Heisenberg’s S-matrix program. This was in the
Fall of 1948.

The fact that Dyson saw Feynman’s theory as the fulfillment of
Heisenberg’s program is very clear from a letter to J. R. Oppenheimer

that Dyson wrote in 19482°:

I believe it to be probable that the Feynman theory will provide a
complete fulfillment of Heisenberg’s S-matrix program. The Feynman
theory is essentially nothing more than a method of calculating the
S-matrix for any physical system from the usual equations of
electrodynamics. It appears as an experimental fact (not yet known for
certain) that the S-matrix so calculated is always finite; the diverg-
encies only appear in the part of the theory which Heisenberg would in
any case reject as meaningless. This seems to me a strong indication
that Heisenberg is really right, that the localisation of physical
processes is the only cause of inconsistency in present physics, and that
so long as all experiments are interpreted by means of the S-matrix the
theory is correct.

The Feynman theory exceeds the original Heisenberg program in
that it does not involve any new arbitrary hypothesis such as a
fundamental length.

Thus, Heisenberg’s S matrix as a calculational tool, even if not as the
central entity in an independent theory, was very much in the
‘consciousness’ of theoretical physics before 1950. This renormalization
program was so computationally successful that the preponderant
majority of theoretical high-energy physicists worked within its tradi-
tion beginning in the late 1940s. This success of renormalized quantum
electrodynamics undercut, as pointed out earlier, Heisenberg’s original
motivation (i.e., the inability of quantum field theory to produce finite,
unique results) for his S-matrix program. As we shall sec later, in the late
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1950s and early 1960s, the inability of even renormalized quantum field
theory to calculate results for the strong interactions once more led to a
new S-matrix program. And, again, once quantum field theory (in the
form of gauge field theories) became calculationally adequate, relatively
_few theorists continued to work on the S-matrix program. In both
Instances, field theories won the contest because they could be cast into
a form that allowed reliable perturbation calculations to be made (since
no exact, closed-form solutions are known for realistic situations), while
the S-matrix program could not be cast into a form useful for cxt:ansive
(numerical) calculations. However, once again let us tie off this thread in
our story and return to developments more closely related to Heisen-
berg’s program.

A straightforward application of Heisenberg’s S-matrix zero <
boupd-state energy rule soon encountered difficulties in the secure
testing ground of nonrelativistic quantum mechanics. Ma (1946 1947)
showed by explicit calculation for an exponential potential in Sch,r('idin-
ger theory that there were ‘false’ or ‘redundant’ zeros of the S matrix
w.hich did not correspond to actual bound-state energies.>* This
discovery, Meller said, made him doubtful about the S-matrix theory
and he left the new theory in the summer of 1946 (Grythe, 1982, p. 201).
Ter Haar (1946) attempted to use Moller’s inequality (2.21) to rule out
these false zeros, but Jost (1946, 1947) criticized that argument and
concluded that all false zeros could not necessarily be ruled out with
lthal prescription.?® Jost (1947) considered s-wave scattering and
introduced the irregular solution f(k,r) to the radial Schrédinger
equation (Eq. (A.19))%¢

fle,r) — &7 (2.33)
and an f(k) (today known as ‘Jost functions’) as?’

Jk)=f(k,r=0). (2.34)

The solution regular at the origin is

' .

Pk r)=5 LS (—kr)=f(=k) f(k,r)]. (2.35)
l % ikr -

mnae B e —f(~k)e~). (2.36)
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From Eq. {A.33) we see that

rpt(k, r):jf—({k_’—g (2.37)
and that
st = 12w @38)

