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Abstract In October 1924, The Physical Review, a relatively minor journal at the
time, published a remarkable two-part paper by John H. Van Vleck, working in virtual
isolation at the University of Minnesota. Using Bohr’s correspondence principle and
Einstein’s quantum theory of radiation along with advanced techniques from classical
mechanics, Van Vleck showed that quantum formulae for emission, absorption, and
dispersion of radiation merge with their classical counterparts in the limit of high
quantum numbers. For modern readers Van Vleck’s paper is much easier to follow
than the famous paper by Kramers and Heisenberg on dispersion theory, which covers
similar terrain and is widely credited to have led directly to Heisenberg’s Umdeutung
paper. This makes Van Vleck’s paper extremely valuable for the reconstruction of the
genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did not
take the next step and develop matrix mechanics himself.
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554 A. Duncan, M. Janssen

1 Introduction

Most historians of modern physics agree that the famous Umdeutung [reinterpre-
tation] paper with which Werner Heisenberg (1901–1976) laid the basis for ma-
trix mechanics (Heisenberg, 1925c) grew out of a paper he and Hendrik A. (Hans)
Kramers (1894–1952) co-authored on dispersion theory (Kramers and Heisenberg,
1925). Although hardly impartial as one of Kramers’ students and his biographer,
Max Dresden (1987) calls the Kramers–Heisenberg paper “the direct, immediate, and
exclusive precursor to the Heisenberg paper on matrix mechanics” (p. 275). Martin J.
Klein (1970) is more restrained but agrees that “this work was the immediate prede-
cessor of Heisenberg’s new quantum mechanics” (p. 31). To understand the origin of
matrix mechanics, one thus has to come to grips with the contents of the Kramers–
Heisenberg paper. According to Jagdish Mehra and Helmut Rechenberg, this paper
was written “in such a way that every physicist, theoretician or experimentalist, inter-
ested in the subject could understand” (Mehra and Rechenberg, 1982–2001, Vol. 2,
p. 181).1 An uniniated modern reader turning to the Kramers–Heisenberg paper after
these encouraging words is likely to be disappointed. The authors assume their rea-
ders to be thoroughly familiar with techniques, borrowed from celestial mechanics, for
dealing with multiply-periodic systems, including canonical transformations, action-
angle variables, and related perturbation methods. As far as their contemporaries in
theoretical physics were concerned, this was undoubtedly a reasonable assumption.
So, Mehra and Rechenberg are probably right to the extent that the intended audience
would have had no special difficulties with the paper. The same cannot be said for
most modern readers, who no longer have the relevant techniques at their fingertips.
Fortunately, there is another paper from the same period covering some of the same
terrain that is much easier to follow for such readers.

Immediately preceding the translation of (Kramers and Heisenberg, 1925) in the
well-known anthology on the development of matrix mechanics edited by Bartel
Leendert van der Waerden (1903–1996) (1968) is a paper by the American theo-
retical physicist John Hasbrouck Van Vleck (1899–1980) (1924b). Like the Kramers–
Heisenberg paper, it combines some sophisticated classical mechanics with the
correspondence principle of Niels Bohr (1885–1962) and elements of the quantum
radiation theory of Albert Einstein (1879–1955). In the last section of this paper, Van
Vleck showed that the Kramers dispersion formula, which Kramers (1924a,b) had
only presented in two short notes in Nature at that point, merges with the classical
formula in the limit of high quantum numbers. Van Vleck’s paper is a paragon of
clarity. In an interview by Thomas S. Kuhn for the Archive for History of Quantum
Physics (AHQP) in 1963,2 Van Vleck acknowledged the influence of his father, the

1 This multi-volume history of quantum physics brings together a wealth of information and we shall
frequently refer to it. However, it needs to be used with some caution (see, e.g., notes 5, 79, and 172 below
as well as the review of the first few volumes by John L. Heilbron (1985)).
2 Between February 1962 and May 1964, about 95 people were interviewed for the AHQP project (Kuhn
et al., 1967, p. 3). With one exception (see Sect. 2.4) the exact dates of these interviews are unimportant for
our purposes and will not be given when we quote from the transcripts.We consulted the copy of theArchive
for History of Quantum Physics (cited hereafter as AHQP) at Walter Library, University of Minnesota.
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On the verge of Umdeutung in Minnesota - Part one 555

mathematician Edward Burr Van Vleck (1863–1943), in developing his exceptionally
lucid writing style:

My father got after me for my very poor style of scientific exposition. I feel I
owe a great deal to him for his splitting up my sentences into shorter sentences,
avoiding dangling participles—i.e., tightening upmy prose style—the same kind
of drill I try to give my own graduate students now.3

Van der Waerden only included the quantum part (Van Vleck, 1924b), of a two-part
paper in his anthology. In the second part, Van Vleck (1924c) clearly laid out the
results from classical mechanics needed to understand the first part as well as those
parts of (Kramers and Heisenberg, 1925) that are most important for understanding
Heisenberg’s Umdeutung paper. This is true even though Van Vleck only covered
coherent scattering, in which the frequency of the incident and the scattered radia-
tion is the same, whereas a large part of the Kramers–Heisenberg paper is devoted
to incoherent scattering, first predicted in (Smekal, 1923) and verified experimen-
tally a few years later (Raman 1928; Landsberg and Mandelstam 1928). In his inter-
view with Kuhn, Heisenberg emphasized the importance of this part of his paper with
Kramers for theUmdeutung paper.4 Of course, this is also the part towhichHeisenberg
materially contributed.5 Still, the non-commutative multiplication rule introduced
in the Umdeutung paper may well have been inspired, as Heisenberg suggests, by
manipulations in this part of the Kramers–Heisenberg paper. To understand where the
arrays of numbers subject to this rule come from, however, it suffices to understand
how coherent scattering is treated in Kramers’ dispersion theory: indeed, the only
explicit use of dispersion theory in the Umdeutung paper are results for coherent
scattering.

1.1 On the verge of Umdeutung

As in the case of (Kramers and Heisenberg, 1925), one is struck in hindsight by how
close (VanVleck, 1924b,c) comes to anticipatingmatrixmechanics. During theAHQP
interview, Kuhn reminded Van Vleck of a remark he had made 2years earlier to the
effect that, had he been “a little more perceptive,” he “might have taken off from that
paper to do what Heisenberg did.” “That’s true,” Van Vleck conceded, but added with

3 P. 21 of the transcript of the first of two sessions of the interview, quoted in (Fellows, 1985, p. 57). Van
Vleck is talking specifically about the summer of 1925, when he was working on his book-length (Van
Vleck, 1926), but his father had probably given him a few pointers before. (Van Vleck, 1924b) definitely
belies the author’s harsh judgment of his earlier writing style.
4 P. 18 of the transcript of session 4 of a total of 12 sessions of the AHQP interview with Heisenberg.
5 According to Dresden (1987, pp. 273–274), Kramers added Heisenberg’s name to (Kramers and
Heisenberg, 1925) mainly as a courtesy. For Heisenberg’s side of the story, see pp. 15–18 of the
transcript of session 4 of the AHQP interview with Heisenberg, several passages of which can be found in
(Mehra andRechenberg, 1982–2001, Vol. 2, pp. 178–179), although the authors cite their own conversations
with Heisenberg as their source (cf. the foreword to Vol. 2).
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characteristic modesty: “Perhaps I should say considerably more perceptive.”6 In the
biographical information he supplied for the AHQP, Van Vleck noted:

In the two or three years after my doctorate…my most significant paper was
one on the correspondence principle for absorption…It was somewhat related to
considerations based on the correspondence principle that led Heisenberg to the
discovery of quantum mechanics, but I did not have sufficient insight for this.7

This modest assessment is reflected in the discussion of the relation between Van
Vleck’s work and matrix mechanics by Fred Fellows (1985, pp. 74–81), who wrote a
superb dissertation covering the first half of Van Vleck’s life and career. In a biogra-
phical memoir about his teacher and fellow Nobel laureate, Phil Anderson (1987)8 is
less reserved: “This paper comes tantalizingly close to the kind of considerations that
led to Heisenberg’s matrix mechanics” (p. 506).

Van Vleck did not pursue his own research any further in 1924 and instead spent
months writing—and, as he jokingly put it, being a “galley slave” (Fellows, 1985,
p. 100) of—a Bulletin for the National Research Council (NRC) on the old quantum
theory (Van Vleck, 1926). With his masterful survey he would surely have rendered
a great service to the American physics community had it not been for the quan-
tum revolution of 1925–1926. Like the better-known Handbuch article by Wolfgang
Pauli (1900–1958) (1926), the Bulletin was, as Van Vleck (1971) recognized, “in
a sense…obsolete by the time it was off the press” (p. 6).9 One is left wondering
what would have happened, had the young assistant professor at the University of
Minnesota continued to ponder the interaction between radiation and matter and the
correspondence principle instead of fulfilling his duties as a newly minted member of
the American physics community.

That Kramers and Van Vleck—and, one may add, Max Born (1882–1970) and
Pascual Jordan (1902–1980)—came so close to beatingHeisenberg to the punchmakes
the birth of matrix mechanics reminiscent of the birth of special relativity. The com-
parison seems apt, even though none of these authors anticipated as much of the new
theory as H. A. Lorentz (1853–1928) and Henri Poincaré (1854–1912) in the case of
relativity.10 Heisenberg (1971, p. 63) himself actually compared hisUmdeutung paper

6 See p. 24 of the transcript of the first session of the interview. Kuhn’s recollection is that Van Vleck’s
earlier remark was made during a meeting in Philadelphia in March 1961 to plan for the AHQP project
(Kuhn et al., 1967, p. viii). Van Vleck was Kuhn’s Ph.D. advisor and the two men co-authored (Kuhn and
Van Vleck, 1950) (Anderson, 1987, p. 518). It was Van Vleck who approached Kuhn in February 1961 to
offer him the directorship of the AHQP project (Kuhn et al., 1967, p. viii) (see also Baltas et al., 2000,
pp. 302–303).
7 Biographical information prepared for the American Institute of Physics project on the history of recent
physics in the United States (included in the folder on Van Vleck in the AHQP), p. 1.
8 Van Vleck, Anderson, and Sir Nevill Mott shared the 1977 Nobel Prize “for their fundamental theoretical
investigations of the electronic structure of magnetic and disordered systems.” Van Vleck won for the work
begun in the early 1930s that earned him the title of “father of modern magnetism.”
9 For the reception of VanVleck’sBulletin, see (Fellows, 1985, pp. 88–89). VanVleck’sBulletin and Pauli’s
Handbuch article were not the only treatises on the old quantum theory that were out of date before the ink
was dry. (Born, 1925) and (Birtwistle, 1926), two books on atomic mechanics, suffered the same fate.
10 In his autobiography, Born (1978, pp. 216–217) exaggerated how close he came to matrix mechanics
before Heisenberg.
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to Einstein’s relativity paper (Einstein, 1905), arguing that what they had in common
was their insistence on allowing only observable quantities into physical theory. The
analogy is considerably richer than that.

The breakthroughs of Einstein and Heisenberg consisted, to a large extent, in rein-
terpreting elements already present in the work of their predecessors, extending the
domain of application of these elements, and discarding unnecessary scaffolding.
Einstein recognized the importance of Lorentz invariance beyond electromagnetism,
reinterpreted it as reflecting a new space–time structure, and discarded the ether
(Janssen 2002). In the case of (Heisenberg, 1925c), the element ofUmdeutung or rein-
terpretation is emphasized in the title of the paper. Heisenberg reinterpreted elements
of the Fourier expansion of the position of an electron entering into the demonstration
that the Kramers dispersion formula merges with the classical result in the correspon-
dence limit, discarded the orbits supposedly given by that position, and recognized that
the non-commuting arrays of numbers associated with transitions between different
states and representing position in his new scheme were meaningful far beyond the
dispersion theory from which they originated.

A further point of analogy is that neither Einstein nor Heisenberg presented the new
theory in a particularly elegant mathematical form. In the case of relativity, this had
to await the four-dimensional geometry of Hermann Minkowski (1864–1909) and the
theory’s further elaboration in terms of it by Arnold Sommerfeld (1868–1951), Max
Laue (1879–1960), and others (Janssen and Mecklenburg, 2006). Even so, a modern
reader will have no trouble recognizing special relativity in Einstein’s 1905 paper.
The same reader, however, will probably only start recognizing matrix mechanics in
two follow-up papers to the Umdeutung paper, (Born and Jordan, 1925b) and (Born,
Heisenberg, and Jordan, 1925), the famousDreimännerarbeit.11 Born first recognized
that Heisenberg’s new non-commuting quantities are matrices. Born and Jordan first
introduced the familiar commutation relations for position and momentum. In the
Umdeutung paper Heisenberg had used the Thomas–Kuhn sum rule, a by-product of
the Kramers dispersion formula, as his fundamental quantization condition. As we
shall see, Van Vleck had actually been the first to find the sum rule, although he only
recognized the importance of the result later.

In the collective memory of the physics community, major discoveries understan-
dably tend to get linked to singular events even though they are almost invariably
stretched over time. The “discovery” of the electron by J. J. Thomson (1856–1940)
in 1897 or the “discovery” of the quantum of action by Max Planck (1858–1947) in
1900 are well-known examples of this phenomenon. Special relativity is another good
example of a “discovery” that has come to be associated with a single flash of insight,
Einstein’s recognition of the relativity of simultaneity, and a single emblematic text,
“On the electrodynamics of moving bodies” (Einstein, 1905). Much the same can be
said about Heisenberg’s famous trip to Helgoland in June 1925 to seek relief from his
seasonal allergies and theUmdeutung paper resulting from his epiphany on this barren

11 During a lunch break in his AHQP interview, Alfred Landé (1888–1976) told Heilbron and Kuhn:
“Heisenberg stammered something. Born made sense of it” (p. 10a of the transcript of sessions 1–4 of the
interview; cf. note 174). Kuhn and Heilbron report that they wrote this down right after the conversation
took place and call it a “Quasi-Direct Quote.”
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island. The way in which such stories become part of physics lore can be seen as a
manifestation of what Robert K. Merton (1968) has dubbed the “Matthew effect,” the
disproportional accrual of credit to individuals perceived (sometimes retroactively)
as leaders in the field.12 We do, of course, recognize the singular importance of the
contributions of Einstein to special relativity and of Heisenberg to matrix mechanics.
But there is no need to exaggerate the extent of their achievements. They may have
been the first to enter the promised land, to use another admittedly strained biblical
metaphor, but they would never have laid eyes on it without some Moses-figure(s)
leading the way.

In his biography of Kramers, Dresden makes a convincing case that his subject
deserves more credit for matrix mechanics than he received: “Kramers certainly hoped
and probably expected to be the single author of the Kramers–Heisenberg paper. It
is probably futile to speculate how the credit for the discovery of matrix mechanics
would have been distributed in that case. There would be an indispensable preliminary
paper by Kramers alone, followed by a seminal paper by Heisenberg; this might well
have altered the balance of recognition” (Dresden, 1987, p. 252). Citing this passage,
Dirk ter Haar (1998, p. 23), like Dresden one of Kramers’ students, raises the question
whether Kramers would have shared Heisenberg’s 1932 Nobel Prize in that case. In a
curmudgeonly review of Dresden’s book, however, Nico van Kampen, another one of
Kramers’ students, takes issue with the pattern of “near misses” that Dresden (1987,
pp. 446–461) sees in Kramers’ career, the discovery of matrix mechanics being one
of them (Dresden, 1987, pp. 285–288). Van Kampen asks: “Is it necessary to explain
that, once you have, with a lot of sweat and tears, constructed a dispersion formula on
the basis of the correspondence principle, it is not possible to forget that background
and that it takes a fresh mind to take the next step?” (Van Kampen, 1988). Similar
claims can be made and similar questions can be raised in the case of Van Vleck, even
though his work, unlike that of Kramers, did not directly influence Heisenberg.

Van Vleck’s contribution has receded even further into the background in the his-
tory of quantum mechanics than Kramers’. (Van Vleck, 1924b,c) is not discussed in
any of the currently standard secondary sources on quantum dispersion theory and
matrix mechanics, such as (Jammer, 1966), (Dresden, 1987), or (Darrigol, 1992).
Nor is it mentioned in Vol. 2 of (Mehra and Rechenberg, 1982–2001) on the disco-
very of matrix mechanics, although it is discussed briefly in Vol. 1 (pp. 646–647)
on the old quantum theory and in Vol. 3 (p. 55) on the elaboration of matrix me-
chanics.13 That he worked in faraway Minnesota rather than in Copenhagen or Göt-
tingen, we surmise, is a major factor in this neglect of Van Vleck. Whatever the
reason, the neglect is regrettable. For a modern reader, it is much easier to see in
(Van Vleck, 1924b,c) than in (Kramers and Heisenberg, 1925) or in (Born, 1924) that
matrix mechanics did not come as a bolt out of the blue, but was the natural outgrowth

12 The effect is named for the following passage from the Gospel According to St. Matthew: “For unto
everyone that hath shall be given, and he shall have in abundance: but from him that hath not shall be taken
away even that which he hath.”
13 It is also mentioned in (Van der Waerden and Rechenberg, 1985, pp. 330–331) and in (Hund, 1984,
pp. 131–132). As noted in (Mehra and Rechenberg, 1982–2001, Vol. 6, p. 348, note 407), Van Vleck’s work
is discussed prominently in a paper by Hiroyuki Konno (1993) on Kramers’ dispersion theory.
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of earlier applications of the correspondence principle to the interaction of radiation
and matter.

Aitchison et al. (2004) have recently given a detailed reconstruction of the
notoriously opaque mathematics of (Heisenberg, 1925c). By way of motivating their
enterprise, they quote the confession of Steven Weinberg (1992) that he has “never
understood Heisenberg’s motivations for the mathematical steps in his paper” (p. 67;
our emphasis). These authors clearly explain the mathematical steps. The motivations
for these steps, however, cannot be understood, we submit, without recourse to the
dispersion theory leading up to his paper. And if we want to retrace Heisenberg’s steps
on his sojourn to Helgoland, Van Vleck may well be our best guide.

1.2 Structure of our paper

Like Van Vleck’s 1924 paper, our paper comes in two parts, the second providing the
technical results needed to understand the first in full detail. To provide some context
for Van Vleck’s work, undertaken far from the European centers in quantum theory,
we begin Part One by addressing the question of America’s “coming of age” in theo-
retical physics in the 1920s (Sect. 2). In Sect. 3, we relate the story of how matrix
mechanics grew out of dispersion theory in the old quantum theory, drawing on the
extensive secondary literature on this episode as well as on the materials brought toge-
ther in the AHQP. This story is usually told from a Eurocentric perspective. Following
our discussion in Sect. 2, we shall look at it from a more American vantage point.
Discussion of the famous BKS theory (Bohr, Kramers, and Slater, 1924a), which is
prominently mentioned in many papers on dispersion theory in 1924–1925, is post-
poned until Sect. 4. We shall pay special attention to the role of Van Vleck’s fellow
graduate student at Harvard, John C. Slater (1900–1976).14 The reason for keeping
the discussion of BKS separate from the discussion of dispersion theory is that we
want to argue that the rise and fall of BKS was largely a sideshow distracting from
the main plot line, which runs directly from dispersion theory to matrix mechanics. In
hindsight, BKS mainly deserves credit for the broad dissemination of its concept of
“virtual oscillators.” Contrary to widespread opinion, both among contemporaries and
among later historians, these virtual oscillators did not originate in the BKS theory.
They were introduced the year before, under a different name and in the context of
dispersion theory, by the Breslau (nowWrocław, Poland) physicists Rudolf Ladenburg
(1882–1952) and Fritz Reiche (1883–1969), who called them “substitute oscillators”
[Ersatzoszillatoren15] (Ladenburg and Reiche, 1923, p. 588, p. 590). This paper is im-
portant in its own right and underscores the key achievement of Van Vleck’s two-part
paper. BothVanVleck (1924b,c) andLadenburg andReiche (1923) discuss the relation
between quantum and classical expressions for emission, absorption, and dispersion in
view of Bohr’s correspondence principle. Van Vleck’s discussion is impeccable in all
three cases; Ladenburg and Reiche made serious errors in the case of both dispersion
and absorption. The expertise Van Vleck had gained in classical mechanics through

14 On Slater, see, e.g., (Schweber, 1990).
15 We follow the translation used in (Konno, 1993, e.g., p. 139).
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his work on the problem of helium in the old quantum theory (Van Vleck 1922a,b)
put him in an ideal position to correct these errors. We suggest that this is in part what
he wanted to do with (Van Vleck, 1924b,c).16

In Sect. 5, the first section of Part Two, we give an elementary and self-contained
presentation, drawing on (Van Vleck, 1924b,c), of the technical results on which
our narrative in Sects. 3 and 4 rests. In particular, we use canonical perturbation
theory in action-angle variables to derive a classical formula for the dispersion of
radiation by a charged harmonic oscillator and apply the correspondence principle to
that formula to obtain the Kramers dispersion formula for this special case.17 This fills
an important pedagogical gap in the historical literature. Given the central importance
of the Kramers dispersion formula for the development of quantum mechanics, it is
to be lamented that there is no explicit easy-to-follow derivation of this result in the
extensive literature on the subject. In the later parts of Sect. 5 and in Sect. 6, we take
a closer look at Van Vleck’s main concerns in his 1924 paper, which was absorption
rather than dispersion and the extension of results for the special case of a charged
harmonic oscillator (which suffices to understand how matrix mechanics grew out of
dispersion theory) to arbitrary non-degenerate multiply-periodic systems. In Sect. 7,
we present a simple modern derivation of the Kramers dispersion formula and related
results, which we hope will throw further light on derivations and results in Sects. 5
and 6 as well as on the narrative in Sects. 3 and 4. Finally, in Sect. 8, we bring together
the main conclusions of our investigation.

2 Americans and quantum theory in the early 1920s

“[A]lthough we did not start the orgy of quantum mechanics, our young theorists
joined it promptly” (Van Vleck, 1964, p. 24).18 This is how our main protagonist,
known to his colleagues simply as “Van”, described the American participation in
the quantum revolution of the mid-1920s for an audience in Cleveland in 1963. Van
Vleck spoke as the first recipient of an award named for America’s first Nobel Prize
winner in physics, Albert A. Michelson (1825–1931). Van Vleck was selling himself
and his countrymen short by characterizing the American contribution to the quantum
revolution as simply a matter of joining an orgy started by the Europeans and in full
swing by the time the Americans arrived on the scene.

Eight years later, Van Vleck, in fact, took exception to what sounds like a simi-
lar characterization given by another leading American physicist of his generation,
Isidor I. Rabi (1898–1988). Van Vleck quoted a comment that Rabi made in a TV
documentary about Enrico Fermi (1901–1954):

16 (Ladenburg, 1921) and (Ladenburg and Reiche, 1923) are cited in (Van Vleck, 1924b, p. 339).
17 Van Vleck did it the other way around: he derived the classical formula and showed that it merges with
Kramers’ quantum formula in the correspondence limit. In Sect. 5.2, we shall quote from an exchange
between Born and Van Vleck that makes it clear that Van Vleck felt that it did not really matter whether
one used the correspondence principle to construct quantum formulae or to check them.
18 Quoted and discussed in (Coben, 1971, p. 456).
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We had produced a large number of people who had been brought up to a certain
level, then needed some help, some leadership to get over the hump. Once they
were over the hump they were tremendous. People of my generation brought
them over the hump, largely from attitudes, tastes, and developments which we
had learned in Europe (Van Vleck, 1971, p. 7).

As Kuhn and others have emphasized, Rabi’s point was that American physicists
returning from Europe rather than European émigrés were mainly responsible for the
coming of age of American physics.19 This issue has been hotly debated in the history
of physics literature.20 Our study of some early American contributions to quantum
theory supports the observation by Sam Schweber (1986) that in the 1930s theoretical
physics was “already a thriving enterprise in the United States. The refugee scientists
resonated with and reinforced American strength and methods: they did not create
them” (p. 58).

Commenting on Rabi’s remark, Van Vleck (1971) reiterated the point of his
Michelson address that “quantum mechanics was a basically European discovery”
(p. 6). In (Van Vleck, 1929), he had likewise characterized it as “the result of the
reaction of mind on mind among European talent in theoretical physics” (p. 467). In
1971, however, he added that “there has been toomuch of an impression that American
physicists, even in the application of quantummechanics, were effective only because
they had the aid of European physicists, either by going to Europe, or because of their
migration to America” (Van Vleck, 1971, p. 6). Van Vleck, who was proud to be a
tenth-generation American,21 received his entire education in the United States. He
hardly had any contact with European physicists before 1925, although he did meet a
few on a trip to Europe with his parents in the summer of 1923. In Copenhagen, he
called on Bohr, who suggested that he get in touch with Kramers,22 Bohr’s right-hand
man throughout the period of interest to us. Kramers was not in Denmark at the time
but in his native Holland. Decades later, when he received the prestigious Lorentz
medal from the Koninklijke Akademie van Wetenschappen in Amsterdam, Van Vleck
recalled how he had searched for Kramers high and low. After he had finally tracked
him down—it can no longer be established whether this was in Bergen aan Zee or in
Schoorl—the two men went for a long walk in the dunes along the North-Sea coast:
“This was the beginning of a friendship that lasted until his passing in 1952” (Van
Vleck, 1974, p. 9). Unfortunately, Van Vleck does not tell us what he and Kramers
talked about.

19 See p. 20 of the transcript of the last of five sessions ofKuhn’sAHQP interviewwithGeorgeE.Uhlenbeck
(1900–1988).
20 For a concise summary and detailed references to the older literature, see (Moyer, 1985, pp. 171–173).
Whereas our focus will be on American contributions to atomic physics, Alexi Assmus (1992, 1999) has
argued that American theoretical physics came of age in molecular physics (cf. note 45 below).
21 He could trace his ancestry back to the fifteenth century, to a certain Johan van Vleeck of Maastricht.
One of the latter’s descendants, Tielman van Vleeck (or von Fleck), left Bremen for New Amsterdam in
1658 (Fellows, 1985, pp. 5–6).
22 See p. 14 of the transcript of session 1 of the AHQP interview with Van Vleck.
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2.1 Education

Van Vleck learned the old quantum theory of Bohr and Sommerfeld at Harvard
as one of the first students to take the new course on quantum theory offered by
Edwin C. Kemble (1889–1984), the first American physicist to write a predominantly
theoretical quantum dissertation. Kemble, Van Vleck (1992) wrote in an autobiogra-
phical note accompanying the published version of his Nobel lecture, “was the one
person in America at that time qualified to direct purely theoretical research in quan-
tum atomic physics” (p. 351). Kemble’s course roughly followed (Sommerfeld, 1919),
the bible of the old quantum theory. Van Vleck supplemented his studies by reading
(Bohr, 1918) and (Kramers, 1919) (Fellows, 1985, p. 17).

Van Vleck was part of a remarkable cohort of young American quantum theo-
rists, which also included Slater, Gregory Breit (1899–1981), Harold C. Urey (1893–
1981), Robert S. Mulliken (1896–1987), and David M. Dennison (1900–1976). Just
as Van Vleck was the first to write a purely theoretical dissertation at Harvard in 1922,
Dennison was the first to do so at the University of Michigan in 1924.23 Dennison
could take advantage of the presence of Oskar Klein (1894–1977), an early associate
of Bohr,24 who was a visiting faculty member in the physics department in Michigan
from 1923 to 1925 (Sopka, 1988, p. 321). This is where Klein came up with what is
now known as the Klein–Gordon equation; it is also where he made his contribution
to what is now known as the Kaluza–Klein theory.25

Reminiscences about the early days of quantum physics in the United States can
be found in (Van Vleck, 1964, 1971), (Slater, 1968, 1973, 1975), and (Rabi, 2006).
It is also an important topic of conversation in the AHQP interviews with Van Vleck,
Slater, Dennison, and Kemble. These interviews need to be handled with care. In the
case of Slater and Van Vleck, one can say, roughly speaking, that the former had a
tendency to exaggerate the importance of American contributions, especially his own,
while the latter tended to downplay their importance. In sharp contrast, for instance,
to the modest remarks by Van Vleck quoted in Sect. 1.1, Slater boasted that he “was
really working toward quantum mechanics before quantum mechanics came out. I’m
sure if it was delayed a year or so more, I would have got it before the others did.”26

The older generation—men such as Michelson and Robert A. Millikan (1868–
1953)—recognized that the United States badly needed to catch up with Europe in
quantum physics. The Americans were already doing first-rate experimental work.
Theory, however, was seriously lagging behind. As the German–American–Dutch
physicist Ralph Kronig (1904–1995) described the situation in an important essay in
the Pauli memorial volume:

While in experimental physics a number of investigators like Michelson,
Millikan, Langmuir, Compton and R. W. Wood, ranking among the foremost in
the world, continued a tradition of pioneer research that went back to Franklin,

23 See p. 10 of the transcript of the first of three sessions of Kuhn’s AHQP interview with Dennison.
24 See (O. Klein, 1967) for his reminiscences about his early days in Copenhagen.
25 See p. 13 of the transcript of session 5 of the AHQP interview with Uhlenbeck.
26 See p. 40 of the transcript of the first session of the AHQP interview with Slater.
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Henry, andRowland, theoretical physics, after themeteoric appearance ofGibbs,
could not boast of a similar record…There was, it is true, a somewhat disperse
group of younger men in America, endeavouring to come up to scratch in [ato-
mic physics], of which I should mention Kemble, Van Vleck, Breit, Slater, and
Mulliken, but their mutual contacts were limited (Kronig, 1960, p. 17).

Kronig, born in Dresden, came to the United States in 1919 and got his Ph.D. at
ColumbiaUniversity in 1924.After an extended trip to Europe on aColumbia traveling
fellowship, he taught in Columbia for 2years before returning to Europe for good in
1927 (see the folder on Kronig in the AHQP). Kronig’s impression is confirmed by
Van Vleck’s teacher, Ted Kemble:

[T]he only theoretical physicists in the country at that time were really men on
whom the load of teaching all the mathematical physics courses lay, and they all
spent their time teaching. It wasn’t, as I remember, a constructive occupation.27

The one theorist who, in Kemble’s estimation, was active in research in classical
theory, Arthur Gordon Webster (1863–1923), was never able to make the transition to
quantum theory. Webster, Kemble said,

just couldn’t keep up with what was going on when the quantum theory began.
I always understood that the reason he killed himself was simply because he
discovered that suddenly physics had gone off in a new direction and he was
unable to follow, and couldn’t bear to take a seat in the back and be silent.28

When quantum theory arrived on the scene, some experimentalists tried their hands
at teaching it themselves (Coben, 1971, p. 444). In this climate, young American
physicists with a knack for theory became a hot commodity. They received fellowships
to learn the theory at the feet of the masters in Europe and offers of faculty positions
straight out of graduate school.29

2.2 Postdocs and faculty positions

The careers of the young theorists listed above amply illustrate the new opportunities
in the mid-1920s. Slater went to Europe on a Sheldon fellowship from Harvard and
spent the first half of 1924 with Bohr and Kramers in Copenhagen. During this period,
Urey and Frank C. Hoyt (1898–1977) were in Copenhagen as well, Urey on a small
fellowship from the American–Scandinavian Foundation, Hoyt on a more generous
NRC fellowship paid for by the Rockefeller foundation.30 Among the visitors the
Americans got tomeet inBohr’s institutewereHeisenberg andPauli.Hoyt, a promising

27 See p. 4 of the transcript of the last two of three sessions of the AHQP interview with Kemble. See also
p. 10 of the transcript of the first of session.
28 See p. 12 of the transcript of the first session of the AHQP interview with Kemble.
29 For further discussion of quantum physics in America before the mid-1930s, see (Coben, 1971), (Seidel,
1978), (Kevles, 1978, pp. 168–169), (Weart, 1979), (Schweber, 1986), (Holton, 1988), and, especially,
(Sopka, 1988).
30 See (Robertson, 1979, p. 157), (Sopka, 1988, pp. 71, 97), and Slater to VanVleck, July 27, 1924 (AHQP).
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student who never reached the level of distinction of the cohort immediately following
him,31 was in Copenhagen for almost 2years, from October 1922 to September 1924,
Urey for less than one, from September 1923 to June 1924, and Slater only for a few
months, from December 1923 to April 1924. Slater did not have a good experience
in Copenhagen. This transpires, for instance, in the letter he wrote to Van Vleck on
his way back to the United States. Off the coast of Nantucket, a few hours before his
ship—The Cunard R.M.S. “Lancastria”—docked in New York, he wrote:

Don’t remember just how much I told you about my stay in Copenhagen. The
paper with Bohr and Kramers [proposing the BKS theory] was got out of the
way the first six weeks or so—written entirely by Bohr and Kramers. That was
very nearly the only paper that came from the institute at all the time I was there;
there seemed to be very little doing. Bohr does very little and is chronically
overworked by it…Bohr had to go on several vacations in the spring, and came
back worse from each one.32

In October 1924, Dennison arrived in Copenhagen, on an International Education
Board (IEB) fellowship, another fellowship paid for by the Rockefeller Foundation.33
The state of quantum theory in America was already beginning to change at that point.
Like Hoyt, Dennison had been awarded a NRC fellowship, but had been told that
he could only spend the money at an American institution.34 In 1923, the NRC had
likewise rejected the proposal of Mulliken to go work with Ernest Rutherford (1871–
1937) in Cambridge. Mulliken became a NRC research fellow at Harvard instead
(Assmus, 1992, p. 23).

Van Vleck and Slater, who both started graduate school at Harvard in 1920 (Van
Vleck in February, Slater in September) and lived in the same dormitory,35 had at
one point discussed going to Copenhagen together upon completion of their Ph.D.
degrees in 1923. In the end, Van Vleck went to Minneapolis instead. In the biogra-
phical note accompanying his Nobel lecture from which we already quoted above, he
reflected:

I was fortunate in being offered an assistant professorship at the University of
Minnesota…with purely graduate courses to teach. This was an unusual move
by that institution, as at that time, posts with this type of teaching were usually

31 Hewrote several papers on applications of Bohr’s correspondence principle (Hoyt, 1923, 1924, 1925a,b).
The first two are cited in (Van Vleck, 1924b, p. 334) and all but the second are cited in (Van Vleck, 1926, pp.
124, 146). The second paper is cited in (Ladenburg and Reiche, 1924, p. 672). Hoyt also translated Bohr’s
Nobel lecture into English (Bohr, 1923a). Hoyt ended upmaking a career in weapons research rather than in
academic physics. After the war, he worked at Argonne National Laboratory, Los Alamos, and Lockheed.
He was interviewed for the AHQP by Heilbron but did not remember much of the early days of quantum
theory.
32 Slater to Van Vleck, July 27, 1924 (AHQP). The second sentence of this passage is quoted by Dresden
(1987, p. 165) in the course of his detailed discussion of Slater’s reaction to his experiences in Copenhagen.
33 Bohr arranged for one of these fellowships to pay for Heisenberg’s visit to Copenhagen in the fall of
1924 (Cassidy, 1991, pp. 180, 183). See also the acknowledgment in (Heisenberg, 1925b, p. 860).
34 See p. 12 of the transcript of session 1 of the AHQP interview with Dennison.
35 SeeVanVleck, 1920–1930. The first ten years of John Slater’s scientific career.Unpublishedmanuscript,
American Institute of Physics (AIP), p. 2.
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reserved for older men, and recent Ph.D.’s were traditionally handicapped by
heavy loads of undergraduate teaching which left little time to think about re-
search (Van Vleck, 1992, p. 351).

When the university hired Van Vleck it also hired Breit so that its new recruits
would not feel isolated.36 Breit is one of the more eccentric figures of twentieth-
century American physics. He was born in Russia and came to the United States
in 1915. In a biographical memoir of the National Academy of Sciences, we read
that

John Wheeler relates a story told to him by Lubov [Gregory’s sister] that she
and Gregory were vacationing on the sea when the call to leave Russia came,
and they “came as they were.” For Gregory this meant dressed in a sailor suit
with short pants; he was still wearing it when he enrolled in Johns Hopkins
(at age sixteen!). Wheeler attributes some of Gregory’s subsequent reticence
to the ragging he took at the hand of his classmates for his dress (Hull, 1998,
pp. 29–30).

True to form, Breit declined to be interviewed for the AHQP. In a memorandum
dated April 8, 1964 (included in the folder on Breit in the AHQP), Kuhn describes
how they met for lunch, but did not get beyond “casual reminiscences.” Kuhn ends on
a positively irritated note: “we broke off amicably but with zero achievement to report
for the project.”

Breit andVanVleck replacedW.F.G.Swann (1884–1962)whohad leftMinneapolis
for Chicago, taking his star graduate student Ernest O. Lawrence (1901–1958) with
him. As Van Vleck (1971) notes wryly: “A common unwitting remark of the lady next
to me at a dinner party was “Wasn’t it too bad Minnesota lost Swann—it took two
men to replace him!”” (p. 6).

Just as Minnesota hired both Breit and Van Vleck in 1923, the University of
Michigan hired not one but two students of Paul Ehrenfest (1880–1933) in 1927,
Uhlenbeck and Samuel A. Goudsmit (1902–1978) (Coben, 1971, p. 460).37 In addi-
tion Michigan hired Dennison, its own alumnus, upon his return from Copenhagen.
Ann Arbor thus became an important center for quantum theory, especially in molecu-
lar physics (Assmus, 1992, pp. 4, 26, 30). While Uhlenbeck and Goudsmit essentially
remained in Ann Arbor for the rest of their careers, neither Breit nor Van Vleck stayed
long in Minneapolis. Breit left for the Carnegie Institution of Washington after only
1year, Van Vleck for the University of Wisconsin, his alma mater, after five.38 Van
Vleck agonized over the decision to leave Minnesota, where he had been promoted to
associate professor in June 1926 and, only a year later, to full professor (Fellows, 1985,
Ch. VII). Moreover, on June 10, 1927, he had married Abigail Pearson (1900–1989),

36 See p. 14 and p. 18 of the transcript of session 1 of the AHQP interview with Van Vleck.
37 See also (Sopka, 1988, p. 149) and the AHQP interview with Dennison. The recruiters were Walter F.
Colby (1880–1970) and Harrison M. Randall (1870–1969).
38 The mathematics building in Madison is named after Van Vleck’s father, who was a professor of
mathematics at the University of Wisconsin from 1906 until his retirement in 1929.
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whom he had met while she was an undergraduate at the University of Minnesota and
who had strong ties to Minneapolis.39

To replace Van Vleck, Minnesota made the irresistible offer of a full professorship
to the young Edward U. Condon (1902–1974). Minnesota had offered Condon an
assistant professorship the year before. At that point, Condon had received six such
offers and had decided on Princeton (Condon, 1973, p. 321). His laconic response to
this embarrassment of riches: “The market conditions for young theoretical physicists
continues [sic] to surprise me” (Coben, 1971, p. 463). Before his first Minnesota win-
ter as a full professor, Condon already regretted leaving New Jersey. He returned to
Princeton the following year. Condon, Rabi, and J. Robert Oppenheimer (1904–
1967)40 were the leaders of the cohort of American quantum theorists graduating
right after the quantum revolution of 1925. The cohort most relevant to our story
graduated right before that watershed.

2.3 The physical review

It was during Van Vleck’s tenure in Minnesota that his senior colleague John T. (Jack)
Tate (1889–1950) took over as editor-in-chief of The Physical Review (Sopka, 1988,
pp. 142–145, 203, note 11). Tate edited the journal from 1926 to 1950.41 Van Vleck
(1971) described the change of editorship as “another revolution” in the “middle
of the quantum revolution” (pp. 7–8). Van Vleck was highly appreciative of Tate’s
role: “He published my papers very promptly, and also often let me see manuscripts
of submitted papers, usually to referee” (ibid.). Thanks in no small measure to Van
Vleck and other youngwhippersnappers in quantum theory, Tate turned what had been
a lack-luster publication into the prestigious journal it still is today. Van Vleck recalled
the transformation:

The Physical Review was only so-so, especially in theory, and in 1922 I was
greatly pleased that my doctor’s thesis [Van Vleck, 1922] was accepted for
publication by the Philosophical Magazine in England…By 1930 or so, the
relative standings of The Physical Review and Philosophical Magazine were
interchanged…Prompt publication, beginning in 1929, of “Letters to the Editor”
in The Physical Review…obviated the necessity of sending notes to Nature,
a practice previously followed by our more eager colleagues [see, e.g., Breit,
1924b, Slater, 1924, 1925c] (Van Vleck, 1964, pp. 22, 24).

Van Vleck’s impression is corroborated by two foreign-born theorists who made their
careers in the United States, Rabi and Uhlenbeck (Coben, 1971, p. 456). Rabi was

39 After her husband’s death, Abigail made a generous donation to the University of Minnesota to support
the Abigail and John van Vleck Lecture Series. Phil Anderson gave the inaugural lecture in 1983 and the
series has brought several Nobel Prize winners to Minneapolis since. The main auditorium in the building
currently housing the University of Minnesota physics department is also named after the couple.
40 Oppenheimer enrolled as an undergraduate at Harvard in 1922, 2years after Van Vleck and Slater started
graduate school there.
41 It is largely in recognition of this achievement that the current Minnesota physics building is named
after him.
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born in Galicia but moved to New York City as an infant. Rabi liked to tell the story
of how, when he returned to Europe to study quantum theory in Germany in 1927,
he discovered that The Physical Review “was so lowly regarded that the University of
Göttingen waited until the end of the year and ordered all twelve monthly issues at
once to save postage” (ibid.). On other occasions, Rabi told this story about Hamburg
University (Rigden, 1987, p. 4). He told Jeremy Bernstein (2004) that “in Hamburg
so little was thought of the journal…that the librarian uncrated the issues only once a
year” (p. 28). The following exchange between Kuhn and Heisenberg, talking about
the early 1920s, is also revealing:

Heisenberg: “What was the American paper at that time?”
Kuhn: “The Physical Review?”
Heisenberg: “No, that didn’t exist at that time. I don’t think so. Well, in these
early times it probably didn’t play a very important role.”42

In a talk about Condon, Rabi elaborated on the mediocrity of The Physical Review:

it was not a very exciting journal even though I published my dissertation in it.
And we felt this very keenly. Here was the United States, a vast and rich country
but on a rather less than modest level in its contribution to physics, at least per
capita. And we resolved that we would change the situation. And I think we did.
By 1937 the Physical Review was a leading journal in the world (Rabi, 1975,
p. 7).

Uhlenbeck remembered how as a student in Leyden he viewed The Physical Review as
“one of the funny journals just like the Japanese.”43 His initial reaction to the job offer
from Michigan suggests that, at least at the time, his disdain for American physics
journals extended to the country as a whole: “If it had been Egypt or somewhere like
that, I would have gone right away, or China, or even India, I always wanted to go to
exotic places [Uhlenbeck was born in Batavia in the Dutch East Indies, now Jakarta,
Indonesia]; butAmerica seemed terribly dull and uninteresting” (Coben, 1971, p. 460).
In the AHQP interview with Uhlenbeck, one finds no such disparaging remarks. In
fact, Uhlenbeck talks about how he had reluctantly agreed to return to the Netherlands
in 1935 to replace Kramers, who had left Utrecht for Leyden to become Ehrenfest’s
successor after the latter’s suicide.44 Uhlenbeck was back in Ann Arbor in 1939.