Here 8(k) is the phase shift (for s-wave scattering). Equation (2.36)
makes it clear that ¢(k,r) will be a bound-state wave function for
k= —ik(x>0) when f(—ik)=0; that is, when S(k) vanishes. (An
explicit expression for f(k) for the square well can be read off from
Eq. (A.39Db).) Jost discussed the analytic properties of these f(k) and
laid the foundation for a rigorous treatment of the analytic properties of
the scattering amplitude. Unless one confines the discussion to strictly
finite-range potentials, there can be redundant zeros in the S matrix
found in potential theory. Meixner (1948) also studied the analytic
properties of S(k) in Schrddinger theory. Touschek (1948) and Wilder-
muth (1949a, 1949b) examined many-body effects within the frame-
work of potential theory and Wildermuth (1949¢) attempted unsuccess-
fully (van Kampen, 1951) to resolve the redundant zero problem. These
redundant zeros remained a difficulty for the S-matrix program.?®
Froberg (1947, 1948a, 1948b), Hylleraas (1948) and Bargmann
(1949a, 1949b), all motivated by Heisenberg’s program, considered the
possible equivalence, in nonrelativistic Schrédinger theory, of the
S matrix (or of phase shift 3(k)) and the potential V(r). That is, the
question was whether the V(r) could be reconstructed from the (k). In
fact, Fréberg (1948a) acknowledged Heisenberg’s S-matrix program
and thanked Pauli for suggesting the inversion problem to him in
Ziirich. Hylleraas (1948) also pointed out the importance of the
inversion problem for Heisenberg’s S-matrix program. Bargmann
(1949a, 1949b) cited Maller’s (1946a) proof that many Hamiltonians
could correspond to one S matrix (cf., comment following out Eq. (2.21)
above). Fréberg gave an incomplete, formal solution of the inversion
problem. Hylleraas somewhat cautiously commented upon and ex-
tended Froberg’s work. Then Bargmann gave explicit examples of one
phase shift 5(k) corresponding to several potentials V(r) in Schrédinger
theory and thus showed that Froberg’s and Hylleraas’ inversion
procedure could not be valid in all cases. These results led to Levinson’s
(1949a, 1949b) interest in the inversion problem, as indicated by
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Levinson’s (1949a) reference to Froberg’s work. He found conditions
on the asymptotic value of the phase shift (§(co)—&(0)) which would
guarantee that only one potential V(r) could have produced this é(k).
Holmberg (1952) pinpointed the flaw in Fréberg’s and Hylleraas’
uniqueness agrument for the inversion problem. Gel’fand and Levitan
(1951a, 1951b) and Jost and Kohn (1952a, 1925b, 1953) discovered a
constructive procedure for finding ¥ (r), given 5(k) as well as the energies
and normalization factors for the bound-state wave functions. Even
today, after over three decades of work on the question, a complete
solution to the inversion problem is not a simple matter to state. A
simplified (and hence incomplete) answer is the following. If §(k) is given
for all real positive k for =0 and if there are no bound states, then {for
suitable restrictions on the potential) there is a unique V() for that
problem. For each bound state (where the number n of bound states is
given by 6(0)—d(co)=nmn), there is an arbitrary parameter in the
potential (and, hence, no uniqueness). (See Newton, 1966, Chapter 20,
and Cushing, 1986a, note 45, for more details.) This general question of
the determination of a potential from the experimental phase shifts
(which can be gotten rather directly from the observed scattering cross
sections) was an important one for the theoretical nuclear physics of the
time.

Jost himself characterizes the relevance of the criticism of Heisen-
berg’s S-matrix program to theoretical physics as follows.2°

Summing up this special line of development it seems fair to state that
the criticism of Heisenberg’s S-matrix program has stimulated a
qualitatively new kind of theeretical research, in which non relativistic
wave mechanics serves, not as an analytic tool to calculate some
experimental cross-section, but rather as an experimental playground
for the discovery of general relationships, which might aiso be useful
elsewhere.

This ‘experimental playground’ would remain an important tool for
research in the S-matrix program, even well into the 1960s.

2.5 The S matrix and nuclear theory

Contact with a long-established line of work in theoretical nuclear
physics was made by Hu (1948a). As background, let us say a few words
about the relevant nuclear theory. (We return to the compound nucleus
model in Chapter 9.) Breit and Wigner (1936, p. 519) had developed (in
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analogy with the resonance scattering of light; cf. Eqs. (A.86)-(A.96)) a
theory of scattering near a (complex) resonance energy E_:

... [T]heories of . .. cross sections .. . for the capture of slow neutrons
... explain the anomalously large capture cross sections as a sort of
resonance of the s states of the incident particles.

Breit (1940a) summarized this as follows:

Many nuclear reactions show excitation curves with pronounced
peaks which suggest that there is a resonance of the nuclear system to
certain energies. (p. 506).

... [TThe optical case has been cleared up by Weisskopf and Wigner
[1930]. ... The band of photons emitted in such a jump is found to
have an intensity distribution of the resonance type

const.
(E—E)+I*/4
with a peak at the emission center Ej. (p. 507)

Breit (1940b) used this approximation to calculate Wheeler’s S matrix
for the decay of unstable states as

C“B
S“’gé’”-'-ﬁ—-Ec (2.39)
where the c,; are constants. This particular form was based on
simplicity (Breit, 1940b, p. 1070):

The simplest possibility for [poles of the scattering matrix a,;] will be
considered
[ 4] I
r——+d,;
WEg_E
Here the c,;, d;; are constants and the equation is meant to be only an
approximation in the neighbourhood of the complex eigenvalue [E_].

Very interestingly, Siegert (1939) seems to have been the first to consider
the § matrix as an analytic function of k to derive a Breit—Wigner type
formula:

We investigate the singularities of the cross section which occur at
certain complex values of the energy. Those singularities which lie
near enough to the real axis, cause a sharp resonance maximum on the
real axis and we can replace the cross section there by its singular part
added to a smooth function of the energy. (p. 750)
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Of course, one can ‘see’ these results today in Siegert’s paper, but his
motivations and notations were quite different.