2.4 The lack of recognition of early American contributions to quantum theory

Given the disadvantage they started out with, American theorists in the early 1920s
would have done well had they just absorbed the work of their European counter-
parts and transmitted it to the next generation. They did considerably better than that.
Even before the breakthrough of Heisenberg they started making important contribu-
tions themselves. According to Assmus (1992), however, “[a]tomic physics was shark

42 See p. 5 of the transcript of session 3 of the AHQP interview with Heisenberg.
43 See p. 20 of the transcript of session 5 of the AHQP interview with Uhlenbeck.
44 See p. 9 of the transcript of session 5 of the AHQP interview with Uhlenbeck.
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infested waters and was to be avoided; U.S. physicists would flourish and mature in
the calmer and safer tidepools of molecular physics” (p. 8; see also Assmus, 1999,
p. 187). She sees the early contributions of Van Vleck and Slater to atomic physics,
which will be the focus of our study, as exceptions to this rule:

Van Vleck and Slater viewed themselves as the younger generation, as central
figures in the “coming of age” of U.S. physics. They had been given the know-
ledge that Kemble and his generation could provide and felt themselves capable
of pushing into areas where the physics community in the United States had not
dared to venture. Still, after experiences had muted their youthful exuberance,
they turned to the by-then traditional problems of American quantum physics[,]
problems that addressed the building up of matter rather than its deconstruction
(Assmus, 1992, p. 22).

We hope to show that American work in atomic physics was significantly more
important—if not in quantity, then at least in quality—than these remarks suggest.45
Slater was one of the architects of the short-lived but highly influential
Bohr–Kramers–Slater (BKS) theory (Bohr, Kramers, and Slater, 1924a) (see Sect. 4).
Van Vleck’s two-part article in The Physical Review (Van Vleck, 1924b,c), which is
the focus of our study, is less well-known.

Originally, Van Vleck’s paper was to have three parts. A rough draft of the third
part has been preserved.46 Van Vleck did not finish the third part at the time. As he
explained in a letter to Born on November 13, 1924 (AHQP): “Part III which is not
yet ready relates to classical black body radiation rather than quantum theory.” It was
only toward the end of his life that he returned to the masterpiece of his youth. Three
years before he died he published a paper, co-authored with D. L. Huber, that can be
seen as a substitute for part III. As the authors explain:

Part III was to be concerned with the equilibrium between absorption and emis-
sion under the Rayleigh–Jeans law. It was never written up for publication be-
cause in 1925 the author was busy writing his book [Van Vleck, 1926a] and of
course the advent of quantum mechanics presented innumerable research pro-
blems more timely than a purely classical investigation. The idea occurred to
him to use the 50th anniversary of Parts I and II as the date for publishing a
paper which would start with Part III and might even bear its title. Although he
did not succeed in meeting the deadline, it still provided a partial motivation for
collaborating on the present article (Van Vleck and Huber, 1977, p. 939).

It was at the suggestion of Jordan that van derWaerden included the first (quantum) part
of Van Vleck’s 1924 paper in his anthology on matrix mechanics (Van der Waerden,
1968, see the preface).47 Interviewing Van Vleck for the AHQP in October 1963,

45 Assmus is probably right, however, that the Americans contributed more to molecular than to atomic
physics. This would fit with the thesis of (Schweber, 1990) that “Americans contributed most significantly
to the development of quantum mechanics in quantum chemistry” (pp. 398–406).
46 American Institute of Physics, Van Vleck papers, Box 17. We are grateful to Fred Fellows for alerting
us to this manuscript.
47 See also (Sopka, 1988, pp. 110–111).
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Kuhn claimed that Jordan had told him that Born and Jordan “were working quite
hard in an attempt to reformulate it [Van Vleck, 1924b,c] and had been multiplying
Fourier coefficients together,48 just at the time they got the Heisenberg paper that was
going to be matrix mechanics.”49 In fact, a paper by Born and Jordan (1925a) building
on (Van Vleck, 1924b,c) was submitted to Zeitschrift für Physik on June 11, 1925,
several weeks beforeHeisenberg’s breakthrough (Cassidy, 1991, p. 198).We therefore
suspect that Kuhn misremembered or misconstrued what Jordan had told him during
an interview for the AHQP in June 1963, a few months before the interview with Van
Vleck. Van Vleck’s paper is brought up during the second session of the interview (see
p. 14 of the transcript). In this exchange Kuhn insisted that (Born and Jordan, 1925a)
had come out before (Van Vleck, 1924b,c). Jordan corrected Kuhn at the beginning
of the third session, which prompted some further discussion of Van Vleck’s paper.
However, it was Kuhn, not Jordan, who suggested at that point that Born and Jordan
continued to pursue the ideas in Van Vleck’s paper even after publishing (Born and
Jordan, 1925a). Jordan did not confirm this. Still, althoughKuhn probably embellished
the story, there is no question that Van Vleck’s paper had a big impact on the work of
Born and Jordan. Jordan emphasized this in the interview with Kuhn, in a letter to van
der Waerden of December 1, 1961 (quoted in Van der Waerden, 1968, p. 17), and in
(Jordan, 1973). We quote from this last source:

Van Vleck gave a derivation of Einstein’s laws of the relation between the proba-
bilities of spontaneous emission and positive and negative absorption. This result
of Einstein’s had been looked upon for a long time in a sceptical manner by Niels
Bohr; now it was highly interesting to see, just how from Bohr’s preferred way
of thinking, a derivation of Einstein’s law could be given. Born and I performed
a simplified mathematical derivation of the results of Van Vleck. Our article on
this topic [Born and Jordan, 1925a] did not contain anything new apart from our
simpler form of the calculation, but by studying this topic we both came to a
more intimate understanding of Bohr’s leading ideas (Jordan, 1973, p. 294, our
emphasis).50

Incidentally, Van Vleck (1971, p. 7) pointed to this important pre-1925 contribu-
tion of his own as well as to Slater’s role in BKS and Kemble’s work on helium to
demonstrate the inaccuracy of Rabi’s characterization of American work in quantum
theory quoted earlier. Even at the time, Van Vleck had felt that the Europeans were
not giving the Americans their due. He complained about this in a letter to Born:

I am writing this letter regarding some of the references to my work in your
articles. I fully realize that an occasional error in a reference is unavoidable, for
I have made such mistakes myself. I would gladly overlook any one error, but
inasmuch as there are two or three instances, it is perhaps worth while to call

48 The multiplication of quantum–theoretical quantities corresponding to classical Fourier components is
one of the key elements of Heisenberg’s Umdeutung paper.
49 See p. 24 of the transcript of session 1 of the AHQP interview with Van Vleck.
50 See Sects. 5.2, 5.3 and 6.1 for discussion of Van Vleck’s correspondence principles for emission and
absorption. As in the case of (Kramers and Heisenberg, 1925), we suspect that (Born and Jordan, 1925a) is
actually more difficult to follow for most modern readers than (Van Vleck, 1924b,c).
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them to your attention. On p. 332 of your treatise on “Atommechanik” [Born,
1925], the reference tomywork on the crossed-orbit model of the normal helium
atom is given as [Van Vleck, 1923]. This reference is only to the abstract of some
work on excited helium and the references to my articles on normal helium are
[VanVleck, 1922a]…and especially [VanVleck, 1922b], where the details of the
computations are given. This incorrect reference to a paper on another subject
published a year later makes it appear as though my computation was published
simultaneously or later than that of Kramer[s] [(Kramers, 1923), cited in the
same footnote as (Van Vleck, 1923) in (Born, 1925, p. 332)]. The same error is
also found in your article [Born, 1924b] on perturbation theory…Also in your
book on Atommechanik [(Born, 1925, p. 332), the sentence with the footnote
referring to (Kramers, 1923) and (VanVleck, 1923)] you say “das raumliche [sic]
Modell ist ebenfalls von Bohr vorgeschlagen” [the spatial model has also been
proposed by Bohr], without any mention of the name Kemble, who proposed
the crossed-orbit model in [Kemble, 1921] before [Bohr, 1922].51

Van Vleck then comes to the most egregious case, Born’s failure to properly acknow-
ledge his two-part paper on the correspondence principle in (Born and Jordan, 1925a).
Especially in view of Jordan’s comments on the importance of this paper quoted above,
the authors were very stingy in giving him credit.

Van Vleck’s letter continues:

I was much interested in your recent article on the Quantization of Aperiodic
Systems, in which you show that the method of Fourier integrals gives many
results obtained by “Niessen and Van Vleck” [Born and Jordan, 1925a, p. 486],
placing my name after Niessen’s [Kare Frederick Niessen (1895–1967)], even
though his paper [Niessen, 1924] did not appear until Dec. 1924 while the details
ofmy computationswere given in the Physical Review forOct. 1924 [VanVleck,
1924b,c] and a preliminary notice published in the Journal of the Optical Society
for July 1924 [Van Vleck, 1924a], before Niessen’s article was even submitted
for publication. I think you wrote me inquiring about my work shortly after the
appearance of this preliminary note, and so you must be aware that it was the
first to appear…inasmuch as Niessen’s discussion is somewhat less general than
my own, it seems to me that it scarcely merits being listed first (Ibid.).

Writing from Cambridge, Massachusetts, where he was visiting MIT, Born apologi-
zed.52 Born had indeed written to Van Vleck concerning (Van Vleck, 1924a), albeit a
little later than the latter remembered:

While we already came close to one another in the calculation of the helium
atom, I see from your paper “A Correspondence Principle for Absorption” [Van
Vleck, 1924a] that we now approach each other very closely with our trains of

51 Van Vleck to Born, October 19, 1925, draft (AHQP).
52 Born to Van Vleck, November 25, 1925 (AHQP). Born had been less generous in the case of a similar
complaint from America a few years earlier (see Sect. 3.2).
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thought…I am sending you my paper “On Quantum Mechanics” [Born, 1924],
which pursues a goal similar to yours.53

This goes to show—Rabi’s anecdotal evidence to the contrary notwithstanding—that
at least some European physicists did keep up with theoretical work published in
American journals, the Journal of the Optical Society of America in this case, even if
they were not particularly generous acknowledging its importance in print.

3 Dispersion theory as the bridge between the old quantum theory and matrix
mechanics

From the point of view ofmodern quantummechanics, the old quantum theory of Bohr
and Sommerfeld—especially in the hands of the latter and members of his Munich
school—was largely an elaborate attempt at damage control. In classical physics the
state of a physical system is represented by a point in the phase space spanned by a sys-
tem’s generalized coordinates and momenta (qi , pi ). All its properties are represented
by functions f (qi , pi ) defined on this phase space. In quantum mechanics the state of
a system is represented by a ray in the Hilbert space associated with the system; its
properties are represented by operators acting in this Hilbert space, i.e., by rules for
transitions from one ray to another. In the old quantum theory, one bent over back-
ward to retain classical phase space. Quantum conditions formulated in various ways
in (Sommerfeld, 1915a), (Wilson, 1915), (Ishiwara, 1915), (Schwarzschild, 1916),
and (Epstein, 1916) only restricted the allowed orbits of points in phase space. These
conditions restricted the value of so-called action integrals for every degree of freedom
of some multiply-periodic system to integer multiples of Planck’s constant h,

∮
pidqi = ni h, (1)

where the integral is extended over one period of the generalized coordinate qi (there
is no summation over i). This condition must be imposed in coordinates in which the
so-called Hamilton–Jacobi equation for the system is separable.

Imposing such quantum conditions on classical phase space would not do in the
end. As the picture of the interaction of matter and radiation in the old quantum theory
already suggests, more drastic steps were required. In Bohr’s theory the frequency
νi→ f of the radiation emitted when an electron makes the transition from an initial
state i to a final state f is given by the energy difference Ei − E f between the two
states divided by h. Except in the limiting case of high quantum numbers, this radiation
frequency differs sharply from the frequencies with which the electron traverses its
quantized orbits in classical phase space before and after emission. This was widely
recognized as the most radical aspect of the Bohr model. Erwin Schrödinger (1887–
1961), for instance, opined in 1926 that this discrepancy between radiation frequency
and orbital frequency

53 Born to Van Vleck, October 24, 1924 (AHQP).
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…seems to me, (and has indeed seemed to me since 1914), to be something so
monstrous, that I should like to characterize the excitation of light in this way as
really almost inconceivable.54

Imre Lakatos (1970) produces a lengthy quotation from an obituary of Planck by Born
(1948), in which the same point is made more forcefully. It even repeats some of the
language of Schrödinger’s letter:

That within the atom certain quantized orbits…should play a special role, could
well be granted; somewhat less easy to accept is the further assumption that the
electrons moving on these curvilinear orbits…radiate no energy. But that the
sharply defined frequency of an emitted light quantum should be different from
the frequency of the emitting electron would be regarded by a theoretician who
had grown up in the classical school as monstrous and almost inconceivable
(Lakatos, 1970, pp. 150–151, our emphasis).

Unfortunately, this passage is nowhere to be found in (Born, 1948)!
One area of the old quantum theory in which the “monstrous” element became

glaringly and unavoidably apparent was in the treatment of optical dispersion, the
differential refraction of light of different colors. It was in this area that physicists
most keenly felt the tension between orbital frequencies associated with individual
states (the quantized electron orbits of the Bohr–Sommerfeld model) and radiation
frequencies associated with transitions between such states. One of the key points
of Heisenberg’s Umdeutung paper was to formulate a new theory not in terms of
properties of individual quantum states but in terms of quantities associated with
transitions between states without even attempting to specify the states themselves.55
What, above all, prepared the ground for this move, as we shall show in this section,
was the development of a quantum theory of dispersion by Ladenburg, Reiche, Bohr,
Kramers, and others. As Friedrich Hund (1896–1997) put it in his concise but rather
cryptic history of quantum theory:

In 1924 the question of the dispersion of light came to the foreground. It brought
new points of view, and it paved the way for quantum mechanics (Hund, 1984,
p. 128).

By comparison, many of the other preoccupations of the old quantum theory, such
as a detailed understanding of spectral lines, the Zeeman and Stark effects, and the
extension of the Bohr–Sommerfeld model to multi-electron atoms (in particular, he-
lium) mostly added to the overall confusion and did little to stimulate the shift to the
new mode of thinking exemplified by the Umdeutung paper.56

The same is true—pace Roger Stuewer (1975)—for the broad acceptance of
Einstein’s 1905 light-quantum hypothesis following the discovery in late 1922 by

54 Schrödinger to Lorentz, June 6, 1926 (M. Klein, 1967, p. 61).
55 As Klaas Landsman (2007) emphasizes, “Heisenberg…identified the mathematical nature of the
observables, whereas Schrödinger…found the description of the states” (p. 428).
56 For detailed analyses of some of these bewildering developments, see, e.g., (Serwer, 1977) and (Forman,
1968, 1970).
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Arthur H. Compton (1892–1962) of the effect soon to be named after him. What was
crucial for the development of matrix mechanics were the A and B coefficients for
emission and absorption even though they had been introduced in the context of a
theory involving light quanta (Einstein, 1916a,b, 1917). Physicists working on disper-
sion theory were happy to use these coefficients but were just as happy to continue
thinking of light as consisting of waves rather than particles. John Hendry (1981)
makes the provocative claim that “since Sommerfeld was the only known convert to
the light-quantum concept as a result of the Compton effect whose opinions were
of any real historical importance, this places Stuewer’s thesis on the importance of
the effect in some doubt” (p. 197). It is our impression that the Compton effect did
convince many physicists of the reality of light quanta, just as Stuewer says it did, but
we agree with Hendry (1981, p. 6) that this made surprisingly little difference for the
quantum revolution of 1925–1926.

3.1 The classical dispersion theory of Helmholtz, Lorentz and Drude

Optical dispersion can boast of a venerable history in the annals of science reaching
back at least to Descartes’ rainbow and Newton’s prism. The old quantum theory
was certainly not the first theory for which dispersion presented serious difficulties.
Both proponents of Newtonian particle theories of light in the eighteenth century and
proponents ofwave theories of light in the nineteenth century struggledwith dispersion
(Cantor, 1983).

In a review article onwave optics for theBritish Association for the Advancement of
Sciencepublished in 1886,RichardTetleyGlazebrook (1854–1935), a student of James
ClerkMaxwell (1831–1879), divided the nineteenth century into three periods. During
the first period, which lasted well into the 1860s, optical phenomena were explained
purely in terms of properties of the luminiferous ether, the medium thought to carry
light waves. Refraction and dispersion, for instance, were explained by assuming that
some property of the ether inside transparent media is different fromwhat it is outside.
The dispersion theories of this period typically also depend on the distance between the
molecules of the transparent medium with which the ether was supposed to co-exist,
but there was no consideration of any dynamical interaction between the ether and
the transparent medium. This changed in the second period, which began in the late
1860s. Theorists now began to account for refraction and dispersion in terms of waves
in the ether setting harmonically bound particles inside transparent media oscillating.
During the third period, which was just starting when Glazebrook wrote his review
article and which would not bear fruit until the 1890s, the models proposed in the
second period were reworked to reflect that it had meanwhile become clear that light
is an electromagnetic wave and that the particles in matter with which they interact
are charged particles, to be identified with electrons by the end of the 1890s.

Some of the better known physicists and mathematicians contributing to the theory
of dispersion during the first period distinguished by Glazebrook were Augustin
Jean Fresnel (1788–1827), James MacCullagh (1809–1847), and Augustin Louis
Cauchy (1789–1857). What distinguished their theories from one another was to a
large extent simply which property of the ether was made responsible for the different
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behavior of light in different media. MacCullagh and Cauchy, who did their most im-
portant work on dispersion in the 1830s, assumed that the rigidity or the elasticity of
the ether was the key variable (Glazebrook, 1886, p. 158, pp. 164–165). Many theo-
rists, however, followed Fresnel’s original idea that it was its density. Fresnel assumed
that the index of refraction is proportional to the square of the ether density inside the
transparent medium (ibid., p. 157). This view became popular even though it implied
that a transparent medium contains different amounts of ether for different colors. The
index of refraction, after all, must depend on frequency to account for dispersion. This
also affected the optics of moving bodies. To account for the absence of any signs of
motion of the earth with respect to the ether, Fresnel, in 1818, introduced the “drag”
coefficient. A transparent medium with index of refraction n would carry along the
ether inside of it with a fraction f = 1− 1/n2 of its velocity with respect to the ether.
Although it was widely recognized that the drag coefficient was needed to account
for the null results of numerous ether drift experiments, many physicists throughout
the nineteenth century expressed strong reservations about the underlying physical
mechanism proposed by Fresnel, since it implied that, because of dispersion, matter
had to drag along different amounts of ether for different colors (Janssen and Stachel,
2004; Stachel, 2005).

Despite such conceptual difficulties and despite limited agreement with the experi-
mental data, progress was made in the first half of the nineteenth century in understan-
ding such phenomena as dispersion with, to use Glazebrook’s terminology, “theories
based solely on the elastic solid theory [of the ether]” (Glazebrook, 1886, p. 210), in
which all optical phenomena in transparent matter are attributed to some modification
of the properties of the ether inside. Concluding his discussion of such theories in his
review article, Glazebrook wrote:

while the elastic solid theory, taken strictly, fails to represent all the facts of
experiment, we have learnt an immense amount by its development, and have
been taught where to look for modifications and improvements. Wemay, I think,
infer that the optical differences of bodies depend mainly on differences in the
density or effective density of the ether in those bodies, and not on differences
of rigidity (ibid. p. 211).

Glazebrook then turned to the second period and the second class of theories that he
distinguished in his review article: “[t]heories based on the mutual reaction between
ether and matter” (Glazebrook, 1886, Part III, pp. 212–251). In such theories, the
ether is typically assumed to have the same properties everywhere and refraction
and dispersion are explained in terms of momentum transfer between the ether and
the molecules of ponderable matter. Before discussing various theories of this kind,
Glazebrook explained why it was to be expected that a satisfactory theory for the
behavior of light in transparent media calls for such a theory:

The properties we have been considering depend on the presence of matter, and
we have to deal with two systems of mutually interpenetrating particles. It is
clearly a very rough approximation to suppose that the effect of the matter is
merely to alter the rigidity or the density of the ether. The motion of the ether
will be disturbed by the presence of the matter; motion may even be set up in
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the matter particles. The forces to which this gives rise may, so far as they affect
the ether, enter its equations in such a way as to be equivalent to a change in
its density or rigidity, but they may, and probably will, in some cases do more
than this. The matter motion will depend in great measure on the ratio which the
period of the incident light bears to the free period of the matter particles. If this
be nearly unity, most of the energy in the incident vibration will be absorbed
in setting the matter into motion, and the solution will be modified accordingly
(ibid. p. 212).

More than anything else, it was the phenomenon of anomalous dispersion that neces-
sitated these more sophisticated theories. Anomalous dispersion was first noticed in
1840 by the early photographer William Henry Fox Talbot (1800–1877) but only re-
cognized for what it really was in 1870 by the Danish physicist Christian Christiansen
(1843–1917) (Buchwald, 1985, p. 233). Whereas in normal dispersion the angle of
refraction increases (if we consider some fixed angle of incidence) with the frequency
of the refracted light, in anomalous dispersion there are frequency intervals in which
the angle of refraction decreases with increasing frequency. As Glazebrook empha-
sized, this phenomenon is inexplicable in the older class of theories.57 Anomalous
dispersion calls for a theory “based on the mutual reaction between ether and matter.”

The first such theory appears to have been formulated in 1867 by Joseph Valentin
Boussinesq (1842–1929) (Glazebrook, 1886, p. 213). Independently of Boussinesq,
it seems, Wolfgang Sellmeier, a student of Franz Neumann (1798–1895), developed
a similar theory and used it in 1872 to account for dispersion, including anoma-
lous dispersion. Roughly, according to Sellmeier’s theory, what happens when a light
wave of a certain frequency hits a transparent medium is that it produces (additional)
oscillations of harmonically bound particles in the medium. The result of this inter-
action, as Glazebrook points out in the passage quoted above, will depend on how
close the frequency of the incoming light is to the resonance frequencies of these
particles. The dispersion formula given by Sellmeier has a pole at the resonance fre-
quencies. The same is true for the dispersion formula derived from electromagnetic
theories later in the century (cf. Eqs. (6)–(7)). If these poles are in the ultraviolet,
optical dispersion is normal (i.e., the angle of refraction increases with frequency
throughout the optical spectrum); if, however, there are poles at optical frequencies,
the angle of refraction decreases with frequency in the range immediately above them
(Glazebrook, 1886, p. 219).

In 1875, Hermann von Helmholtz (1821–1894) proposed a highly influential dis-
persion theory in the spirit of Boussinesq and Sellmeier but substantially improving
on their work (Buchwald, 1985, Ch. 27). Helmholtz’s theory was based on “twin
equations” for the coupled oscillations in the ether and in the transparent medium
(ibid. p. 235; cf. Glazebrook 1886, p. 222). Helmholtz’s theory, like Sellmeier’s, is a
purely mechanical one. Newtonian mechanics governs both ether and matter. In 1893,
7 years after Glazebrook’s review article, Helmholtz adapted his theory to reflect that

57 “The suggestions of Cauchy and [Charles Auguste] Briot [(1817–1882)]…lead to expressions for the
relation between the refractive index and wave length which agree well with experiment so long as we steer
clear of substances which present the phenomena of anomalous dispersion, but of this they give no account”
(Glazebrook, 1886, p. 212; see also p. 217).
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light is an electromagnetic wave and that such waves act on and are emitted by char-
ged particles in matter (Buchwald, 1985, Sect. 27.2; Darrigol, 2000, Sect. 8.3). The
year before and apparently unbeknownst to Helmholtz, Lorentz had already published
such an electromagnetic dispersion theory, building on work he had done in the 1870s,
which in turn built on Helmholtz’s synthesis of British and continental ideas about
electromagnetism.58 Lorentz’s theory of 1892 is similar but superior to Helmholtz’s
theory of 1893. For one thing, Lorentz immediately derived the Fresnel drag coeffi-
cient from his theory, whereas it was left to Richard August Reiff (1855–1927) to do
so for Helmholtz’s theory later in 1893 (Darrigol, 2000, p. 322). Moreover, while it is
perfectly clear that Lorentz derived the drag coefficient without introducing any actual
ether drag, this is not so clear in the case of Reiff (Buchwald, 1985, p. 241). Neither
Helmholtz’s theory nor Lorentz’s left room for ether drag. In both theories, the ether is
immobile, its properties are the same everywhere, and the index of refraction is related
to the polarization of harmonically bound electric charges. These theories thus avoid
the absurdity in Fresnel’s original picture that matter drags along different amounts of
ether for different frequencies.

Lorentz’s theory constituted a much more radical move into microphysics than
Helmholtz’s and partly as a result of that, it seems, held less appeal for German
physicists in the 1890s, although Helmholtz’s greater authority in the German physics
communitymay also have been a factor (Buchwald, 1985, pp. 238–241). The approach
to optics based on an electron theory à la Helmholtz and Lorentz only became popular
with the appearance of Lehrbuch derOptik (Drude, 1900), in which Paul Drude (1863–
1906) presented and extended the theory.59 The English translation of Drude’s book
in 1905 made the approach popular in Britain and the United States as well.

This classical electron theory of dispersionwas remarkably successful in accounting
for the experimental data. Hence, two centuries after Newton, there finally was a
reasonably satisfactory theory for dispersion, including anomalous dispersion. Only
two decades later, however, the model of matter underlying this theory was called
into question again with the rise of the old quantum theory (Jammer, 1966, p. 189).
The electrons oscillating inside atoms in the Helmholtz–Lorentz–Drude model were
replaced by electrons orbiting the nucleus in the Rutherford–Bohr model. As we shall
see, the classical electron theory of dispersion nonetheless played an important role
in the development of a quantum theory of dispersion in the early 1920s.

58 This earlier work by Lorentz is not mentioned in the brief discussion of electromagnetic theories in
(Glazebrook, 1886, Part IV, pp. 251–261). For a detailed discussion of Lorentz’s dispersion theory, see
(Buchwald, 1985, Appendix 7).
59 Olivier Darrigol (1992, p. 331) suggests that Drude converted to Lorentz’s theory after the 1898
Naturforscherversammlung in Düsseldorf, where Lorentz was the guest of honor for a session on the
problem of optics and electrodynamics in moving bodies. Jed Buchwald (1985, p. 250), however, points
out that (Drude, 1900) only refers to Lorentz in the discussion of optics in moving bodies and suggests that
Drude, like most German physicists, followed Helmholtz rather than Lorentz. Dispersion is covered in Pt.
II, Sect. II, Ch. V of Drude’s book.
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The basic model of dispersion in this classical theory is very simple.60 Suppose
an electromagnetic wave of frequency ν (we are not concerned with how and where
this wave originated) strikes a charged one-dimensional simple harmonic oscillator
with characteristic frequency ν0. We focus on the case where the frequency ν of the
electromagnetic wave is far from the resonance frequency ν0 of the oscillator. We can
picture the oscillator as a point particle with mass m and charge −e (where e is the
absolute value of the electron charge) on a spring with equilibrium position x = 0
and spring constant k, resulting in a restoring force F = −kx . The characteristic
angular frequency ω0 = 2πν0 is then given by

√
k/m. The electric field E of the

incident electromagnetic wave61 will induce an additional component of the motion
at the imposed frequency ν. This component will be superimposed on any preexisting
oscillations at the characteristic frequency ν0 of the unperturbed system. It is this
additional component of the particle motion, coherent with the incident wave (i.e.,
oscillating with frequency ν), that is responsible for the secondary radiation that gives
rise to dispersion. The time dependence of this component is given by:

�xcoh(t) = A cosωt, (2)

whereω = 2πν. To determine the amplitude A, we substitute Eq. (2) into the equation
of motion for the system. As long as we are far from resonance, radiation damping
can be ignored and the equation of motion is simply:62

mẍ = −mω2
0x − eE cosωt, (3)

where dots indicate time derivatives and where we have made the innocuous sim-
plifying assumption that the electric field of the incident wave is in the x-direction.
Substituting �xcoh(t) in Eq. (2) for x(t) in Eq. (3), we find:

−mω2A cosωt = (−mω2
0A − eE) cosωt . (4)

It follows that
A = eE

m(ω2 − ω2
0)

. (5)

60 The theory is covered elegantly inChap. 31 ofVol. 1 of the Feynman lectures (see alsoChap. 32 ofVol. 2).
Feynman makes it clear that this classical theory remains relevant in modern physics: “we will assume that
the atoms are little oscillators, that is that the electrons are fastened elastically to the atoms…You may
think that this is a funny model of an atom if you have heard about electrons whirling around in orbits. But
that is just an oversimplified picture. The correct picture of an atom, which is given by the theory of wave
mechanics, says that, so far as problems involving light are concerned, the electrons behave as though they
were held by springs” (Feynman et al., 1964, Vol. 1, Sect. 31-4).
61 We need not worry about the effects of the magnetic field B. The velocity of electrons in typical atoms
is of order αc, where c is the velocity of light and α � 1/137 is the fine-structure constant. The effects due
to the magnetic field are thus a factor 1/137 smaller than those due to the electric field and can be ignored
in all situations considered in this paper.
62 In Sect. 5.3, we show how to take into account the effects of radiation damping.
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The central quantity in the classical dispersion theory is the dipole moment p(t) ≡
−e�xcoh(t) of the oscillator induced by the electric field of the incident electroma-
gnetic wave. From Eqs. (2) and (5) it follows that:

p(t) = −e�xcoh(t) = e2E
4π2m(ν20 − ν2)

cos 2πνt . (6)

For groups of ni oscillators of characteristic frequencies νi per unit volume, this
formula for the dipole moment naturally generalizes to the following result for the
polarization (i.e., the dipole moment per unit volume):

P(t) = e2E
4π2m

∑
i

ni
ν2i − ν2

cos 2πνt . (7)

The number of oscillators of characteristic frequency νi will be some fraction fi of the
numbers of atoms in the volume under consideration. This fraction was often called
the “oscillator strength” in the literature of the time. The polarization P determines
the index of refraction n (see, e.g., Feynman et al., 1964, Vol. 1, 31-5). The agreement
of Eq. (7) with the data from experiments on dispersion was not perfect, but dispersion
was nonetheless seen as an important success for the classical theory.

3.2 The Sommerfeld–Debye theory and its critics

An early and influential attempt to bring dispersion theory under the umbrella of
the old quantum theory was made by Sommerfeld (1915b, 1917) and by his former
student Peter Debye (1884–1966) (Debye, 1915).63 Clinton J. Davisson (1881–1958),
then working at the Carnegie Institute of Technology in Pittsburgh, also contributed
(Davisson, 1916).64 The Sommerfeld–Debye theory, as it came to be known, was
based on the dubious assumption that the secondary radiation coming from small

63 For other historical discussions of the development of quantum dispersion theory, see, e.g., (Darrigol,
1992, pp. 224–230), (Dresden, 1987, pp. 146–159, pp. 215–222), (Jammer, 1966, p. 165 and Sect. 4.3,
especially pp. 188–195), (Mehra and Rechenberg, 1982–2001, Vol. 1, Sect. VI.1; Vol. 2, Sect. III.5, pp.
170–190; Vol. 6, Sect. III.1 (b), pp. 348–353), and (Whittaker, 1953, Vol. 1, p. 401; Vol. 2, pp. 200–206).
(Van Vleck, 1926, Sect. 49, pp. 156–159) briefly discusses the early attempts to formulate a quantum theory
of dispersion in his review article on the old quantum theory. We focus on the theory of Sommerfeld and
Debye of the late 1910s and on the theories developed by Ladenburg and Reiche and by Kramers in the
early 1920s. Van Vleck also mentions theories of the latter period by Charles Galton Darwin (1887–1962),
Adolf Gustav Smekal (1895–1959), and Karl F. Herzfeld (1892–1978). All three of these theories make
use of light quanta. In addition, strict energy conservation is given up in the theory of Darwin (1922,
1923), while in the theories of Smekal (1923) and Herzfeld (1924) orbits other than those picked out by
the Bohr–Sommerfeld condition are allowed, a feature known as “diffuse quantization.” For other (near)
contemporary reviews of dispersion theory, see (Pauli, 1926, pp. 86–96), (Andrade, 1927, pp. 669–682),
and (Breit, 1932). (Stolzenburg, 1984, pp. 17–18) briefly discusses Bohr’s critical reaction to Darwin’s
dispersion theory.
64 In 1927 at Bell Labs, Davisson and his assistant Lester H. Germer (1896–1971) would do their cele-
brated work on electron diffraction (Davisson and Germer, 1927), another great American contribution to
(experimental) quantum physics for which the authors received the 1937 Nobel Prize (Kevles, 1978, pp.
188–189).
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perturbations of a Bohr orbit induced by incident radiation could be calculated on the
basis of ordinary classical electrodynamics, even though, by the basic tenets of the
Bohrmodel, the classical theory did not apply to the original unperturbed orbit. In other
words, it was assumed that, while the large accelerations of electrons moving on Bohr
orbits would produce no radiation whatsoever, the comparatively small accelerations
involved in the slight deviations from these orbits caused by weak incident radiation
would produce radiation.65 Otherwise, the theory stayed close to the classical theory,
substituting small deviations in themotion of electrons from their Bohr orbits for small
deviations from the vibrations of simple harmonic oscillators at their characteristic
frequencies.

Both the Swedish physicist Carl Wilhelm Oseen (1879–1944) and Bohr severely
criticized the way in which Sommerfeld and Debye modeled their quantum dispersion
theory on the classical theory. Oseen (1915) wrote: “Bohr’s atommodel can in no way
be reconciled with the fundamental assumptions of Lorentz’s electron theory.We have
to make our choice between these two theories” (p. 405).66 Bohr agreed. The central
problem was that in Bohr’s theory the link between radiation frequencies and orbital
frequencies had been severed. As Bohr explained to Oseen in a letter of December 20,
1915, if the characteristic frequencies involved in dispersion

…are determined by the laws for quantum emission, the dispersion cannot,
whatever its explanation, be calculated from the motion of the electrons and
the usual electrodynamics, which does not have the slightest connection with
the frequencies considered (Bohr, 1972–1996, Vol. 2, p. 337).

Bohr elaborated on his criticism of the Sommerfeld–Debye theory in a lengthy paper
intended for publication in Philosophical Magazine in 1916 but withdrawn after it
was already typeset.67 Bohr argued (we leave out the specifics of the experiments on
dispersion in various gases that Bohr mentions in this passage):

[E]xperiments…show that the dispersion…canbe representedwith a high degree
of approximation by a simple Sellmeier formula in which the characteristic fre-
quencies coincide with the frequencies of the lines in the…spectra…[T]hese fre-
quencies correspond with transitions between the normal states of the atom…On
this view we must consequently assume that the dispersion…depends on the
same mechanism as the transition between different stationary states, and that it
cannot be calculated by application of ordinary electrodynamics from the confi-
guration and motions of the electrons in these states (Bohr, 1972–1996, Vol. 2,
pp. 448–449).

In the next paragraph, Bohr added a prescient comment. Inverting the line of reaso-
ning in the passage above that dispersion should depend on the same mechanism as
transitions between states, he suggested that transitions between states, about which

65 Sommerfeld (1915b, p. 502) realized that this assumption was problematic and tried (unconvincingly)
to justify it.
66 Quoted and discussed in (Bohr, 1972–1996, Vol. 2, p. 337)
67 It can be found in (Bohr, 1972–1996, Vol. 2, pp. 433–461). For further discussion of Bohr’s early views
on dispersion, see (Heilbron and Kuhn, 1969, pp. 281–283).
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the Bohr theory famously says nothing, should depend on the same mechanism as
dispersion: “[i]f the above view is correct…we must, on the other hand, assume that
this mechanism [of transitions between states] shows a close analogy to an ordinary
electrodynamic vibrator” (ibid).

As we shall see, in the quantum dispersion theory of the 1920s, the oscillators of
the classical theory were grafted onto the Bohr model. For the time being, however, it
was unclear how to arrive at a satisfactory quantum theory of dispersion. The quasi-
classical Sommerfeld–Debye theory led to a formula for the induced polarization of
the form of Eq. (7) but with resonance poles at the orbital frequencies. As Oseen and
Bohr pointed out, this was in blatant contradiction with the experimental data, which
clearly indicated that the poles should be at the radiation frequencies, which in Bohr’s
theory differed sharply from the orbital frequencies.

This criticism is repeated in more sophisticated form in a paper by Paul Sophus
Epstein (1883–1966) with the subtitle “Critical comments on dispersion.” This paper
is the concluding installment of a trilogy on the application of classical perturbation
theory to problems in the old quantum theory (Epstein, 1922a,b,c). Epstein, a Russian
Jewwho studied with Sommerfeld inMunich, was the first European quantum theorist
to be lured to America. In 1921 Millikan brought him to the California Institute of
Technology in Pasadena, despite prevailing anti-Semitic attitudes (Kevles, 1978, pp.
211–212).68 In his 1926 review article Van Vleck emphasizes the importance of the
work of his colleague at Caltech and notes that it “is rather too often overlooked”
(VanVleck, 1926, p. 164, note 268), towhich onemight add: “byEuropean physicists.”
As we saw in Sect. 2.4, Van Vleck felt the same way about his own contributions. Like
Van Vleck, Epstein apparently complained about this lack of recognition to Born. This
can be inferred from a letter from Born to Sommerfeld of January 5, 1923, shortly
before a visit of the latter to the United States:

When you talk to Epstein in Pasadena and he complains about me, tell him that
he should show you the very unfriendly letter he wrote to me because he felt that
his right as first-born had been compromised by the paper on perturbation theory
by Pauli and me [Born and Pauli, 1922, which appeared shortly after Epstein’s
trilogy]. Also tell him that I do not answer such letters but that I do not hold
a grudge against him because of his impoliteness (to put it mildly)…In terms
of perturbative quantization we are ahead of him anyway (Sommerfeld, 2004,
p. 137).69

To deal with the kind of multiply-periodic systems that represent hydrogenic atoms
(i.e., atoms with only one valence electron) in the old quantum theory, Epstein cus-
tomized techniques developed in celestial mechanics for computing the perturbations
of the orbits of the inner planets due to the gravitational pull of the outer ones.70 The

68 For further discussion of Epstein’s position at Caltech, see (Seidel, 1978, pp. 507–520).
69 This letter is quoted and discussed in (Eckert, 1993, p. 96).
70 One of the sources cited by Epstein (1922a, p. 216) is (Charlier, 1902–1907). This source is also cited
in (Bohr, 1918, p. 114), (Kramers, 1919, p. 8), and (Born and Pauli, 1922, p. 154). In their interviews for
the AHQP, both Van Vleck (p. 14 of the transcript of session 1) and Heisenberg (p. 24 of the transcript of
session 5) mention that they studied Charlier as well.
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perihelion advance of Mercury due to such perturbations, for instance, is more than
ten times the well-known 43′′ per century due to the gravitational field of the sun
as given by general relativity. Such calculations in classical mechanics are also the
starting point of the later more successful approach to dispersion theory by Kramers
and Van Vleck. Epstein clearly recognized that these calculations by themselves do
not lead to a satisfactory theory of dispersion. In the introduction of his paper, Epstein
(1922c, p. 92) explains that he discusses dispersion mainly because it nicely illustrates
some of the techniques developed in the first two parts of his trilogy. He warns the
reader that he is essentially following the Sommerfeld–Debye theory, and emphasizes
that “this point of view leads to internal contradictions so strong that I consider the
Debye–Davysson [sic] dispersion theory [as Epstein in Pasadena referred to it] to be
untenable” (ibid.). The central problem is once again the discrepancy between radia-
tion frequencies and orbital frequencies. As Epstein wrote in the conclusion of his
paper:

the positions ofmaximal dispersion and absorption [in the formula he derived] do
not lie at the position of the emission lines of hydrogen but at the position of the
mechanical frequencies of the model…the conclusion seems unavoidable to us
that the foundations of the Debye-Davysson [sic] theory are incorrect (Epstein,
1922c, pp. 107–108).

Epstein recognized that a fundamentally new approach was required: “We believe
that…dispersion theory must be put on a whole new basis, in which one takes the
Bohr frequency condition into account from the very beginning” (ibid. p. 110).71

3.3 Dispersion in Breslau: Ladenburg and Reiche

Unbeknownst toEpstein, quantumdispersion theory had already begun to emerge from
the impasse he called attention to in 1922. The year before, Ladenburg had introduced
one of two key ingredients needed for a satisfactory treatment of dispersion in the
old quantum theory: the emission and absorption coefficients of Einstein’s quantum
theory of radiation. The other critical ingredient, as we shall see below, was Bohr’s
correspondence principle.

Ladenburg spent most of his career doing experiments on dispersion in gases. He
started in 1908, about 2years after he joined the physics department, then headed by
Otto Lummer (1860–1925), at the University of Breslau, his hometown (Ladenburg,
1908).72 He stayed in Breslau until 1924, when he accepted a position at the Kaiser
Wilhelm Institut in Berlin. There he continued his work with the help of students
such as Hans Kopfermann (1895–1963), Agathe Carst, S. Levy, and G. Wolfsohn.

71 Epstein had already voiced this criticism before he left for the United States. From Zurich, he had written
to Einstein on October 15, 1919: “Meanwhile, I have carried out the calculations for dispersion theory from
the point of view of quantum theory that I mentioned at one point in conversation: the result is definitely
that the Debye–Sommerfeld theory only has the status of an approximation and that the true theory must
take into account the [Bohr] frequency condition. It is not surprising, therefore, that Sommerfeld’s results
are occasionally off” (Einstein, 1987–2006, Vol. 9, Doc. 136).
72 See the entry on Ladenburg by A. G. Shenstone (1973) in the Dictionary of Scientific Biography.
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Ladenburg and his group reported the results of their experiments on dispersion in a
series of papers published between 1926 and 1934.73 Ladenburg’s direct involvement
ceased with his emigration to the United States in 1931.