An important insight into the origin and generality of the
Breit-Wigner resonance formula was obtained by Wigner and his
co-workers. We outline below the formal derivation of a Breit-Wigner
type of formula. Later, we shall discuss a physical or more intuitive
explanation of such resonance formulas.

In a series of papers, Wigner (1946a, 1946b) and Wigner
and Eisenbud (1947) introduced the derivative matrix R(E)
and based a multichannel nuclear scattering theory upon
it.3% If a is the range of the potential, then for a simple
single-channel case we have (cf. Eq. (A.37))

tan (ka+4)
k
where y;(r) is the wave function for the problem. If we set

Yelr)=¢"cos (ka + 8)¢g(r), then outside the nuclear surface
(r=a) we can write ¢4(r) as

R(E)=[ryglr)/d(rirg)/dr], - .= (2.40)

$g(r)= ; {% sin [k(r—a)]+ Rcos [k(r— a)]} (2.41)

with R(E)=[r¢.]|, - .. By using the complete set of real basis
states ¢,(r) delined by

Ho,=E;, (2.42a)

dod)|

o | (2.42b)

J;uclear ¢f dv= l’ (2.42{:)
surface

one can prove (Wigner and Eisenbud, 1947) that R(E) has
the exact expansion

Ya¥a
R(E)=
4 §{Ea—5)

(2.43)

where the y, are independent of E. For example, in the case of
the square well (Eq. (A.38)) one can show directly that

tan (Ka) 2 l
~= — (2.44)

R(E)=
(I K ~ a (E,~ E)
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In the multichannel case Eq. (2.41) becomes

¢¢("3)=-1" {%ﬁ sin [k,(r,—a,)]

Ts
+Raﬂms[kﬂ(rs—a,)]} (2.45)
and Eq. (2.43) generalizes to
}’j.)’il 2. 46)
R (E)=) —=— (
O &5
where the y,, are again independent of E. Notice that Eq.
(2.46) implies that
dRCl
dE

whenever this quantity is defined. The § matrix and this R
matrix are related as (cf. Eq. (A.39a))®' (Wigner and
Eisenbud, 1947)

§ =gk [M&[k_ﬂ}e"i*ﬂ (2.48)
3 1- i\/k: Raﬂ‘\/k_fl
In the neighborhood of a (real) resonance energy E,, R, may

be approximated by one term in the sum of Eq. (2.46).
Equation (2.48) then gives the Breit—-Wigner one-level for-

mula

>0, (2.47)

ikYy, kb .
5, meihn| 5 Dadakgl | oo (2.49)
k4 0 (E_EA}+]ZJ‘U?U

which has the same general form as Eq. (2.39) for a#§.

One should not let the formalism obscure the central
structure of the argument, It is essentially the completeness of
the eigenfunctions ¢, (Egs. (2.42)) that allows one to obtain
the ‘resonance’ form (Egs. (2.44) and (2.46)) for R(E) and
that, in turn, leads to the Breit—Wigner form (Eqs. (2.48) and
(2.49)). The interior of the nucleus remains effectively an
unknown black box, since R(E) is defined in terms of
quantities at the nuclear surface (r=a) only.

Motivated by Heisenberg’s S-matrix program, Hu (1948a) us_ed
directly the analytic properties of S to derive (in the context of potential
theory) the Breit-Wigner form in the neighborhood of a complex pole of
the S matrix near the positive energy axis. He also clarified the common
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distinction that had been made in the literature between the ‘potential
scattering” that produced the smooth background against which the
‘resonance scattering’ of Eq. (2.39) stood out (cf. Eqs. (A.112)-(A.114)
and the accompanying discussion). Hu showed that the ‘potential’ and
‘resonance’ terms both had the same source, the difference in their
behavior depending upon the distance of the complex pole from the
positive energy axis. He also made the useful observation (which would
become the convention eventually adopted) that, since

S(k)S*(k*)=1, (2.50)

a value of k, on the negative imaginary axis such that S(k,)=0
corresponds to a value k} = —k, such that S*(k*)=co, or S(— k,)=co.
That is, the poles of the S matrix on the positive imaginary axis locate
the bound-state energies. From now on we follow this convention
illustrated in Figure 2.1. The upper half k-plane maps onto the entire
E=k* physical sheet and the lower half k-plane onto the second
(Riemann) sheet in the energy plane.

Hu (1948b) and Eden (1948, 1949a, 1949b) began to study the
complicated problem of the analytic continuation of the S matrix when
there were production thresholds present. As an aside, let us stress that
it is important to appreciate, both here and in subsequent developments
discussed throughout the text, that we use the term ‘analytic’ to include
functions that have poles, branch points, and even essential singu-
larities. The key property of such analytic functions is that once they are
known exactly in any region however small, then they are (in principle)
determined everywhere in their domain of analyticity. We have already

k-plane E=k2 E-plane

bound-state
poles

bound-state poles

X x
.resonance poles

(on the second
resonance poles Riémann sheet)

Figure 2.1 The k- and E-planes for the § matrix.
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seen that Ning Hu was working with Heitler in Dublin when Pauli
informed them of Heisenberg’s S-matrix program. When Heisenberg
visited Cambridge for two months early in 1948, Eden worked with him
and again for a month in Géttingen later that year. Eden also recalls®?
that Heisenberg had visited Cambridge briefly a year earlier while
Dyson was there.

We can easily see how discontinuities in the S or T matrices come
about from Eq. (2.20). Let us take T;,(E) to be a function of the complex
energy variable E and appreciate that the symbolic sum in Eq. (2.20)
implies conservation of energy and momentum. Then, if E is real and
below the two-particle scattering threshold (i.e., E is less than the energy
2myc? which follows from the Einstein mass-energy equivalence
relation E=Mc?), it follows that Im T,,=0. This simply states that a
reaction cannot occur If the total energy available is less than the rest
mass of the interacting particles. That is, the optical theorem relates the
total cross section ¢, to Im T;. Below threshold, ¢,=0 and, hence,
Im T,;=0 there. However, once we cross that threshold (by an increase
in the total energy E), we have Im T;; #0. Such behavior (of the change
in Im T},) is readily illustrated with the function F(z) of the complex
variable z=|z|e'¢

F(zj=, /—z=(e""z)}. (2.51)

For z=x(real), F(x) is real for x <0(¢==) and Im F(x)=0 there. For
x>0, (¢=0,2r) Im F(x)#0 and Im F(x) undergoes a discontinuity
across the positive real axis. In fact, we find

Im F(x}{""’"’x+ —J/x
z=x- \/x

where z—x* means, respectively, approaching the positive real axis (or
cut) from above (¢ =0) or below (¢ =2x). Investigations of the general
analytic structure of multiparticle scattering amplitudes (of several
complex variables) is a horrendous problem and the early papers were
inconclusive. Later, Eden (1952), within the framework of the renor-
malized perturbation expansion of quantum field theory, was able to
reach some definite conclusions. His work was a precursor of an
important area of activity several years later. Eden played a key role in
that subsequent development and we return to it in a later chapter.

(2.52a)
(2.52b)

x>0

b
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2.6 Causality and dispersion relations

However, the outgrowth of the Heisenberg S-matrix program most
fruitful for the eventual use of dispersion relations in elementary particle
theory followed from a suggestion made by Kronig (1946). Whereas
Kramers (Heisenberg, 1944) had suggested that analyticity be incorpor-
ated into the S-matrix program of Heisenberg, Kronig now recalled that
causality had been a principle useful in deriving dispersion relations for
the index of refraction for the propagation of light waves (Kronig, 1926;
Kramers, 1927, 1929) (cf. Eqs. (A.80)-(A.85) and the accompanying
discussion). In his paper, Kronig (1946) states:

As is well known, the scattering of monochromatic light by atoms is
governed by a relation between the real and imaginary parts of the
scattering amplitudes, leading to a familiar connection between the
index of refraction and the coefficient of absorption of matter in bulk.
... This relation is a direct consequence of the natural requirement
that an electromagnetic field, vanishing at the place of the atom for all
times ¢t <0 and beginning to act only thereafter, cannot cause the
emission of scattered waves before the time ¢=0. In analogy one
would expect that a centre of force, influencing the waves associated
with material particles in a small region around it, will not give rise to
scattered waves before t=0 if the primary wave field at the centre is
chosen to be equal to zero until this instant.

It hence would seem reasonable to postulate for the scattering of
particles a connection between the real and imaginary parts of the
scattering amplitudes of the same type as in optics. On the side of the
theory it remains to be discussed if this demand is correlated with
Heisenberg’s condition for § given above [the unitarity relation,
§5'=1] and what is a suitable extension for the case that new particles
are created in the scattering process.