Ladenburg and Stanislaw Loria (1883–1958) had established early on that the fre-
quency of the Hα line in the Balmer series in the hydrogen spectrum corresponds
to a pole in the classical dispersion formula (Ladenburg and Loria, 1908, p. 866).
Given that the Sommerfeld–Debye theory flies in the face of this experimental fact,
Ladenburg was never attracted to that theory. He simply kept using a dispersion for-
mula with poles at the observed radiation frequencies. He focused on the numerator
rather than the denominator of the dispersion formula. This is made particularly clear
in the AHQP interviews with two of his collaborators in the early 1920s—Rudolph
Minkowski (1895–1976), a nephew of Hermann Minkowski, who took his docto-
rate under Ladenburg in 1921 and co-authored (Ladenburg and Minkowski, 1921);
and Fritz Reiche, who was appointed in Breslau in 1921.74 After his doctorate (with
Planck) in Berlin in 1907, Reiche had already spent three years in Breslau. He and La-
denburg had become close friends. Reiche had gone back to Berlin in 1911. When he
returned to Breslau ten years later, he stayed until hewas dismissed in 1933.75 Reiche’s
help is prominently acknowledged in (Ladenburg, 1921, p. 140, note). Ladenburg was
first and foremost an experimentalist and he welcomed input from his theoretician
friend and colleague.76 The two of them co-authored a pair of follow-up papers
(Ladenburg and Reiche, 1923, 1924). Discussing the first of these, Reiche told Kuhn
and Uhlenbeck in 1962:

wedid not derive a consistent dispersion theory, inwhich instead of the revolution
numbers the emitted lines came out. We thought it completely self-evident, that
one had to change the denominator of the dispersion formula in such a way that
the frequencies were the emitted line frequencies, and not something which has
to do with (the orbit) [sic].77

Reiche made it clear that he and Ladenburg were concerned only with explaining “the
N which is on top of the dispersion formula:”

It never came out correctly equal to the number of atoms, or to the number of
atoms multiplied by the number of electrons in an atom. It gave, under cer-
tain conditions, even numbers which are less than the whole number of atoms.
They were written very often with a German N…This was the main aim of the
whole thing [Ladenburg and Reiche, 1923]. There, based on a previous paper by
Ladenburg [1921], we found a relation between the German N and the real

73 See (Mehra and Rechenberg, 1982–2001, Vol. 6, Ch. 3(b), pp. 348–353) and (Shenstone, 1973, p. 555)
for detailed references and brief discussions.
74 The following information is based on an autobiographical statement byReiche published as an appendix
to (Bederson, 2005).
75 It was not until 1941 that he finally managed to emigrate to the United States.
76 Asked by Kuhn whether Ladenburg was “strictly an experimentalist,” Reiche said: “He was, as far as I
understand, a very good experimental man, but he was one of the men who could make, let me say, easy
theoretical work” (p. 10 of the transcript of the last of three sessions of the interview).
77 See p. 11 of the transcript of the second of three sessions of the AHQP interview with Reiche.
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number of atoms. The f were not 1 or 2 or 3 or something like this, but could
be point 5 or the like. And the explanation of this was the aim of this dispersion
paper. But it did not come out that we had a correct and consistent theory in
which the denominator gave now the emitted frequencies. This, I think, was
only done by Kramers [1924a, b], first of all.78

Ladenburg’s dispersion experiments had indicated all along that the oscillator strength
fi , the number of dispersion electrons with characteristic frequency νi per atom, was
not on the order of unity, as one would expect on the basis of the classical theory,
but much smaller. For the frequency νi corresponding to the Hα line in the Balmer
series in the hydrogen spectrum, for instance, Ladenburg and Loria (1908, p. 865)
found that there was only 1 dispersion electron per 50,000 molecules, and they cited
findings of 1 dispersion electron per 200 molecules in sodium vapor. Such low values
were quite inexplicable on classical grounds. In the Bohr model the Hα (absorption)
line corresponds to a transition from the n = 2 to the n = 3 state of the hydrogen
atom. That Ladenburg found such a low value for what he interpreted classically as the
number of dispersion electrons at the frequency of the Hα line is explained in Bohr’s
theory simply by noting that only a tiny fraction of the atoms will be in the n = 2 state
(Ladenburg, 1921, p. 156). Ladenburg’s key contribution was that he recognized that
the oscillator strengths corresponding to various transitions could all be interpreted in
terms of transition probabilities, given by Einstein’s A and B coefficients. Hence the
title of his paper: “The quantum-theoretical interpretation of the number of dispersion
electrons” (Ladenburg, 1921).

Ladenburg obtained a relation between the oscillator strengths and the A and B
coefficients by equating results derived for what would seem to be two mutually
exclusive models of matter, a classical and a quantummodel. He calculated the energy
absorption rate both for a collection of classical oscillators à la Helmholtz, Lorentz and
Drude, resonating at the absorption frequencies, and for a collection of atoms à la Bohr
and Einstein with transitions between discrete energy levels corresponding to these
same frequencies. Ladenburg set the two absorption rates equal to one another. His
paper only gives the resulting expression for the numerator of the dispersion formula.
Combining Ladenburg’s theoretical relation between classical oscillator strengths and
quantum transition probabilities with his experimental evidence that the resonance
poles should be at the radiation frequencies, we arrive at the following formula—in
our notation, based on (Van Vleck, 1924b)—for the induced polarization of a group
of Nr atomic systems in their ground state r

Pr (t) = Nrc3E
32π4

∑
s

As→r

ν2s→r (ν
2
s→r − ν2)

cos 2πνt, (8)

where νs→r is the frequency for a transition from the excited states s to r and As→r
is Einstein’s emission coefficient for this transition.

78 Ibid. Dispersion is discussed at greater length during the third session of the interview (see pp. 10–14
of the transcript).
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Ladenburg’s paper initially did not attract much attention. It is not mentioned in
Epstein’s trilogy the followingyear, but thenEpsteinwasworking in farawayCalifornia.
More surprisingly, quantum physicists in Göttingen, Munich, and Copenhagen, it
seems, also failed to take notice, even though Ladenburg was well-known to his
Göttingen colleagues Born and James Franck (1882–1964). Ladenburg had actually
prevented that Born, a fellow Breslau native, was sent to the trenches in World War I.
Ladenburg had recruited Born for an army unit under his command in Berlin devoted
to artillery research (Thorndike Greenspan, 2005, pp. 71–72). Bohr and Ladenburg
also knew each other personally: Ladenburg had attended Bohr’s colloquium in Berlin
in April 1920 and the two men had exchanged a few letters since (Bohr, 1972–1996,
Vol. 4, pp. 709–717).

Heisenberg later attributed the neglect of Ladenburg inGöttingen andMunich to the
problem of connecting Ladenburg’s work, closely tied to Einstein’s radiation theory, to
the dominant Bohr–Sommerfeld theory.79 According to Heisenberg, it was only when
Kramers (1924a,b) rederived Ladenburg’s formula as a special case of his own more
general dispersion formula that its significancewaswidely appreciated.80 Ladenburg’s
own derivation had been unconvincing, at least to most physicists.81 In addition to
just assuming the poles in the dispersion formula to be at the radiation frequencies
rather than at the orbital frequencies, Ladenburg offered no justification for equating
classical and quantum energy absorption rates. Van derWaerden (1968, p. 10) suggests
that Ladenburg appealed to Bohr’s correspondence principle in his derivation of the
relation between oscillator strengths and A and B coefficients, but the correspondence
principle is notmentioned anywhere in Ladenburg’s paper. The full dispersion formula
(8)—admittedly only implicit in Ladenburg’s paper but associated with it, not just by
later historians but also by his contemporaries—can certainly not be derived with the
help of the correspondence principle, since it only holds for atoms in their ground state
and not for atoms in highly excited states where classical and quantum theory may be
expected to merge in the sense of the correspondence principle. Still, if Heisenberg’s
later recollections are to be trusted, it might have helped the reception of Ladenburg’s
paper had he made some reference to the correspondence principle.

Unlike his colleagues inGöttingen andMunich, Bohr did take notice of Ladenburg’s
paper early on. He was just slow, as usual, to express himself about it in print. As noted
in (Hendry, 1981, p. 192), Bohr referred to (Ladenburg, 1921) in the very last sentence
of a manuscript he did not date but probably started and abandoned in 1921 (Bohr,

79 See p. 8 of the transcript of session 4 of the AHQP interview with Heisenberg, parts of which can be
found in (Mehra and Rechenberg, 1982–2001, Vol. 2, pp. 175–176), although the authors cite their own
conversations with Heisenberg as their source (cf. note 5).
80 Jordan had the same impression (see pp. 24–25 of the transcript of the first session of Kuhn’s interview
with Jordan for the AHQP in June 1963). It also fits with Born’s recollections. In his autobiography, Born
(1978) notes: “An important stepwasmade bymyold friend fromBreslau…Ladenburg…Adetailed account
was given by Ladenburg andReiche, my other old friend fromBreslau…On the basis of these investigations,
Kramers…succeeded in developing a complete ‘dispersion formula”’ (pp. 215–216).
81 As Kuhn put it in his AHQP interview with Slater: “Of course, there was a good deal that appeared to
most physicists as pretty totally ad hoc about the Reiche–Ladenburg work, and the whole question as to
why it was the transition frequencies that occurred in the denominator rather than the orbital frequencies.”
Slater disagreed: “This seemed to me perfectly obvious…” (p. 41 of the transcript of the first session of the
interview).
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1972–1996, Vol. 3, pp. 397–414). In a paper submitted in November 1922, Bohr
(1923b, p. 162) finally discussed Ladenburg’s work in print. After repeating some
of the observations about dispersion in the passages of his unpublished 1916 paper
quoted in Sect. 3.2, Bohr, in his tortuous verbose style, made some highly interesting
remarks that anticipate aspects of the BKS theory of 1924 (see Sect. 4):

the phenomena of dispersion must thus be so conceived that the reaction of the
atom on being subjected to radiation is closely connected with the unknown me-
chanism which is answerable [the German has verantwortlich: responsible] for
the emission of the radiation on the transition between stationary states. In order
to take account of the observations, it must be assumed that this mechanism…
becomes active when the atom is illuminated in such a way that the total reaction
of a number of atoms is the same as that of a number of harmonic oscillators in
the classical theory,82 the frequencies of which are equal to those of the radiation
emitted by the atom in the possible processes of transition, and the relative num-
ber of which is determined by the probability of occurrence of such processes
of transition under the influence of illumination. A train of thought of this kind
was first followed out closely in a work by Ladenburg [1921] in which he has
tried, in a very interesting and promising manner, to set up a direct connection
between the quantities which are important for a quantitative description of the
phenomena of dispersion according to the classical theory and the coefficients
of probability appearing in the deduction of the law of temperature radiation by
Einstein (Bohr, 1972–1996, Vol. 3, p. 496).

A letter from Bohr to Ladenburg of May 17, 1923 offers further insights into Bohr’s
developing views on the mechanism of radiation:

to interpret the actual observations, it…seems necessary to me that the quan-
tum jumps are not the direct cause of the absorption of radiation, but that they
represent an effect which accompanies the continuously dispersing (and absor-
bing) effect of the atom on the radiation, even though we cannot account in detail
for the quantitative relation [between these two effects] with the usual concepts
of physics (Bohr, 1972–1996, Vol. 5, p. 400).

At the beginning of this letter, Bohr mentioned the vagueness of some of his earlier
pronouncements on the topic. After the passage just quoted he acknowledged “that
these comments are not far behind the earlier ones in terms of vagueness. I do of course
reckon with the possibility that I am on the wrong track but, if my view contains even
a kernel of truth, then it lies in the nature of the matter that the demand for clarity in
the current state of the theory is not easily met” (ibid.). Bohr need not have been so
apologetic. His comments proved to be an inspiration to Ladenburg and Reiche. On
June 14, 1923, Ladenburg wrote to Bohr:

Over the last few months Reiche and I have often discussed [the absorption and
scattering of radiation] following up on your comments in [Bohr 1923b] about

82 Note the similarity between Bohr’s description here to Feynman’s observation (quoted in note 60) that
atoms behave like oscillators “so far as problems involving light are concerned.”
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reflection and dispersion phenomena and on my own considerations [Ladenburg
1921] which you were kind enough to mention there (Bohr, 1972–1996, Vol. 5,
pp. 400–401).

In this same letter, Ladenburg announced his forthcoming paper with Reiche in a
special issue of Die Naturwissenschaften to mark the tenth anniversary of Bohr’s
atomic theory. In the conclusion of this paper, they wrote:83

Surveying the whole area of scattering and dispersion discussed here, we have
to admit that we do not know the real [eigentlich] mechanism through which
an incident wave acts on the atoms and that we cannot describe the reaction
of the atom in detail. This is no different by the way in the case of the real
[eigentlich] quantum process, be it that an external wave ν0 lifts electrons into
higher quantum states, or be it that a wave ν0 is sent out upon the return to lower
states. We nevertheless believe on the grounds of the observed phenomena that
the end result of a process in which a wave of frequency ν acts upon the atom
should not be seen as fundamentally different from the effect that such a wave
exerts on classical oscillators (Ladenburg and Reiche, 1923, p. 597).

Ladenburg and Reiche (1923, p. 588, p. 590) introduced the term “substitute oscilla-
tors” [Ersatzoszillatoren] for such classical oscillators representing the atom as far as
its interaction with radiation is concerned. They credited Bohr with the basic idea.84
As we shall see in Sect. 4, these substitute oscillators became the virtual oscillators of
BKS. Ladenburg and Reiche (1924, p. 672) themselves noted the following year that
substitute oscillators were now called virtual oscillators (Konno, 1993, p. 141). The
Berlin physicist Richard Becker (1887–1955) likewise noted in a paper written in the
context of BKS the following year: “these virtual oscillators are substantially iden-
tical with the ‘substitute oscillators’ already introduced by Ladenburg and Reiche”
(Becker 1924, p. 174, note 2).85 That same year, Herzfeld (1924, p. 350) still used
the term ‘substitute oscillators,’ citing (Ladenburg and Reiche, 1923). The term can
also be found, without attribution, in the famous paper by Born and Jordan (1925b,
p. 884) on matrix mechanics.86

Unlike Ladenburg in 1921, Ladenburg and Reiche prominently mentioned both
Bohr’s atomic theory and the correspondence principle in their 1923 paper. The
authors’ understanding and use of the correspondence principle, however, are still tied
strongly to Einstein’s quantum theory of radiation. Their “correspondence” arguments
apply not to individual quantum systems, for which Bohr’s correspondence principle
was formulated, but to collections of such systems in thermal equilibrium with the

83 Quoted and discussed in (Hendry, 1981, p. 192).
84 See also (Ladenburg and Reiche, 1924, p. 672). Van Vleck (1926, p. 159, note 260) reports that Lorentz
made a similar suggestion at the third Solvay congress in 1921 (Verschaffelt et al., 1923, p. 24), but does
not mention Ladenburg and Reiche in this context, attributing the idea to (Slater, 1924) instead.
85 Quoted in (Konno, 1993, p. 141).
86 We are grateful to Jürgen Ehlers for drawing our attention to this passage, which is not in the part of
(Born and Jordan, 1925b) included in (Van der Waerden, 1968).
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ambient radiation.87 The authors also do not limit their “correspondence” arguments
to the regime of high quantum numbers (Ladenburg and Reiche, 1923, especially
Sect. 4–5, pp. 586–589). These problems invalidate many of the results purportedly
derived from the correspondence principle in their paper. Drawing on earlier work by
Planck, they derived a result for emission consistent with the correspondence prin-
ciple (i.e., merging with the classical result in the limit of high quantum numbers),
but their attempts to derive similar results for absorption and dispersion were uncon-
vincing. In fact, it may well be that these dubious attempts inspired Van Vleck to
formulate correspondence principles for emission and absorption himself (see Sect.
5.3 for further discussion).

3.4 The Kramers dispersion formula

Given Bohr’s strong interest in the subject, it is not surprising that his first lieutenant
Kramers took the next big step in quantum dispersion theory.88 Formula (8) based on
Ladenburg’s insights only holds for systems in the ground state. The correspondence
principle only applies to highly excited states. Kramers (1924a,b) found that the cor-
respondence principle requires a formula with two terms.89 In our notation—which
once again follows (Van Vleck, 1924b, p. 344, Eq. 17)—the induced polarization Pr
of Nr atoms in a state labeled by the quantum number r is given by:

Pr (t) = Nrc3E
32π4

(∑
s>r

As→r

ν2s→r (ν
2
s→r − ν2)

−
∑
t<r

Ar→t

ν2r→t (ν
2
r→t − ν2)

)
cos 2πνt, (9)

where s and t are the quantum numbers labeling states above and below r , respectively
(see Sects. 5.1–5.2 and 6.2 for detailed derivations). For high values of r this formula
merges with the classical result. In the spirit of the correspondence principle, Kramers
took the leap of faith that it holds all the way down to low quantum numbers. If r is
the ground state, the second term vanishes and the Kramers formula (9) reduces to
the Ladenburg formula (8). Like Ladenburg and Reiche (1923), Kramers interpreted
his formula in terms of oscillators, distinguishing between “absorption oscillators”
for the first term and “emission oscillators” for the second term (Kramers, 1924a, pp.
179–180). Kramers introduced the characteristic times τi→ f inversely proportional
to (e2/m)ν2i→ f . So instead of factors ν2i→ f in the denominators in the two terms in
Eq. (9), the formula given byKramers (1924a, p. 179, Eq. 5) has factors (e2/m)τi→ f in

87 That Ladenburg and Reiche did not carefully distinguish between individual systems and collections of
such systems becomes more understandable if we bear in mind that they were trying to combine Einstein’s
quantum theory of radiation and Bohr’s correspondence principle. These two elements belong to two
different strands in the development of quantumphysics, characterized as follows in a concise and perceptive
overview of the early history of quantum physics: “The first approach, dominated by the Berlin physicists
Einstein, Planck, and Nernst, and by…Ehrenfest…involved the thermodynamics properties of matter and
the nature of radiation…The other trend, centered socially in Copenhagen,Munich andGöttingen, consisted
of the application of the quantum to individual atoms and molecules” (Darrigol, 2002, p. 336).
88 Hendry (1984, p. 46) goes as far as calling Kramers’ theory “the Bohr–Kramers dispersion theory.”
89 In addition to the literature cited in note 63, see (Ter Haar, 1998, pp. 23–30) and, especially, (Konno,
1993) for discussion of Kramers’ work on dispersion theory.
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the numerators.90 Because of the minus sign in front of the second term, the emission
oscillators appear to have negative mass, which is why Kramers also called them
“negative oscillators” (ibid.). VanVleck (1924a, p. 30, note 2) gave amore satisfactory
interpretation of thisminus sign, interpretingKramers’ formula for dispersion the same
way as a formula for absorption he himself had proposed on the basis of Einstein’s
quantum radiation theory, as giving the net dispersion in a given quantum state as the
difference between contributions from transitions to higher and transitions to lower
states.

Kramers initially only published two notes inNature on his new dispersion formula
(Kramers, 1924a,b). Since these were submitted after (Bohr, Kramers, and Slater,
1924a), he used the new BKS terminology of ‘virtual oscillators’ in both of them. As
we shall see in Sect. 4, this caused considerable confusion, both at the time and in the
historical literature, about the relation between BKS and dispersion theory. Kramers’
notes, moreover, are short on detail. The first, submitted on March 25, contains only
the briefest of hints as to how the new dispersion formula had been found. The second,
submitted on July 22 in response to a letter by Minnesota’s Gregory Breit (1924b),
contains at least an outline of the derivation. Kramers did not get around to publishing
the derivation in full until his paper with Heisenberg, completed over the Christmas
break of 1924, received by Zeitschrift für Physik on January 5, 1925, and published
two months later (Mehra and Rechenberg, 1982–2001, Vol. 2, p. 181). According to
Slater, however, the basic results had been in place by the time he, Slater, arrived in
Copenhagen in December 1923. After dissing Bohr in the letter to Van Vleck quoted
in Sect. 2.2, Slater goes on to say that

Kramers hasn’t gotmuch done, either. You perhaps noticed his letter toNature on
dispersion [Kramers, 1924a]; the formulas & that he had before I came, although
he didn’t see the exact application; and except for that he hasn’t done anything,
so far as I know. They seem to have too much administrative work to do. Even
at that, I don’t see what they do all the time. Bohr hasn’t been teaching at all,
Kramers has been giving one or two courses.91

Part of what kept Kramers from his work in early 1924, as can be gathered from cor-
respondence with Ladenburg and Reiche, was that his wife had fallen ill. In 1923, the
Breslau physicists had already exchanged a few letters about dispersion with their col-
league in Copenhagen.92 On February 28, 1924, Ladenburg gently reminded Kramers
that he had promised in January to give his “opinion on dispersion and its quantum
interpretation”93 within a few days. A little over a month later, on April 2, Ladenburg

90 The polarization given by Kramers’ formula is three times the polarization given by Van Vleck (i.e., by
our Eq. (9)). This is because Kramers assumed that the vibrations in the atom are lined up with the electric
field, whereas Van Vleck assumed the relative orientation of vibrations and fields to be random (Van Vleck,
1924b, p. 344, note 25).
91 Slater to Van Vleck, July 27, 1924 (AHQP).
92 See Reiche to Kramers, May 9, 1923 and December 28, 1923, and Ladenburg to Kramers, December
28, 1923 (AHQP). Kramers’ responses, it seems, are no longer extant.
93 Ladenburg to Kramers, February 28, 1924 (AHQP). This fits with Slater’s recollection that Kramers
already had his new dispersion formula around Christmas 1923.
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wrote another letter to Kramers, in which he thanked him for sending what must have
been either a manuscript or proofs of (Kramers, 1924a) (which only appeared in the
May 10 issue of Nature) and, apparently having been informed by Kramers that the
delay had been due to his wife’s illness, apologized for his impatience.94

Understandably, given the importance of their own work for Kramers’ break-
through, Ladenburg and Reiche were enthusiastic about the new dispersion formula.
Immediately after the one sentence devoted to the illness of Kramers’ wife, without
so much as starting a new paragraph, Ladenburg wrote in his letter of April 2:

Nowyour opinion about the dispersionquestion is of course of the highest interest
and I don’t want to pass up the opportunity to tell you howmuch it pleasesme that
you have managed to give a correspondence derivation of the relation between
dispersion and transition probabilities. In this way a solid basis has now been
created. Your formula…is undoubtedly preferable to ours because of its greater
generality. I also agree with you that one cannot extract contributions of the
“negative” oscillators from existing experiments.95

Ladenburg thus immediately zeroed in on the key experimental question raised by
the new formula. In the late 1920s Ladenburg and his collaborators embarked on
a ambitious program to verify the second term in the Kramers dispersion formula
experimentally. Reiche, writing to Kramers a week later, focused on the theoretical
justification of the new formula:

I wanted to tell you again how delighted I amwith your beautiful correspondence
derivation. Following Epstein’s paper [Epstein, 1922c] and using the Born-Pauli
[1922] method, I easily derived the classical expression for P [the polarization]
which you indicate in your letter96 and have also had no trouble reconstructing
the correspondence argument for the transition to the quantum formula.97

Fearing that few Germans would have access to Nature, Ladenburg and Reiche prepa-
red a detailed report on (Kramers, 1924a) for Die Naturwissenschaften. In late May,
Ladenburg asked Kramers whether he would have any objections if they included a
derivation of the new dispersion formula, adding that they were not sure how close it
was toKramers’ derivation.98 Kramerswelcomed the idea, telling Ladenburg that their
derivationwould probably not be all that different fromhis own.He had every intention
of writing a longer paper on dispersion and absorption himself, he added, which would
obviously include the derivation of his dispersion formula, but recognized that “it will

94 Ladenburg to Kramers, April 2, 1924 (AHQP). Reiche likewise apologized seven days later (Reiche to
Kramers, April 9, 1924 [AHQP]).
95 Ladenburg to Kramers, April 2, 1924 (AHQP). Ladenburg was not familiar with the BKS paper at this
point, neither with the English version which appeared in April 1924, nor with the German translation
which only appeared on May 22.
96 This expression—equivalent to Eq. (14)—is not given in (Kramers, 1924a) but does occur in (Kramers,
1924b, p. 199, Eq. 2*) (reproduced as Eq. (50) in Sect. 5.1).
97 Reiche to Kramers, April 9, 1924 (AHQP).
98 Ladenburg to Kramers, 31 May 1924 (AHQP). Ladenburg and Reiche had meanwhile read
(Bohr, Kramers, and Slater, 1924b) and, unsurprisingly given the importance of their concept of ‘substitute
oscillators’ for BKS, were instant converts to the theory. For further discussion, see Sect. 4.2.
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probably be a while before I have time to write such an article; because of lack of time
I have not thought through many details and I consequently would not mind it at all if
your note appears first.”99 In the end, the editor of Die Naturwissenschaften insisted
that Ladenburg and Reiche shorten their article.100 It eventually appeared without the
derivation of Kramers’ dispersion formula (Ladenburg and Reiche, 1924).

The first ones to publish a full derivation of this important result were Born and
Van Vleck. (Born, 1924) was received by Zeitschrift für Physik on June 13, 1924, and
was published in August; the two-part paper (Van Vleck, 1924b,c) was signed June
19, 1924 and appeared in The Physical Review in October. They thus arrived at their
results independently.101 Van Vleck (1924a) read Kramers’ first Nature note shortly
after he finished his first paper on a correspondence principle for absorption and when
he was about to submit (Van Vleck, 1924b,c). In a footnote added to (Van Vleck,
1924a), he wrote:

Since the writing of the present article, Dr. H. A. Kramers has published…a
very interesting formula for dispersion, in which the polarization is imagined as
coming not from actual orbits, but from “virtual oscillators” such as have been
suggested by Slater and advocated by Bohr. Kramers states that his formula
merges asymptotically [i.e., in the limit of high quantum numbers] into the
classical dispersion. To verify this in the general case, thewriter has computed the
classical polarization formula for an arbitrary non-degenerate multiply periodic
orbit …By pairing together positive and negative terms in the Kramers formula,
a differential dispersion may be defined resembling the differential absorption
of the present article. It is found that this differential quantum theory dispersion
approaches asymptotically the classical dispersion…the behavior being very
similar to that in the correspondence principle for absorption. This must be
regarded as an important argument for the Kramers formula (Van Vleck, 1924a,
p. 30).

It was not clear to Van Vleck on the basis of Kramers’ note exactly what Kramers
had and had not yet done. Van Vleck thought that his calculations extended Kramers’
results. As he wrote to Kramers in September 1924:

I am enclosing under separate cover a reprint [Van Vleck, 1924a] which I think
may be of interest to you, especially the footnote at the very end, where I mention
some computations I have made relative to your dispersion formula. A longer
paper [VanVleck 1924b, c] is now in proof, and should appear shortly in the Phy-
sical Review. This more extensive article was ready to send to the printer about
the time we received the copy of Nature containing your dispersion formula. In
your note [Kramers, 1924a] I did not understand you to state how generally you
had verified the asymptotic connection with the classical dispersion from the
actual orbit, and it immediately occurred to me that this question could easily

99 Kramers to Ladenburg, June 5, 1924 (AHQP).
100 Ladenburg to Kramers, June 8, 1924 (AHQP).
101 See Sects. 2.4 and 5.2 for quotations from correspondence between Born and Van Vleck in October–
November 1924 pertaining to these papers.
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be investigated by the perturbation theory method I had previously developed
in connection with what I call the “correspondence principle for absorption”.
I therefore inserted two sections (# 6 and # 15 …) showing that your formula
merged into the classical one.
Inasmuch as the classical dispersion formula had apparently not been develo-

ped for the general non-degenerate multiply periodic orbit, and as you did not
give this in your note to Nature, I conjectured that you had verified the asymp-
totic connection only in special cases, such as a linear oscillator, so that my
computations on dispersion would not be a duplication of what you had done.
However, while visiting at Cambridge, Mass. last week I learned from Dr. Slater
that your calculation of the asymptotic connection was almost identical with my
own in scope and generality. I have therefore altered the proof of my Physical
Review article to include a note [Van Vleck 1924b, p. 345] stating that you have
also established the correspondence theorem in the general case. I hope this is
satisfactory to you. The concept and introduction of the virtual-oscillator for-
mula is entirely yours, and I refer always to the “Kramers dispersion formula”,
but I had developed the perturbation theory method for absorption etc. prior to
learning of any of your work.
I am sorry that we are again apparently duplicating each other in some of our

work. Slater tells me that by extending your computations he has independently
derived an absorption formula similar to mine, and also noted the asymptotic
connection of the two theories in this case.102

As in the case of Ladenburg and Reiche half a year earlier, Kramers did not seem to
mind at all that Van Vleck was poaching on his preserves. He generously wrote back
to Van Vleck: “Your note on absorption made me much pleasure and I think it very
just of Providence that you got it published before hearing of our work.”103

The construction of the dispersion formula (9) requires as a prelude to the applica-
tion of the correspondence principle, a derivation of the classical formula for the di-
pole moment of an arbitrary (non-degenerate) multiply-periodic system. This is where
Ladenburg and Reiche (1923) came up short, even though, as we saw above, Reiche
was able to reconstruct the derivation once Kramers had outlined it for him. Kramers
and Van Vleck, like Epstein before them, used canonical perturbation techniques from
celestial mechanics to derive this classical formula. In Part Two of our paper, closely
following the classical part of VanVleck’s two-part paper (VanVleck, 1924c), we shall
present a detailed derivation of this crucial classical formula, for the special case of the
harmonic oscillator in Sect. 5.1 and for a general non-degenerate multiply-periodic
system in Sect. 6.2. Guided by the correspondence principle and introducing the A
and B coefficients we then construct a quantum formula that merges with the classical
formula for high quantum numbers (see Sects. 5.2 and 6.2).104 Here we summarize
the main steps of this derivation.

102 Van Vleck to Kramers, September 22, 1924 (AHQP).
103 Kramers to Van Vleck, November 11, 1924 (AHQP).
104 Recall that Van Vleck actually did it the other way around: he started with the quantum formula and
checked that this formula merges with the classical formula in the correspondence limit (see note 17).
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In general coordinates (qi , pi ), Hamilton’s equations are:

q̇i = ∂H
∂pi

, ṗi = −∂H
∂qi

, (10)

where dots indicate time derivatives. Given the Hamiltonian H of some multiply-
periodic system, one can often find special coordinates (wi , Ji ), so-called action-angle
variables, in which Hamilton’s equations take on a particularly simple form:

ẇi = ∂H
∂ Ji

= νi , J̇i = − ∂H
∂wi

= 0. (11)

The angle variables, wi = νi t , give the characteristic frequencies of the system; the
(conserved) action variables are subject to the Bohr–Sommerfeld quantum condition,
Ji = ni h. This, of course, is why these variables are of particular interest in this
context.

Suppose we have a Hamiltonian H that is the sum of H0, describing somemultiply-
periodic system representing an electron orbiting the nucleus of an atom in the Bohr–
Sommerfeld theory (or, an inner planet like Mercury orbiting the sun), and Hint =
eEx cos 2πνt , a small perturbation describing the interaction of this system with a
weak periodic electric field in the x-direction (or, the periodic weak gravitational
interaction with a distant outer planet). To find the induced polarization responsible
for dispersion in this system we need to calculate the coherent part �xcoh of the
displacement caused by the perturbation (cf. Eqs. (2)–(6) in Sect. 3.1). We assume
that the unperturbed system can be solved in action-angle variables, which means that
x(t) in the absence of Hint can be written as a Fourier series:

x(t) =
∑
i,τi

Aτi (Jl)e
2π iτiwi (12)

(where i runs from 1 to 3 and τi runs over all positive and negative integers). The
complex amplitudes have to satisfy the conjugacy relations Aτi = A∗−τi to ensure that
x(t) is real. Assuming the interaction is switched on at t = 0, we can use Hamilton’s
equations in action-angle variables—still those for H0 rather than those for the full
Hamiltonian H105—to calculate �wi and �Ji due to the perturbation. We insert the
results into

�x =
∑
k

(
∂x
∂ Jk

�Jk + ∂x
∂wk

�wk

)
, (13)

and collect the coherent terms (i.e., all terms with a factor e2π iνt ). The result is:

�xcoh = 2eE
∑

i,k,τi ,τk

τk
∂

∂ Jk

(
τiνi

ν2 − (τiνi )2
|Aτi (Jl)|2

)
cos 2πνt . (14)

105 Here Van Vleck’s calculation differs from those of Born (1924) or Kramers and Heisenberg (1925).
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For the special case of a charged harmonic oscillator, this expression reduces to the
simple expression (6) found earlier (as we shall show in detail at the end of Sect. 5.1).

We now translate this classical formula into a quantum formula. The idea is to
construct a quantum formula that merges with the classical formula in the limit of
high quantum numbers. This is done in three steps. For high values of the quantum
number i , the derivatives ∂/∂ Ji can be replaced by difference quotients,106 the square
of the amplitudes Aτi (Jl) by transition probabilities Ai→ j (where |i − j | is small
compared to i), and orbital frequencies νi by transition frequencies νi→ j . We then take
the leap of faith that the resulting formula holds for all quantum numbers. Multiplying
by the charge −e and the number of atoms N to get from the coherent part of the
displacement of one atom to the polarization of a group of atoms, we arrive at the
Kramers dispersion formula (9).

3.5 Heisenberg’s Umdeutung and dispersion theory

The Kramers dispersion formula was a crucial step in the transition from the old
quantum theory to matrix mechanics, and thereby in the transition from functions on
classical phase spaces to operators on Hilbert spaces. As Kramers pointed out in his
second Nature note, the formula

only contains such quantities as allow of a direct physical interpretation on
the basis of the fundamental postulates of the quantum theory…and exhibits
no further reminiscence of the mathematical theory of multiple [sic] periodic
systems (Kramers, 1924b, p. 311)

This point is amplified in the Kramers–Heisenberg paper:

we shall obtain, quite naturally, formulae which contain only the frequencies and
amplitudes which are characteristic for the transitions, while all those symbols
which refer to themathematical theory of periodic systemswill have disappeared
(Kramers and Heisenberg, 1925, p. 234, our emphasis).

Orbits do not correspond to observable quantities, but transitions do, namely to the
frequency νi→ f of the emitted radiation, and, through the Einstein coefficients Ai→ f ,
to its intensity. In the introduction of his Umdeutung paper, Heisenberg (1925c) ex-
plained that he wanted “to establish a theoretical quantum mechanics, analogous to
classical mechanics, but in which only relationships between observable quantities
occur” (p. 262). In the next sentence he identified the Kramers dispersion theory as
one of “the most important first steps toward such a quantum-theoretical mechanics”
(ibid.).

Rather than using classical mechanics to analyze features of electron orbits and
translating the end result into a quantum formula, as Kramers and others had done
(cf. Eqs. (10)–(14) above), Heisenberg translated the Fourier series for the posi-
tion of an electron that forms the starting point of such classical calculations into a

106 This replacement is known as “Born’s correspondence rule.” In fact, both Kramers and Van Vleck
found it independently of Born. We return to this point in Sect. 5.2.
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quantum expression. He replaced the amplitudes and frequencies by two-index quan-
tities, referring to the initial and final state of a quantum transition, respectively, and
thus replaced classical position by an array of numbers associated with transitions bet-
ween states. Reinterpreting rather than replacing the old theory, he assumed that these
new quantities would satisfy all the familiar relations of Newtonian mechanics. Note
that Heisenberg thus formulated a new theory directly in terms of transition quantities
without bothering to find a representation for the states connected by the transitions.

The Bohr–Sommerfeld quantization condition (1) has the form of a restriction on
orbits in phase space. With the elimination of orbits, it could no longer be used, at
least not in its original form. As Heisenberg recalls in his AHQP interview:

I had, of course, to think about the quantum condition. And that was an important
point. But there I knew so much from Copenhagen how important this Thomas–
Kuhn sum rule was. That took some time. That I think I had done in Göttingen,
[I] had seen how I could translate the Thomas–Kuhn sum rule into what I call
a quantum mechanical statement, into a statement in which only differences
occurred. I did not see that it was a commutation rule [but with this translation]
I can bring this sum rule into my whole scheme and then this sum rule actually
fixes everything. I could see that this fixes the quantization.107

The Thomas–Kuhn sum rule, a corollary of the Kramers dispersion formula (see Sect.
7.1 for a derivation in modern quantum mechanics), had been found independently by
Werner Kuhn (1899–1963) (1925) in Copenhagen108 and by Willy Thomas (1925) in
Breslau.109 Kuhn (i.e., ThomasKuhn) pressedHeisenberg a little on howhe had settled
on this rule as his fundamental quantization condition: “Using the Kuhn–Thomas [sic]
rule is a stroke of genius but one supposes that there were a lot of other intermediate
attempts.” Apparently there were none. Heisenberg insisted:

No, I would say it was rather trivial for the following reasons: First of all, there
was the integral pdq…I felt that perhaps only the difference of integral pdq
between one quantum state and the next quantum state is an important thing.
So I actually felt, “Well, perhaps I should write down integral pdq in one state
minus integral pdq in the neighboring state.” Then I saw that if I write down this
and try to translate it according to the scheme of the dispersion theory, then I get
the Thomas–Kuhn sum rule. And that is the point. Then I thought, “Well, that is
apparently the way how it is done.”110

In other words, following the general recipe introduced in the Umdeutung paper for
the translation of classical formulae into quantum-mechanical ones— “the scheme of

107 See p. 10 of the transcript of session 7 of the AHQP interview with Heisenberg
108 The publication of Kuhn’s paper had been delayed in typical Copenhagen fashion: “A paper on the
summation rule had been submitted to Prof. Bohr and Prof. Kramers about half a year before the final
one, but it was rejected at that time because it contained besides the main good argument some unsuitable
passages” (Werner Kuhn to Thomas Kuhn, May 3, 1962 [included in the folder on Kuhn in the AHQP])
109 Thomas was a student of Reiche in Breslau who died young of tuberculosis. See p. 14 of the transcript
of the third session of the AHQP interview with Reiche.
110 See p. 10 of the transcript of session 7 of the AHQP interview with Heisenberg (our emphasis).
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the dispersion theory”—Heisenberg (1925c, p. 268) was able to convert a derivative
of the Bohr–Sommerfeld condition into an equation that contains only amplitudes and
frequencies. Since Heisenberg’s theory only deals with transitions between states, the
absolute value of the action J does not matter; only the difference in J -value between
two states does.

The sum rule is sometimes called the Thomas–Kuhn–Reiche sum rule because
Reiche and Thomas (1925) were the first to publish a detailed derivation of it in a
paper submitted to the Zeitschrift für Physik in early August 1925 about a month
before (Heisenberg, 1925c) appeared in the same journal. In formulating the goal of
their paper, Reiche and Thomas not only used the term ‘Umdeutung’ in very much the
same way as Heisenberg in his Umdeutung paper, they also explicitly tied this usage
to Kramers’ dispersion theory:

We use…the correspondence principle in the same way in which it was applied
by Kramers in the derivation of the dispersion formula by reinterpreting [um-
deuten] the mechanical orbital frequencies as radiation frequencies, the Fourier
coefficients as the “characteristic amplitudes” that determine the quantum ra-
diation, and, finally, in analogy to the Bohr frequency condition,111 differential
quotients as difference quotients. In the realm of high quantum numbers the
classical and quantum-theoretical representations become identical. We try to
arrive at a general relation, by maintaining the reinterpretation [Umdeutung]
of classical quantities into quantum-theoretical ones for all quantum numbers
(Reiche and Thomas, 1925, pp. 511–512).

In view of the tendency of European theorists to neglect American contributions (see
Sect. 2.4), it is also interesting to note that Reiche and Thomas (1925, p. 513) cite
(Van Vleck, 1924b).

Although he failed to recognize the importance of the result at the time, Van Vleck
had, in fact, been the first to find the sum rule (Sopka, 1988, p. 135, note 184). As he
wrote in his NRC Bulletin:

Eq. (62a) [a version of the sum rule] appears to have been first incidentally sug-
gested by the writer [Van Vleck 1924c, pp. 359–360, footnote 43] and then was
later and independently muchmore strongly advanced by Thomas…Kuhn…and
Reiche and Thomas (Van Vleck, 1926, p. 152).

Van Vleck is referring to a footnote in the section on dispersion in the classical part of
his paper. In this footnote he mentioned two objections that explain why he did not put
greater emphasis on the sum rule himself. VanVleck’s idea—which he calls “tempting
(but probably futile)” (Van Vleck, 1924c, p. 359, footnote 43)—was that the sum rule
would allow him to compute the Einstein A coefficients. He was under the impression,
however, that “such a method is hard to reconcile with the [experimental] work of
F. C. Hoyt [1923, 1924]” on X-ray absorption and that it “would lead to transitions

111 In the limit of high quantum numbers, the Bohr frequency condition, νi→ j = (Ei − E j )/h, merges
with the relation νi = ∂H/∂ Ji (cf. Eq. (11)). Van Vleck (1924b, p. 333) calls this the correspondence
theorem for frequencies.
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from positive to negative quantum numbers, which can scarcely correspond to any
physical reality” (ibid.).

As Heisenberg (1925c, pp. 269–270) shows briefly in his paper, the sum rule
follows from the Kramers dispersion formula (9) if one takes the limit in which
the frequency ν of the incident radiation is much greater than any of the absorp-
tion frequencies νi→ j (see Sect. 7.1). That the quantization condition obtained by
massaging the Bohr–Sommerfeld condition also follows from the Kramers disper-
sion theory, widely recognized as one of the most secure parts of the old quantum
theory, must have bolstered Heisenberg’s confidence in the translation procedure of
his Umdeutung paper. It was left to Born and Jordan (1925b) to extract the now
standard commutation relations for position and momentum from the Thomas–Kuhn
sum rule (in Sect. 7.1 we shall show in detail how this is done). That Heisenberg
stopped short of making this move is largely, as we shall argue in Sect. 7.1, be-
cause he was thinking in terms of the positions and velocities of the Lagrangian
formalism rather than in terms of the positions and momenta of the Hamiltonian
formalism.

AlthoughHeisenberg thus relied heavily on dispersion theory in hisUmdeutung pa-
per, he gave his positivist methodology pride of place. This philosophical outlook pro-
bably came from a variety of sources. Pauli, Heisenberg’s fellow student and frequent
discussion partner (both in person and in writing), was a devoted follower of his god-
father Ernst Mach (1838–1916).112 As Pauli had written to Bohr, for instance, on
December 12, 1924:

We must not…put the atoms in the shackles of our prejudices (of which in my
opinion the assumption of the existence of electron orbits in the sense of the
ordinary kinematics is an example); on the contrary, we must adapt our concepts
to experience (Bohr, 1972–1996, Vol. 5, pp. 35–36).

We already indicated in Sect. 1.1 that Heisenberg himself later claimed that his po-
sitivist attitude came in part from his reading of Einstein’s 1905 special relativity
paper.113 His biographer David Cassidy (1991, p. 198) makes the suggestive observa-
tion that Born and Jordan (1925a, p. 493), in a paper completed by June 11, 1925, not
only emphasized the observability principle but also appealed to Einstein’s analysis
of distant simultaneity in support of it.

As Helge Kragh (1999) notes: “there was no royal road from the observability prin-
ciple to quantum mechanics” (p. 162). This truism is nicely illustrated by a conversa-
tion between Einstein and Heisenberg reported years later by the latter. The following
exchange supposedly took place in Berlin in the spring of 1926:

“But you don’t seriously believe,” Einstein protested, “that none but observable
magnitudes must go into a physical theory?” “Isn’t that precisely what you have
done with relativity?” I asked in some surprise…“Possibly I did use this kind

112 On Pauli’s positivism, see, e.g., (Hendry, 1984, pp. 19–23) and (Gustavson, 2004).
113 See, e.g., (Holton, 2005, pp. 26–31) for discussion.
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of reasoning,” Einstein admitted, “but it is nonsense all the same” (Heisenberg,
1971, p. 63).114

With his S-matrix program in the 1940s,115 Heisenberg once again tried to force a
theoretical breakthrough by restricting himself to observable quantities, this time with
the qualification that he had taken to heart Einstein’s lesson that, in the end, it is the
theory that determines what the observables are. Heisenberg (1971, p. 63) has Einstein
make this point a few sentences after the passage quoted above and acknowledges it
as a source of inspiration for his 1927 uncertainty principle. Nearly two decades after
the Umdeutung paper, Heisenberg (1943) wrote: “in this situation it seems useful to
raise the question which concepts of the present theory can be retained in the future
theory, and this question is roughly equivalent to a different question, namely which
quantities of the current theory are “observable”…Of course, it will always only be
decided by the completed theory which quantities are truly “observable”” (p. 514).