Put very simply, and at a minimum, here the principle of causality®?
means that an effect (or information) cannot instantaneously be
communicated across a finite distance in zero time. For example, a light
wave traveling at a speed ¢ cannot arrive at an observer located a
distance ! from a source before a time l/c has elapsed once the light has
been turned on. It is enough to indicate here how causality can plausibly
be connected with analyticity. (For more details and references, see Egs.
(A.63)—(A.70), and the accompanying discussion, in the Appendix.)
Suppose we have a (‘reasonable’) function f(t) that remains identically
zerountil t =0 (i.e., f(¢t) =0, t <0). This could, for example, represent the
response of a system to a light wave that reaches it at t =0. We define the
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Fourier transform f(w) of f(t) as

f(t)e dt.

| =
f(w)=_ﬁ-;j_m

Since f(t) vanishes for ¢ <0, this becomes

f)=—= | f@ed.

Var Jo

In the upper half complex w-plane (Im w > 0) of Figure 2.2 (where C. is
the integration contour), the integrand above has an expone.nnal
damping factor e ™. With some additional technical assumptions,
this allows one to prove (and we have not done this here), that f(w)is an
analytic function of @ in the upper half complex @ plane. The poin}l for
our present purposes is that causality (in the sense that f(t) vanishes
identically prior to some time) implies analyticity for f(w). We shall
encounter variations in this type of argument again.

Kronig’s was a qualitative suggestion about the use of causality. Th'e
question that now occupied several theorists was just how th_ls
requirement of causality was to be implemented in the Sl-matrlx
program and precisely what the connection between causa'hty and
analyticity would be. We do not mean to imply that all of their efforts
were directly connected with Kronig’s insight.

Jost, Luttinger and Slotnik (1950) outlined how to calculate higher-
order quantum electrodynamics (QED) corrections to the perturbalif)n
expansion of the § matrix from lower-order terms by using the unitarity

Im w

Figure 2.2 The complex @ plane for f(w).
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condition and by also exploiting the analytic properties of these matrix
elements to write a dispersion relation for them. In this paper, Wheeler
and Toll are thanked for that suggestion. In fact, these authors (Jost
et al.) had, through Robert Karplus, access to a preliminary version of
Toll’s thesis (1952) on dispersion relations. Jost ‘was ignorant of
Kronig’s (1946) remark . .. and was under the impression that we [Jost
et al., 1950] were the first ones to apply dispersion techniques to
S-matrix elements.’>* We sketch here this interative procedure for
obtaining higher-order corrections from lower-order ones because
similar arguments will be important later in the history of the S-matrix
program. Let us suppress all indices and treat S(k) as a simple function
(although the actual problem is more complicated). Then the basic
concept is easily illustrated since the S matrix is expanded in a power
series in the electric charge as

S(k)=1+eS,(k)+e*S,(k)+ ... (2.53)
The unitarity condition, $*S=1, becomes
1+e(S, +St)+e*(S,ST+S¥+S,)+ ... =1. (2.54)

Since the coefficients of each power of " must vanish, we find that
2Re S, (k)= —|5,(k)* (2.55)

which gives the real part of S,(k) once §, (k) has been calculated. But if
S,(k) is an analytic function of k, we can write a dispersion relation
(cf. Eqs. (A.67)) as

1 fReSz(k’)dk’ B

Im (k)= —— s

(Here the P symbol on the integral indicates that a particular limiting
process — the Cauchy principal value — must be taken to make this
singular integral well-defined mathematically.) Rohrlich and Gluck-
stern (1952) calculated forward Delbriick scattering (essentially the
scattering of light by the Coulomb field of a nucleus) directly, using the
Feynman-Dyson rules, and then using the dispersion-relation ap-
proach of Jost et al. (1950). The results agreed. Rohrlich in fact was able
to use the dispersion relations (at the suggestion of Jost) to locate some
errors made in the direct, brute-force approach. Toll, who had done the
calculation only one way, at first obtained a result that disagreed with
Rohrlich’s.?®

Actually, Rohrlich and Gluckstern’s (1952) calculation was not just a
perturbation-based use of analyticity as suggested in Egs. (2.53)-(2.56).
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In terms of the (complex) elastic scattering amplitude f(k,0), the
differential scattering cross section is given as
do

i0 |f (k, 8)[>. (2.57)

As we have already seen, the optical theorem (Feenberg, 1932; Lax, .

1950) relates the total cross section to the imaginary part of the forward
(i.e., 8=0) elastic amplitude as

a,(k)=ﬂg—lm Sk, 6=0). (2.58)

In essence, Rohrlich and Gluckstern (1952) were able to use the resul.ts
of a (relatively simple) approximate calculation of o,(k), obtain
Im f(k,68=0)and then use the general dispersion relation for f(k, 6 =0),

Re f(k,ﬂ:()):% 3( L f(gf;’ﬁzg)dk ; (2.59)

to find the complete forward scattering amplitude f(k,8=0). From
f(k,8=0), Eq. (2.57) allows the differential cross section in the forward
direction to be calculated. Bethe and Rohrlich (1952) extended these
methods to an approximate calculation of nonforward Delbriick
scattering. These were early and important uses of analyticity to
calculate experimentally observable quantities.