As Einstein complained in 1917 in a letter to his friend Michele Besso (1873–
1955), referring to the excessive Machian positivism of their mutual acquaintance
FriedrichAdler (1879–1960): “He is riding theMachian nag [denMachschenKlepper]
to exhaustion.” In a follow-up letter he elaborated: “It cannot give birth to anything
living, it can only stamp out harmful vermin.”116 This is true in the case of matrix
mechanics as well. Heisenberg’s positivism would have been perfectly sterile if it had
not been for Kramers’ dispersion theory. In that context, positivism was not a blanket
injunction against unobservable quantities in general butwas directed at a specific set of
increasingly problematic unobservables, the electron orbits of the Bohr–Sommerfeld
theory.

4 The Bohr–Kramers–Slater (BKS) theory as a detour on the road from
dispersion theory to matrix mechanics

4.1 Virtual oscillators and virtual radiation

Kramers presented his work on dispersion theory in the context of the BKS theory,
not just in the two preliminary notes to Nature discussed in Sect. 3.4, but also in the
authoritative exposition of his dispersion theory in the paper with Heisenberg. In the
abstract of this paper, the authors announce that

[t]he arguments are based throughout on the interpretation of the connection of
the wave radiation of the atom with the stationary states advocated in a recent
paper by Bohr, Kramers and Slater [1924a,b], and the conclusions, should they

114 Quoted and discussed, for instance, in (MacKinnon, 1977, p. 185) and in (Holton, 2005, pp. 30–31). For
other versions of the same anecdote, see (Heisenberg, 1983, pp. 113–114) and pp. 18–19 of the transcript
of session 5 of the AHQP interview with Heisenberg.
115 See (Pais, 1986, 497–503), (Dresden, 1987, 453–458), and, especially, (Cushing, 1990) for discussion.
See also pp. 20–21 of the transcript cited in note 114.
116 Einstein to Besso, April 29 and May 13, 1917, respectively (Einstein, 1987–2006, Vol. 8, Docs. 331
and 339). For further discussion, see, e.g., (Holton, 1968).
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be confirmed, would form an interesting support for this interpretation (Kramers
and Heisenberg, 1925, p. 223).117

It should thus come as no surprise that the Kramers dispersion theory has been por-
trayed as an application of the BKS theory in most older and even in somemore recent
historical literature.118 Jammer (1966), for instance, writes that BKS “was the point
of departure of Kramers’s detailed theory of dispersion” (p. 184). Mara Beller (1999)
still characterized (Kramers and Heisenberg, 1925) as a paper that “spelled out, in
a rigorous mathematical way, the ideas only roughly outlined in the presentation of
Bohr, Kramers, and Slater” (p. 23). More than a decade earlier, Dresden (1987, pp.
144–146, pp. 220–221) had in fact already set the record straight.119 Darrigol (1992,
p. 225) duly emphasizes that the Kramers dispersion theory was developed before and
independently of BKS. Even before Dresden, Hendry (1981) had already made it clear
that BKS got its virtual oscillators from dispersion theory—the substitute oscillators
of (Ladenburg and Reiche, 1923)—and not the other way around. We briefly review
the evidence in support of the italicized claims above.

We know from the passage quoted in Sect. 3.4 from a letter fromSlater to VanVleck
that by the time the former arrived in Copenhagen around Christmas 1923 Kramers
already had his dispersion formula. Kramers must have used the substitute oscillators
of (Ladenburg and Reiche, 1923) at that point even though by the time he finally got
around to publishing his formula he called them virtual oscillators (see Sect. 3.4).
Slater’s arrival in Copenhagen marks the lower limit for the birth of the BKS theory.
The theory, after all, grew around an idea that Slater hit upon shortly before he left
for Europe late that year.120 Slater suggested that the wave and particle properties of
light might be reconciled by having an electromagnetic field guide corpuscular light
quanta.121 Bohr and Kramers cannibalized Slater’s idea and stripped it of all reference
to light quanta. Against his better judgment—as he insisted decades later in a letter
of November 4, 1964 to van der Waerden (1968, p. 13)—Slater went along and his
idea entered the literature via the BKS paper. In a short letter sent to Nature a week
after this joint paper had been submitted, Slater explained how Bohr and Kramers had
convinced him of their point of view. Accordingly, he presented his idea couched in
BKS terms:

117 We use the translation of (Stolzenburg, 1984, p. 87) at this point, which is more accurate than the
standard translation in (Van der Waerden, 1968, p. 223).
118 There is an extensive literature on BKS; see, e.g., (Klein, 1970, pp. 23–39), (Stuewer, 1975, pp. 291–
305), (Hendry, 1981), the dissertation of NeilWasserman (1981), (Mehra and Rechenberg, 1982–2001, Vol.
1, Sect. V.2), the essay by Klaus Stolzenburg (1984) in (Bohr, 1972–1996, Vol. 5, pp. 3–96), and (Dresden,
1987, pp. 159–215).
119 See (Dresden, 1987, p. 221) for a helpful chronology of events in 1923–1925 pertaining to BKS and
dispersion theory.
120 See Slater to his mother, November 8, 1923 (quoted in Dresden, 1987, p. 161); Slater to Kramers,
December 8, 1923 (AHQP). For discussions of Slater’s idea, see (Klein, 1970, p. 23), (Stuewer, 1975, pp.
291–294), (Hendry, 1981, pp. 213–214), (Stolzenburg, 1984, pp. 6–11), and (Darrigol, 1992, pp. 218–219).
121 Slater was probably unaware that Einstein and Louis de Broglie (1892–1987) had already made similar
suggestions (Hendry, 1981, p. 199; Darrigol, 1992, p. 218).
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Any atom may, in fact, be supposed to communicate with other atoms all the
time it is in a stationary state, by means of a virtual field of radiation originating
from oscillators having the frequencies of possible quantum transitions and the
function of which is to provide for the statistical conservation of energy and
momentum by determining the probabilities for quantum transitions (Slater,
1924, p. 307).

The final clause about the statistical conservation of energy andmomentumwas foisted
upon Slater by Bohr and Kramers.122 Bohr had been contemplating such a move for
several years, as can be inferred, for instance, from correspondence with Ehrenfest
in 1921 in connection with the third Solvay congress held that year (Klein, 1970,
p. 19) and with Darwin in 1922 (Stolzenburg, 1984, pp. 13–19). Slater’s concept of
virtual radiation emitted while an atom is in a stationary state fit nicely with Bohr’s
tentative ideas concerning the mechanism of emission and absorption of radiation. In
Sects. 3.2–3.3, we quoted various comments by Bohr on dispersion from the period
1916–1923 showing how he came to embrace the notion that an atom interacts with
radiation like a set of oscillators.

The concept of virtual oscillators is often attributed to Slater, not just by later
historians (see, e.g., Stuewer, 1975, p. 291, p. 303) but also by his contemporaries. In
the abstract of (Van Vleck, 1924b), for instance, we read that the Kramers dispersion
formula “assumes the dispersion to be due not to the actual orbits but to Slater’s
‘virtual’ or ‘ghost’ oscillators having the spectroscopic rather than orbital frequencies”
(p. 330).123 In the BKS paper itself, however, the concept is unambiguously attributed
to Ladenburg:124

The correspondence principle has led to comparing the reaction of an atom on a
field of radiationwith the reaction on such afieldwhich, according to the classical
theory of electrodynamics, should be expected from a set of ‘virtual’ harmonic
oscillators with frequencies equal to those determined by [hν = E1 − E2] for
the various possible transitions between stationary states.125 Such a picture has
been used by Ladenburg126 in an attempt to connect the experimental results
on dispersion quantitatively with considerations on the probability of transitions
between stationary states (Bohr, Kramers, and Slater, 1924a, pp. 163–164).

As we saw in Sect. 3.3, Ladenburg and Reiche in turn attributed the idea to Bohr. In
1924, for instance, they wrote:

122 See also (Bohr, Kramers, and Slater, 1924a, p. 160).
123 See also (Van Vleck, 1924a, p. 30), quoted in Sect. 3.4, and (Van Vleck, 1926, p. 163).
124 The mistakes with the prepositions in the passage below (‘reaction on’ instead of ‘reaction to’ and
‘considerations on’ instead of ‘considerations of’) would tend to support Slater’s claim that the paper was
“written entirely by Bohr and Kramers” (Slater to Van Vleck, July 27, 1924, quoted in Sect. 2.2).
125 At this point, the authors refer to Ch. III, Sect. 3 of (the English translation of) (Bohr, 1923b), the
section in which (Ladenburg, 1921) is discussed and which triggered the correspondence between Bohr and
Ladenburg discussed in Sect. 3.3.
126 At this point, the authors append a footnote referring to (Ladenburg, 1921) and (Ladenburg and Reiche,
1923).
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Formally, we can describe the relation [between oscillator strengths and tran-
sition probabilities] following an assumption introduced by Bohr [1923b, pp.
161–162], by imagining that the atom responds to external radiation like a sys-
tem of electrical oscillators, whose characteristic frequencies ν agree with the
emitted or absorbed frequencies in possible quantum transitions (Ladenburg and
Reiche, 1924, p. 672).

In the next sentence they use their own term “substitute oscillators” (in quotation
marks) and add: “(now called “virtual oscillators”)” (ibid.). Likewise, in the introduc-
tion of the opening installment of a series of papers on the experimental verification of
the Kramers dispersion formula, Ladenburg talks about “the “substitute oscillators”,”
which were introduced, “at Bohr’s suggestion, as the carriers of the scattered radiation
needed for dispersion” (Ladenburg, 1928, p. 16).127

Bohr had communicated the idea in a letter to Ladenburg (see Sect. 3.3). This may
explainwhy,when interviewed for theAHQP,Reiche did not rememberwho originally
came up with it:

I do not know whether we or Kramers first used this terminology of virtual
oscillators…It might be it is Kramers. If it was Kramers then we certainly at
once incorporated it into our thinking.128

In his AHQP interview with Slater, Kuhn also asked about virtual oscillators:

to what extent did that come from [the BKS] paper, to what extent does it
really go back to the Ladenburg, and Ladenburg–Reiche [papers]? It could have
grown out [of the] Ladenburg and Ladenburg–Reiche papers, yet my impres-
sion from the literature is that there was little done with that until after the
Bohr–Kramers–Slater paper.129

Slater concurred, though his comments would have been more valuable had he not
been asked such a leading question:

I think that’s true. Of course, I was very familiar with the Ladenburg–Reiche
things,130 so was Bohr. I think that we helped popularize it in a sense. Of course,
this also came at the same time, approximately, that Kramers was working on his
dispersion formula. That again is operatingwith things verymuch like the virtual
oscillator, so they all seem to hang together, and I think it was a combination of
the oscillators from our paper, from the Ladenburg–Reiche, and the Heisenberg–
Kramers dispersion that really set them in operation.131

Despite the loaded question that elicited this response and even though Slater is wrong
to suggest that BKS and Kramers’ dispersion theory were developed independently of

127 The passage from which these clauses are taken is quoted in full at the beginning of Sect. 7.
128 See p. 11 of the transcript of session 3 of the interview with Reiche. It could be, however, that Reiche
was only referring to the new term for the Bohr–Ladenburg–Reiche concept of substitute oscillators.
129 See p. 34 of the transcript of the first session of the AHQP interview with Slater.
130 (Ladenburg, 1921) and (Ladenburg and Reiche, 1923) are cited in (Slater, 1925a, p. 397).
131 See pp. 34–35 of the transcript of the first session of the AHQP interview with Slater.
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the earlier work of Ladenburg and Reiche, the overall characterization of the situation
seems to be accurate. BKS officially sanctioned the dual representation of the atom
as simultaneously a quantum system à la Einstein and Bohr and a set of oscillators à
la Helmholtz, Lorentz and Drude. This dual picture had been implicit in (Ladenburg,
1921). It was made explicit, under Bohr’s influence, in (Ladenburg and Reiche, 1923).
That it was endorsed by the highest authorities in Copenhagen undoubtedly helped its
dissemination. Even so it was typically presented with some trepidation. In his second
Nature note, Kramers tried to pass it off as merely a matter of words:132

In this connexion it may be emphasized that the notation ‘virtual oscillator’ used
in my former letter [Kramers, 1924a] does not mean the introduction of any
additional hypothetical mechanism, but is meant only as a terminology suitable
to characterise certain main features of the connexion between the description of
optical phenomena and the theoretical interpretation of spectra (Kramers, 1924b,
p. 311).

Van Vleck was more upfront:

The introduction of these virtual resonators is, to be sure, in some ways very
artificial, but is nevertheless apparently the most satisfactory way of combining
the elements of truth in both the classical and quantum theories. In particular
this avoids the otherwise almost insuperable difficulty that it is the spectrosco-
pic rather than the orbital frequencies…which figure in dispersion (Van Vleck,
1924b, p. 344).

Despite such disclaimers, Kramers and Van Vleck—as well as Slater, Born, Breit
and others working in the general area of dispersion theory in 1924–1925—used a
model of the atom in which the electron orbits of the Bohr–Sommerfeld theory were
supplemented by an “orchestra of virtual oscillators”133 with characteristic frequencies
corresponding to each and every transition that an electron in a given orbit can undergo.
Thanks to virtual oscillators—to paraphrase Heisenberg’s succinct statement to van
der Waerden (1968, p. 29) in 1963—at least something in the atom was vibrating with
the right frequency again.

The dual representation of physical systems (of electrons rather than atoms in
this case) was also key to the BKS explanation of the Compton effect. BKS was
Bohr’s last stand against light quanta after the Compton effect had finally convinced
most other physicists that they were unavoidable (Klein, 1970, p. 3).134 BKS explains
the Compton effect without light quanta. It attributes the frequency shift between
incoming and scattered X-rays to a Doppler shift in the X-ray wave fronts instead.
Compton (1923) thought this option was ruled out because, as he showed in his paper,
the recoil velocity needed to get the right Doppler shift is different from the recoil
velocity needed to ensure conservation of energy and momentum in the process, and

132 In the work that led to (Kramers and Heisenberg, 1925), however, Kramers, according to Hendry
(1981), “ignored their virtual nature altogether and treated the oscillator model as naively as he had the
orbital model” (p. 202).
133 The term “virtual orchestra” comes from (Landé, 1926, p. 456) (Jammer, 1966, p. 187).
134 Cf. our comments in the introduction to Sect. 3.
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one and the same electron cannot recoil with two different velocities. In the BKS
theory, however, there is room for two recoil velocities, one for the electron itself,
one for the orchestra of virtual oscillators associated with it.135 The Compton effect
can be interpreted as a Doppler shift if the appropriate recoil velocity is assigned to
the virtual oscillators. Energy and momentum can be conserved if a different recoil
velocity is assigned to the electrons themselves. Bohr and his co-authors wasted few
words on the justification of this startling maneuver:

That in this case the virtual oscillator moves with a velocity different from that
of the illuminated electrons themselves is certainly a feature strikingly unfami-
liar to the classical conceptions. In view of the fundamental departures from the
classical space-time description, involved in the very idea of virtual oscillators,
it seems at the present state of science hardly justifiable to reject a formal inter-
pretation as that under consideration as inadequate (Bohr, Kramers, and Slater,
1924a, p. 173).

This is almost as bad as pieces of glass dragging along different amounts of ether for
different colors of light in early nineteenth-century ether theory (see Sect. 3.1)!

The problem carries over to the dispersion theory based on the dual representation
of atoms in terms of classical orbits and virtual oscillators, as is acknowledged, if only
in passing, by Kramers and Heisenberg (1925): “We shall not discuss in any detail the
curious fact that the centre of these spherical wavesmoves relative to the excited atom”
(p. 229). This exacerbated the problem of the Bohr–Sommerfeld orbits in the theory.
Not only were they responsible for the discrepancy between orbital frequencies and
radiation frequencies, they also make it harder to picture an atom in space and time.
After all, the system of electron orbits does not even move in concert with its orchestra
of virtual oscillators.

EdwardMacKinnon (1977, 1982) has suggested that the resulting problem of com-
bining different pictures of the atom into one coherent picture forced Heisenberg to
make a choice between them (see also Beller, 1999, p. 23). Since the virtual oscillators
carry all the physical information while the electron orbits are completely unobser-
vable, the choice is obvious. MacKinnon (1977, p. 138) has gone as far as describing
Heisenberg’sUmdeutung paper as proposing a theory of virtual oscillators. Of course,
there is no explicit reference to virtual oscillators anywhere in the Umdeutung paper.
MacKinnon (1977, pp. 155–156, 162, 177) speculates that this is because Heisen-
berg suppressed all talk about virtual oscillators as a response to Pauli’s objections to
the “virtualization” of physics.136 We shall return to the relation between BKS and
Heisenberg’s work in Sect. 4.3.

Pauli had originally promised not to subvert Bohr’s efforts to get the physics com-
munity to accept the term ‘virtual’ as used in the context of BKS. Working on the

135 What Compton (1923) actually said in his paper is very suggestive of this option: “It is clear…that so far
as the effect on the wave-length is concerned, wemay replace the recoiling electron by a scattering electron”
with an “effective velocity” different from that of the recoiling electron (p. 487; quoted and discussed in
Stuewer, 1975, p. 230).
136 In a letter of January 8, 1925, Heisenberg told Bohr that Pauli did not believe “in virtual oscillators and
is outraged at the ‘virtualization’ of physics” (MacKinnon, 1977, p. 156).
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German translation of the paper (Bohr, Kramers, and Slater, 1924b), Bohr was an-
xious to ensure that Pauli approved of “the words “communicate” and “virtual”, for
after lengthy consideration, we have agreed here on these basic pillars of the expo-
sition.”137 In typical Bohr fashion, he first announced that the manuscript would be
submitted that same day and that he would enclose a copy, then added a postscript
saying that there had been further delays and that it would be sent later.138 Amused,
Pauli wrote back a few days later:

I laughed a little (you will certainly forgive me for that) about your warm recom-
mendation of the words “communicate” and “virtual” and about your postscript
that the manuscript is still not yet completed. On the basis of my knowledge of
these two words (which I definitely promise you not to undermine), I have tried
to guess what your paper may deal with. But I have not succeeded.139

The term ‘virtual’ also puzzled the group of physicists in Ann Arbor studying the
BKS paper with Bohr’s former associate Klein, who wrote to Bohr on June 30, 1924:
“Colby [cf. note 37], who is also most interested in it, asked me about the meaning of
the term ‘virtual radiation”’ (Stolzenburg, 1984, p. 29).

Exactly what does the ‘virtual’ in virtual oscillator and virtual radiation mean?
Virtual oscillators can be thought of in analogy to virtual images in geometric optics.
Just as the light reflected fromamirror appears to come froman imaginary point behind
themirror, the light scattered by an atom appears to come from an imaginary oscillator.
This analogy, however, is nowhere to be found in the BKS paper. Whatever its exact
meaning, the designation ‘virtual’ does serve as a warning that these oscillators are
not just classical oscillators. The authors warn, for instance, that “the absorption and
emission of radiation are coupled to different processes of transition, and thereby to
different virtual oscillators” (Bohr, Kramers, and Slater, 1924a, p. 171).

Unlike the light coming from virtual images in geometric optics, the radiation
coming from virtual oscillators is also called virtual in the BKS paper. Again, it is not
clear why. As the analogy with geometric optics shows, that a source is virtual does
not mean that the radiation must be virtual as well. In Slater’s original conception,
the radiation might be called virtual in the sense that the light quanta are the primary
reality and that the radiation is there only to guide them. In the BKS theory, however,
there are no light quanta, only the radiation.

The way Heisenberg later remembered it, the virtual radiation of BKS had a status
similar to that of the Schrödinger wave function in Born’s statistical interpretation a
few years later. As Heisenberg told Kuhn in his AHQP interview:

What Bohr, Kramers, and Slater did was to establish the probability as a kind
of reality…one felt that by making the probability become some kind of reality,
you get hold of something which is there. It was at that time of course, very
difficult to say what it was that you had gotten hold of. I would say only through

137 Bohr to Pauli, February 16, 1924 (Bohr, 1972–1996, Vol. 5, p. 409).
138 Contrary to what is suggested by these delays, the German translation simply follows the English
original.
139 Pauli to Bohr, February 21, 1924 (Bohr, 1972–1996, Vol. 5, p. 412; our emphasis).
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the paper of Born [1926] did it become quite clear that one should say, “All right,
the Schrödinger wave means that probability that an electron should be there.”
But the main point was that the probability itself was something real. It was
not only in the mind of the people, but it was something in nature…Up to that
time people had two possibilities. One possibility was that the reality is a wave.
There is an electric field, and a magnetic field acting upon an atom, shaking the
electron, and then the atom does something, it makes a transition …There is an
entirely different picture of reality in which there is a light quantum…hitting the
atom, and then something happens. But now the idea is that there is a wave. But
this wave is not the reality. This wave is a probability—this wave is a tendency.
It means that when this wave is present then the atom gets a tendency to emit
light quanta. So this idea of the wave field being a tendency was something just
in the middle between reality and non-reality…That was the striking thing about
[BKS], you know, this new invention of a possibility which was a reality in some
way but not a real reality—a half reality.140

Unsurprisingly, Born took exception to Heisenberg’s suggestion that the Born inter-
pretation had been anticipated in this way by BKS. As Heisenberg said in a sub-
sequent session of the interview: “I felt once, when I discussed this matter with Born,
that he was a bit angry that I had quoted too much the Bohr–Kramers–Slater paper in
connectionwith the probability interpretation ofwaves.”141 We sympathizewithBorn.
Heisenberg’s comments, we feel, have all the flavor of an after-the-fact rationalization.