Schiitzer and Tiomno (1951) appear to have been the first to attempt
to exploit Kronig’s (1946) suggestion that the principle of causality be
imposed on Heisenberg’s S matrix. They (1951, p. 249) credit Wigner
with the surmise that the relation (2.46) for the R matrix might have its
basis in that principle. Both Wigner and Bargmann at Princeton are
thanked for discussions on this problem. Schiitzer and Tiomno (1951)
considered the s-wave scattering produced by a potential of finite range
a and implemented causality by the requirement that there be no
scattering of an incident wave until that wave reaches the edge of the
scatterer (of radius a). They (1951, p. 251) were able to construct a wave
packet that is rigorously zero until =0 only because they included
negative energies in their Fourier decomposition of ¥(r,t). As van
Kampen points out:*®

The absence of negative energies is responsible for most of the
complications in my [van Kampen, 1953a] treatment, but also makes
it possible for the poles on the imaginary axis that correspond to
bound states to exist.

Causality and dispersion relations 61

With this assumption of a sharp wave front, Schiitzer and Tiomno were
able to show that the poles of S{k) could only lie on the positive
imaginary axis or in the lower half k-plane. They also found that a
two-sheeted Riemann surface in the energy plane is required for S(E).
They were not able to deduce all of the properties of the R function
previously found by Wigner and Eisenbud (1947).

Van Kampen, while working in Denmark, had written a paper (1951)
on the analytic continuation of the § matrix, pointing out an
equivalence between the bound-state energies E, and the phase (k). He
subsequently went to Princeton where he wrote the paper on the
implications of causality for the S matrix. He acknowledges (1953b,
p. 1276) Wigner and Bargmann for discussions on this later work. Van
Kampen (1953a) applied the causality principle to the Maxwell
equations for the scattering of light by a spherically symmetric center of
finite size (a). As a step toward establishing the mathematical properties
of Heisenberg’s S matrix on general grounds, van Kampen was able to
show that the S matrix (in this case) was an analytic function of k and
that it satisfied a dispersion relation, as well as to derive the analytic
properties of Wigner’s R function. One undesirable feature of the results
was that they depended explicitly upon the size a of the scattering
center. Van Kampen (1953b) then considered the implications of
causality for the S matrix in nonrelativistic Schrodinger theory, the
same problem studied by Schiitzer and Tiomno. One basic difficulty in a
nonrelativistic theory is that there is no maximum velocity of wave
propagation. So van Kampen replaced their assumption of a wave
packet with a sharp front by a restriction on the probability of finding
the particle outside the scattering center. His motivation was the
following (1953b, p. 1267):

The causality condition [for a light wave traveling at the velocity c]
was formulated as follows: If at a large distance r, from the center of
the sphere [of radius a] the ingoing wave packet is zero for all t<t,,
then the outgoing packet shall be zero at r, for all £ <t + 2(r, —a)/c.

Obviously, for nonrelativistic particles a modification is necessary,
since no maximum velocity exists, and one is inclined to postulate: If
atany distance r, the ingoing wave packet is zero for all t <¢,, then the
outgoing wave packet must also be zero for t<¢, [as assumed by
Schiitzer and Tiomno (1951)]. ... However, ... there is a serious
objection.

The difficulty is that there are no ingoing or outgoing wave packets
that are rigorously zero up to a certain time . ..

For a finite-range potential, he again obtained a dispersion relation for
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S(k). He also discussed (1953b, pp. 1275-6) the practical physical
indistinguishability between a strictly finite-range potential and a
long-range one (such as an exponential potential) and contrasted this
with the radical difference in the analytic properties of the S matrix in
these two cases. In practice, of course, we consider scattered particles as
asymptotically free.

Finally, Toll (1952), who was a student of Wheeler’s at Princeton, in a
widely-referenced but unpublished Princeton Ph.D. dissertation, con-
ducted an exhaustive study of the connection between causality and
dispersion relations for light, including a calculation of Delbriick
scattering (Rohrlich and Gluckstern, 1952). Toll and Wheeler (1951)
applied dispersion relations to pair production processes. A summary
of Toll’s thesis was eventually published (Toll, 1956).

Wigner (1955a) used the property (2.47) of Eq. (2.43) for R(E) to
derive a famous inequality on the derivative of the phase shift,

Q0 i 2.60
dk T (2.60)

where a is the range of the potential.*” He (1955b) also gave a beautiful
and elementary summary discussion of the implications causality had
for the relation (2.46) satisfied by the R matrix. As Wigner (1955a,
p. 145) pointed out, a lower bound on dé/dk is required by causality:

It may be useful ... to derive certain general rules about the energy
dependence of phase shifts ... . The relations to be derived here are
based, fundamentally, on what has come to be called ‘the principle of
causality’. It states that the scattered wave cannot leave the scatterer
before the incident wave has reached it.

To see this qualitatively, consider just the s-wave outgoing
spherical wave (cf. Eq. (A.33)) and from a wave packet with a
momentum distribution g(k) sharply peaked about some
momentum k, as

—i glk) |
v, r}=2—: jg(k—) gillr + 2600 =K1 g (2.61)

As t— + oo the rapid phase oscillations of the exponent in the
integrand will produce cancellations that make the integral
vanish. (This is essentially the Riemann-Lebesgue lemma
familiar from standard functional analysis.) This can be
avoided if we simultaneously choose r and ¢ so that the phase

2.7

In this chapter we have attempted to establish that the extensive interest
I in dispersion relations and their connection with causality by the early

A problem background for the 1950’s

factor remains constant
d [kr+28(k)—k*t]=0
— Tk ol -
dk

or

r 1 dé 262
T a (262)
The second term on the right of Eq. (2.62) is often referred to
as the delay time. If there were no interaction, the wave
would arrive at r at the time r/2k. Since the interaction
potential V(r) may trap the wave for an arbitrarily long time,
there is no fixed upper (positive) bound on dé/dk. However,
if the physical force or the wave speed is to remain bounded,
the potential V(r) cannot cause the wave to arrive at r
arbitrarily earlier than it would have in the absence of V(r),
This implies that dé/dk must be bounded from below by some
negative number. So, the causality requirement gives us a
quatitative understanding of Wigner’s result (2.60). What
Wigner (1955a) actually did can be represented essentially as
follows. From the inequality of Eq. (2.47) {for the
single-channel case) and Eq. (A.38) giving R(E) in terms of
&(k), one shows by direct calculation of dR/dE that

dé 1 2ka+5)]> 1
a+dk>2k5m[ (ka Z =50

which is Wigner’s inequality, Eq. (2.60). An important
implication of this bound is that, at a sharp phase-shift
resonance where (k) must pass rapidly through (an odd
multiple of) r/2 as k increases {cf. Eq. (A.122)), 8(k) must rise
through n/2 because dd/dk can only be large positive (but
never large negative). Wigner (1955a, p. 146) also pointed
out that an expression for R(E) of the form of Eq. (2.43) had
previously been shown, by Schiitzer and Tiomno (1951) and
by van Kampen (1953a, 1953b), to be a result of the causality
condition. The connection between causality and resonance
formulas had become accepted.

A problem background for the 1950s

63
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1950s can be traced directly back to the Heisenberg S-matrix program.
Essentially no use has been made here of correspondence which
Heisenberg himself had with others about his S-matrix program. Such is
not really relevant for the central thesis of this section: a prima facie
case, based on the published physics literature and on recollections of
physicists active during the time span covered here, that work on
questions prompted by Heisenberg’s S-matrix program generated the
background out of which grew the dispersion-theory program of the
1950s and 1960s. (For some correspondence on the S-matrix program,
see Grythe (1982) and for the interpersonal relations and sociological
background to Heisenberg’s S-matrix program, see Rechenberg
(1989).) There had been a large concentration of effort by a sizeable
fraction of the community of theoretical physicists in the period
1945-54 on problems growing out of suggestions made in Heisenberg’s
papers. It will become even more apparent in the following chapters
that Heisenberg’s S-matrix papers raised questions leading to a series of
important developments which eventually culminated in the use of
dispersion relations in modern high-energy physics. The S-matrix and
dispersion-theory programs of the 1960s had a major impact upon the
theoretical high-energy physics of that decade. Several of the key
contributors to that program (e.g., Chew, Gell-Mann and Goldberger)
have stated in their recollections that Heisenberg’s original S-matrix
program of the early 1940s provided no direct motivation for or
influence upon their own work in the late 1940s and early 1950s. While
some of these founders of the later dispersion-theory and S-matrix
theory program may not have been at the time aware of and involved in
the early research on Heisenberg’s S-matrix program so that they may
not have been conscious of any influence of it on their own original
work, this network of problems having roots in the Heisenberg program
did, nevertheless, provide an essential background for a crucial advance
in the field of relativistic dispersion relations, to which we turn in the
next chapter.

But, first let us state here a thesis which can be drawn from this
chapter. If Heisenberg’s S-matrix program is remembered at all today, it
is usually recalled as a program which encountered difficulties quite
early and then quickly died out. From this, one could readily form an
opinion that the original Heisenberg program was of little importance
for subsequent theoretical developments. While it is true that Heisen-
berg soon abandoned his S-matrix program in favor of his nonlinear
field theory of fundamental interactions, Heisenberg’s ideas gave rise o
a set of questions, such as how the causality requirement, suggested in
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the mid 1940s by Kronig as a constraint on the § matrix, was to be
implemented in the S-matrix theory and how the interaction potential
of Schrédinger theory could in principle be determined by scattering
data. Work on such problems by many theorists produced a series of
papers eventually leading to relativistic dispersion relations, a program
usually associated with Goldberger and Gell-Mann. The background
necessary for Chew’s own early investigations on reaction amplitudes
was quite independent of any connection with Heisenberg’s S-matrix
theory. However, it was the confluence of Chew's and Goldberger's
programs that led to the S-matrix theory of the 1960s. It is not at all
clear that the latter S-matrix program could have become a viable
candidate for a theory of strong interactions if it had not been for
Heisenberg’s seminal papers on an earlier program, one quite different
from, yet in the same spirit as, its successor. But, we get a bit ahead of
our story here.

2.8 Summary

So, we have seen that although Wheeler had already proposed an
S matrix as a useful calculational tool for theoretical nuclear physics in
1937, Heisenberg in 1943-independently introduced the S matrix as the
basis for a conceptual framework which might provide an alternative to
Hamiltonian quantum field theory. One of his primary motivations for
this move was the divergence problems of QFT in the late 1930s, which
gave rise to his belief that there might be a fundamental length in nature.
Initially, Heisenberg saw the S-matrix theory as an interim program
based only on observable quantities. Kramers made the suggestion that
the S matrix be considered an analytic function of its energy variable so
that scattering data could (in principle) constrain the values of the
bound-state energies. Immediately after the Second World War,
Heisenberg’s S-matrix program looked promising as a general frame-
work within which to construct a coherent theory of interactions among
fundamental particles. However, with the great success of the renormal-
lzation program in QED, field theory became the main interest among
particle theorists. Through the renormalized QED program, the
S matrix did become a well-known calculational tool. Heisenberg
turned to a nonlinear quantum field theory, but neither this nor his
other forays into basic theory proved successful.

Nevertheless, criticism of Heisenberg’s S-matrix program, largely
within the framework of nonrelativistic Schrodinger theory as a testing



66 Origin of the S matrix

ground, did stimulate interest in the inversion problem (of determining
the potential V(r) from the scattering data or phase shifts, §,) and in a
theoretical justification for the Breit-Wigner resonance formula used to
fit nuclear scattering data. In this latter undertaking, the analyticity of
the S matrix suggested by Kramers was of central importance. Kronig
in 1946 recalled that causality (essentially in the form of a first-signal
principle) had been related to the analyticity properties of the index of
refraction in optics to obtain dispersion relations. He suggested that the
causality principle might also play a central role for Heisenberg’s
S matrix. Some progress was made in deriving the Breit-Wigner
formula from the causality requirement and dispersion relations were
used as an aid in quantum field theory calculations of scattering
amplitudes. In 1955 Wigner showed quite explicitly how the causality
requirement implied observable consequences for the behavior of a
scattering phase shift near a resonance. Interest in problems such as
these provided a background out of which emerged in the mid 1950s the
dispersion-theory program for the strong interactions.

5

Dispersion relations

There exist some excellent technical reviews of relativistic dispersion
relations (Goldberger, 1960, 1961; Jackson, 1961), as well as Goldber-
ger's (1970) own informal recollections of the period from about
1954-69. In addition, Cini (1980) and Pickering (198%a) have written
nbout some of the sociological influences on that program. We shall
gomment on these later in this chapter and in the concluding chapter.
However, let us begin with a few general observations about the mood
of theoretical physics in the United States just after the Second World
War, at least in one Physics Department, namely the University of
Chicago. This is relevant for what follows, since that Department
became a center of activity for the dispersion theory program. Wentzel
and Fermi were on the faculty then and Goldberger and Chew were
graduate students there. One frequent attendee' at the theory seminars
nt Chicago during those years recalls that at that time (around 1948) the
general spirit of many of the younger, exceptionally gifted theorists was
that physics was something to do (never mind studying the works of the
jgreat masters) and that nothing significant had been done (in their areas
ol interest) prior to this. In fact, many other people had worked on these
problems (e.g., fixed-source field theory) before, but there was little
sense of history among the younger generation. Wentzel’s comments
(say, from the audience at a talk) on the previous literature were
typically received with impatience. None of this, of course, detracts
from the significant and original contributions made by this talented
nnd numerically large generation of younger physicists. While Goldber-
gor and Chew were excited by Heisenberg’s ideas, which they learned
nbout from Wentzel’s lectures and Meller’s articles, they did not really
pursué this. The § matrix simply was not a hot topic of discussion then.?
I'urthermore, in the work that led to their 1954 paper (with Thirring) on
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