In subsequent expositions of the BKS theory by both Kramers and Slater, the radia-
tion from virtual oscillators is presented as every bit as real as the external radiation. It
is hard to see how this could be otherwise since the two types of radiation are supposed
to interfere with one another. Bohr, Kramers, and Slater (1924a) write: “we shall as-
sume that [illuminated atoms] will act as secondary sources of virtual wave radiation
which interferes with the incident radiation” (p. 167, our emphasis). A few pages later,
they talk about the same “secondary wavelets set up by each of the illuminated atoms”
(ibid., p. 172) without labeling them virtual. On the following page they suddenly refer
to the external radiation as “incident virtual radiation” (ibid., p. 173, our emphasis).
And the final paragraph of the paper discusses the “(virtual) radiation field” (ibid.,
p. 175) produced by ordinary antennas. The concluding sentence, which has Bohr
written all over it, shows how the authors struggled with their own terminology:

It will in this connexion be observed that the emphasizing of the ‘virtual’ charac-
ter of the radiation field, which at the present state of science seems so essential
for an adequate description of atomic phenomena, automatically loses its im-
portance in a limiting case like that just considered [i.e., a classical antenna],
where the field, as regards its observable interaction with matter, is endowed
with all the attributes of an electromagnetic field in classical electrodynamics
(Bohr, Kramers, and Slater, 1924a, p. 175).

140 See p. 2 of the transcript of session 4 of the AHQP interview with Heisenberg
141 See p. 21 of the transcript of session 6 of theAHQP interviewwithHeisenberg.A very similar discussion
of BKS can be found in an essay, “The history of quantum theory” (Heisenberg, 1958, pp. 40–41).
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Subsequent expositions of BKS by Slater and Kramers removed much of the tentati-
veness of this passage.

In a lengthy paper signed December 1, 1924, and published in the April 1925
issue of The Physical Review, Slater tried to work out a “consistent detailed theory of
optical phenomena” based on BKS (Slater, 1925a, p. 395). Slater presented this work
at a meeting of the American Physical Society inWashington, D.C., in December 1924
(Slater, 1925b). At this same meeting—which also marked the end of the controversy
betweenCompton andHarvard’sWilliamDuane (1872–1935) over theCompton effect
(Stuewer, 1975, p. 273)—Van Vleck (1925) talked about (Van Vleck, 1924b,c) and
Breit (1925) talked about (Breit, 1924a).142 Slater sent a copy of his paper to Bohr in
December 1924 and defended his elaboration of BKS in a letter to Bohr of January 6,
1925 (Bohr, 1972–1996, Vol. 5, pp. 65–66).

In the introduction of his paper, Slater presents the dilemma that led him to embrace
Bohr’s statistical conservation laws.143 The problem, he argues, is that

in the quantum theory the energy of atoms must change by jumps; and in the
electromagnetic theory the energy of a radiation field must change continuous-
ly…Two paths of escape from this difficulty have been followed with more or
less success. The first is to redefine energy [i.e., to adopt Einstein’s light-quantum
hypothesis]; the second to discard conservation. Optical theory on [the first inter-
pretation] would be a set of laws telling in what paths the quanta travel…[One
way to do this is] to set up a sort of ghost field, similar to the classical field,
whose function was in some way to guide the quanta. For example, the quanta
might travel in the direction of Poynting’s vector in such a field. The author was
at one time of the opinion that this method was the most hopeful one for solving
the problem…The other direction of escape from the conflict between quantum
theory and wave theory has been to retain intact the quantum theory and as much
of the wave theory as relates to the field, but to discard conservation of energy
in the interaction between them (Slater, 1925a, pp. 396–397).

Slater sketches some difficulties facing this second approach, but makes it clear that
this is the approach he now favors:

An attempt was made by the writer, in a note to Nature [Slater, 1924], enlarged
upon in collaboration with Bohr and Kramers, to contribute slightly to the so-
lution of these difficulties. In the present paper, the suggestions made in those
papers are developed into a more specific theory (ibid., p. 398).

Slater then describes more carefully how to picture the interaction between matter and
radiation in BKS andmakes it clear that the proposed mechanism is incompatible with
strict energy conservation. According to Slater, the “one…essentially new” suggestion
of BKS (note that he does not claim credit for the concept of virtual oscillators) was:

142 The AHQP contains some correspondence between Slater and Van Vleck regarding this meeting and
regarding (Slater, 1925a): Slater to Van Vleck, December 8, 1924; Van Vleck to Slater, December 15, 1924.
143 See also the brief discussion of BKS in (Van Vleck, 1926, pp. 285–286).
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that the wavelets sent out by an atom in connection with a given transition were
sent out, not as a consequence of the occurrence of the transition, but as a conse-
quence of the existence of the atom in the stationary state from which it could
make that transition.144 On this assumption, the stationary state is the time du-
ring which the atom is radiating or absorbing; the transition from one state to
another is not accompanied by radiation, but so far as the field is concerned, me-
rely marks the end of the radiation or absorption characteristic of one state, and
the beginning of that characteristic of another. The radiation emitted or absor-
bed during the stationary state is further not merely of the particular frequency
connected with the transition which the atom is going to make; it includes all the
frequencies connected with all the transitions which the atom could make…Al-
though the atom is radiating or absorbing during the stationary states, its own
energy does not vary, but changes only discontinuously at transitions…It is quite
obvious that the mechanism becomes possible only by discarding conservation
(ibid., pp. 397–398).

On the next page, Slater inserts a disclaimer similar to the one by Van Vleck quoted
above:

It must be admitted that a theory of the kind suggested has unattractive features;
there is an apparent duplication between the atoms on the one hand, and the
mechanism of oscillators producing the field on the other. But this duplication
seems to be indicated by the experimental facts, and it is difficult at the present
stage to see how it is to be avoided (ibid., p. 399).

Slater’s portrayal of BKS agreeswith the exposition given byKramers andHelgeHolst
(1871–1944) in the German edition (Kramers and Holst, 1925) of a popular book on
Bohr’s atomic theory originally published in Danish (Kramers and Holst, 1922).145
In a section, entitled “Bohr’s new conception of the fundamental postulates,” that was
added to the German edition, Kramers explained that BKS breaks with one of the
basic tenets of Bohr’s original theory, namely that atoms only emit light when one
of its electrons makes a transition from, to use his example, the second to the first
stationary state. “According to the new conception,” Kramers wrote, “radiation with
frequency ν2−1 is still tied to the possibility of a transition to the first state, but it is
assumed that the emission takes place during the entire time the atom is in the second
state” (Kramers and Holst, 1925, p. 135). Another difference is that “if the atom is in
the third state, it will simultaneously emit the frequencies ν3−2 and ν3−1 until it either
jumps to the second or to the first state” (ibid.). Kramers emphasizes that this makes

144 Note the similarity with the comments of Bohr to Ladenburg quoted in Sect. 3.3: “the quantum jumps
are not the direct cause of the absorption of radiation, but…represent an effect which accompanies the
continuously disperging (and absorbing) effect of the atom on the radiation” (Bohr, 1972–1996, Vol. 5,
p. 400).
145 The translation was done by Fritz Arndt (1885–1969), a chemist and a colleague of Ladenburg and
Reiche in Breslau (see the correspondence between Kramers and Ladenburg of 1923–1925 in the AHQP).
The preface of this translation is dated March 1925. Dresden (1987) writes that the treatment of BKS in
this book “is without much doubt the most understandable exposition of the BKS ideas” (p. 195).
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the new conception preferable to Bohr’s original one from the point of view of the
correspondence principle:

This situation shows that the new conception is closer to the classical electron
theory than the old one; the simultaneous emission of two frequenciesmentioned
above has its counterpart in that an electron moving on an ellipse emits both
its fundamental tone and its first overtone…while earlier one had to assume
that these two frequencies were produced by different transitions in different
atoms. It is a welcome consequence, especially from the point of view of the
correspondence principle, that the radiation emitted by a single atom contains all
the frequencies that correspond to possible transitions; for in the border region
of large quantum numbers the radiation demanded by the quantum theory will
now merge very smoothly with the radiation demanded by the classical theory
(Kramers and Holst, 1925, pp. 135–136).

The final paragraph of the BKS paper itself, from which we quoted above, can be seen
as a garbled version of Kramers’ argument here. Note that the term ‘virtual radiation’
is absent from these expositions by Slater and Kramers. In his detailed critique of the
physics of BKS, Dresden (1987) struggles mightily to make sense of the “somewhat
vague, tenuous relation between the virtual field and the real electromagnetic field”
(p. 179). The presentations of BKS by Slater and Kramers suggest that there is no
fundamental difference between the two. BKS does not introduce two different kinds
of radiation, real and virtual, but a new picture of the interaction between radiation
and matter, which is different both from the classical picture and from Einstein’s light-
quantum picture. As Heisenberg put it in his AHQP interview (see the passage quoted
above), radiation is a “half reality” in this new picture in that it only determines the
probabilities of quantum transitions in matter.

4.2 The demise of BKS

The BKS theory was decisively refuted in experiments byWalther Bothe (1891–1957)
and Hans Geiger (1882–1945) in Berlin and by Compton and Alfred Walter Simon in
Chicago. These experiments showed that energy-momentum is strictly conserved in
Compton scattering (i.e., event by event) and not just statistically (Stuewer, 1975, pp.
299–302; Stolzenburg, 1984, pp. 75–80). The detection of a scattered electron almost
always coincided with the detection of a light quantum, which went against the BKS
picture that light is emitted and absorbed continuously, whereas the electron changes
its energy and momentum only at discrete intervals. Of course, radiation is detected
via its effect on electrons in some detector and, in the BKS picture, radiation only
determines the probability of an electron absorbing energy. The crucial difference
between BKS and the light-quantum prediction is that according to the latter there
is a perfect correlation between detection of a scattered electron and detection of
scattered X-rays whereas the former predicts no such correlation. The experiments
that eventually disproved BKS were begun shortly after the BKS paper was published
(see Bothe and Geiger, 1924), but the final verdict did not come in until the following
year. Bothe and Geiger (1925a,b) published their results in April 1925. The paper
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by Compton and Simon (1925) is signed June 23, 1925, and appeared in September
1925.146 On April 17, 1925, Geiger sent Bohr a letter forewarning him of the results
of his experiments with Bothe. When Geiger’s letter arrived in Copenhagen four days
later,Bohrwas in the process ofwriting toRalphH.Fowler (1889–1944) inCambridge.
In the postscript to this letter, Bohr conceded that “there is nothing else to do than
to give our revolutionary efforts as honourable a funeral as possible” (Stuewer, 1975,
p. 301). His co-authors Kramers and Slater took the fall of BKS harder. So did other
supporters of the theory, such as Ladenburg, Reiche, and Born. By contrast, Einstein
and Pauli, the theory’s most vocal critics, rejoiced. As we shall see, Born, Pauli, and
Van Vleck all explicitly recognized that the demise of BKS did not affect Kramers’
dispersion theory and its virtual oscillators.

Ladenburg and Reiche had first read (the German version of) the BKS paper (Bohr,
Kramers, and Slater, 1924b) in May 1924. “We are pleased,” Ladenburg wrote to
Kramers, “that our considerations harmonize so well with your ideas.”147 In the same
letter, Ladenburg invited Kramers to come to Breslau to give a talk and to discuss
in person what the two of them and Reiche had been discussing in correspondence
(see Sect. 3.4). Kramers accepted the invitation and suggested he talk about the new
radiation theory, “which, I hope, will soon meet with approval from most physicists
(although I heard that Einstein has expressed a relatively unfavorable opinion).”148
Less than a week later, Kramers received the following intelligence from Ladenburg,
directly addressing his parenthetical remark:

As far as Einstein’s opinion about your new conception of radiation is concerned,
I can give you a very precise report, since I attended his talk on May 28 in the
Berlin colloquium. His opinion was decidedly not unfavorable. He declared the
new conception to be internally fully consistent and not in direct contradiction
with any facts. The mechanism of the undulatory theory would have to be pre-
served in his opinion. He put great emphasis, however, on the conceptual logical
difficulties of the new theory, of the “preestablished harmony,” which the fun-
damental introduction of probability instead of causality brings with it. Specific
objections that he raised seemed to rest only on a not yet complete knowledge
of all your considerations. He pointed to the asymmetry, for instance, that the
production of virtual radiation was tied to a specific atomic state. In discussion, I
pointed out in response to this that the virtual oscillators have the frequencies of
possible transitions—at which point he immediately withdrew the objection.149

Privately, Einstein was less guarded. A month earlier—in a letter to Born and his
wife Hedi (1892–1972) of April 29, 1924—he had already delivered his oft-quoted

146 Stuewer (1975, p. 301) draws attention to a footnote in this paper that makes it clear that the experiment
had been discussed even before Slater’s arrival in Copenhagen: “The possibility of such a test was suggested
by W. F. G. Swann in conversation with Bohr and one of us [Compton] in November 1923” (Compton and
Simon, 1925, p. 290, note 6). Swann, the reader may recall, had just started in Chicago that fall, leaving the
vacancy in Minnesota that was filled by Breit and Van Vleck (see Sect. 2.2).
147 Ladenburg to Kramers, May 31, 1924 (AHQP).
148 Kramers to Ladenburg, June 5, 1924 (AHQP).
149 Ladenburg to Kramers, June 8, 1924 (AHQP).
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put-down that, should BKS turn out to be correct, he “would rather have been a shoe-
maker or even an employee in a gambling casino than a physicist” (Klein, 1970,
p. 32).150 Talking to Kramers in late June, Einstein expressed himself more diploma-
tically again. Kramers stopped in Berlin on his return trip from Breslau, where he had
given a well-received talk on BKS on June 24, 1924. As he reported to Ladenburg once
he was back in Copenhagen: “It was very interesting to hear Einstein’s considerations;
as he himself says, they are all arguments based on intuition.”151

Ladenburg also attended the colloquium in Berlin in May 1925 in which Bothe
and Geiger presented their results. Ladenburg had just received a copy of the German
edition of Kramers’ popular book with Holst from which we quoted above. He clearly
had a hard time accepting the refutation ofBKSat this point. Referring to the discussion
of BKS in chap. 6 of (Kramers and Holst, 1925), he wrote:

In this connection, I must report to you that yesterday Geiger and Bothe presen-
ted their important and beautiful experiments on counting electrons and [light]
quanta in the Compton effect. Apparently, as you know, they have shown that
the emission of electrons and quanta is simultaneous within one-thousandth of
a second or less. Can I ask you to what extent you and Bohr consider this as
standing in contradiction to your theory? Does your theory really require the
complete independence of these two processes, so that only chance could cause
the simultaneous occurrence of the two processes within one-thousandth of a
second? You can imagine how these questions also affect us and if you have
time to write to me to give your opinion I would be very grateful.152

Unfortunately, we do not know whether and, if so, how Kramers replied.
When Slater found out about the experimental refutation of BKS, he dashed off

another letter to Nature (dated July 25, 1925) announcing that he had once more
changed his mind: “The simplest solution to the radiation problem then seems to be
to return to the view of a virtual field to guide corpuscular quanta” (Slater, 1925c).
Kramers and Bohr concurred: “we think that Slater’s original hypothesis contains a
good deal of truth.”153 Slater thus reverted to the position that, as he reminds the reader,
he had been talked out of byBohr andKramers. Slater also noted that Swannhad argued
for this view during the December 1924 meeting of the American Association for the
Advancement of Science, unaware that he, Slater, had been thinking along the same
lines.154 The following year, Bohr mentioned in passing in a letter to Slater that he
had “a bad conscience in persuading you to our view.” Slater told him not to worry
about it.155

The way in which the BKS paper had come to be written, however, had left Slater
with a bitter taste in hismouth (Schweber, 1990, pp. 350–356).We already quoted from

150 For further discussion of Einstein’s objections to BKS, see (Klein, 1970, pp. 32–35), (Wasserman,
1981, pp. 255–263), and (Stolzenburg, 1984, pp. 24–28, pp. 31–34).
151 Kramers to Ladenburg, July 3, 1924 (AHQP).
152 Ladenburg to Kramers, May 15, 1925 (AHQP).
153 Kramers to Urey, July 16, 1925, quoted by Stolzenburg (1984, p. 86).
154 Cf. (Swann, 1925). See (Stuewer, 1975, pp. 321–322) for discussion of Swann’s proposal.
155 Bohr to Slater, January 28, 1926; Slater to Bohr, May 27, 1926 (Bohr, 1972–1996, Vol. 5, pp. 68–69).
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his letter to VanVleck of July 27, 1924, in which his disenchantment with Copenhagen
shines through very brightly (see Sects. 2.2 and 3.4). Interestingly, on that very same
day, Slater wrote to Bohr, thanking him for his “great kindness and attention to me
while I was in Copenhagen. Even if we did have some disagreements, I felt very well
repaid for my time there, and I look back to it very pleasantly” (Bohr, 1972–1996, Vol.
5, p. 494). This sounds disingenuous in view of his comments to Van Vleck, but Slater
had also been very positive about Bohr writing to his Harvard teacher Percy Bridgman
(1882–1961) on February 1, 1924 (Schweber, 1990, p. 354). In his AHQP interview,
however, Slater was very negative about Bohr and his institute. In fact, when he found
out that Copenhagen would be one of the depositories for the AHQP materials, Slater
asked Kuhn to keep the interview out of the copy going to Denmark.156

Initially, Slater was angry with both Bohr and Kramers, but his attitude toward
the latter later softened (Dresden, 1987, pp. 168–171). His wife, fellow-physicist
Rose Mooney (1902–1981), may have had something to do with that (Dresden, 1987,
pp. 527–528).157 Before Ms. Mooney became Mrs. Slater in 1948, she had been close
to Kramers, whom she had met at a summer school in Michigan in 1938. The two
of them almost certainly had an affair. By the late 1930s Kramers was unhappy in
his marriage to Anna ‘Storm’ Petersen, a Danish singer he had met in artistic circles
in Copenhagen and married in 1920 after she got pregnant.158 In one of the most
memorable passages of his book, Dresden (1987, pp. 289–295) reveals that Kramers
had told Storm many years after the fact that he himself had on at least one occasion
been railroaded by Bohr. Kramers apparently thought of the Compton effect around
1920, well before Compton and Debye did. Bohr, however, detested the notion of light
quanta somuch that heworked onKramers until he recanted. According towhat Storm
told Dresden, Kramers had to be hospitalized after one of these sessions with Bohr!
Bohr’s victory was complete. Even more strongly than Slater in the case of BKS a few
years later, Kramers joined Bohr’s crusade against light quanta with “all the passion
of a repentant convert” (Dresden, 1987, p. 171).159 Slater may well have found out
about this episode from his wife, Kramers’ former mistress. Whether or not he did,
in his autobiography, as Dresden (1987, p. 528) points out, Slater (1975) refers to his
BKS co-author as “my old friend Kramers” (p. 233).

156 Slater to Kuhn, November 22, 1963, included in the folder on Slater in the AHQP.
157 A caveat is in order here. As pointed out in a review of (Dresden, 1987), “[t]he wealth of intimate detail
about Kramers that Dresden provides relies so heavily on personal interviews (Dresden himself notes the
“‘soft’ character” of this information) that it is difficult for others to assess the evidence until the interviews
(which I hope were taped), as well as Kramers’s personal papers, are made available to others” (Stachel,
1988, p. 745).
158 Kramers was on the rebound at the time from the on-again-off-again relationship with his Dutch
girlfriend, Waldi van Eck. Dresden’s description of Kramers’ relationship with van Eck (not to be confused
with Van Vleck) conjures up the image of a virtual oscillator: “no commitments were made, no decisions
were taken, the relationship was never defined, it was certainly never consummated, nor ever terminated”
(Dresden, 1987, p. 525).
159 Bohr apparently commiserated with Pauli a few years later about Kramers’ lingering bitterness over
this episode. Pauli later told his colleague Res Jost (1918–1990) at the ETH in Zurich that he had consoled
Bohr by arguing that discovering the Compton effect was hardly an impressive feat since Compton and
Debye had come up with it independently of one another (Dresden, 1987, p. 294).
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Born had also been a supporter of BKS. With only Kramers’ Nature notes to go on,
he assumed that Kramers’ dispersion theory was a product of BKS. He had no way
of knowing that Kramers had obtained these results before BKS. By the time (Born,
1924) was published, however, Born realized that one did not have to subscribe to all
articles of the BKS philosophy to extend the results of Kramers’ dispersion theory. At
the beginning of the paper, Born still writes as if the two stand or fall together:

Recently…considerable progress has been made by Bohr, Kramers and Slater
on just this matter of the connection between radiation and atomic structure…-
How fruitful these ideas are, is also shown by Kramers’ success in setting up a
dispersion formula…In this situation, one might consider whether it would not
be possible to extend Kramers’ ideas, which he applied so successfully to the
interaction between radiation field and radiating electron, to the case of the in-
teraction between several electrons of an atom…The present paper is an attempt
to carry out this idea (Born, 1924, pp. 181–182).

A footnote appended to this passage reads: “By a happy coincidence I was able to
discuss the contents of this paper with Mr. Niels Bohr, which contributed greatly to
a clarification of the concepts.” Bohr had visited Born and Heisenberg in Göttingen
in early June 1924 (Cassidy, 1991, pp. 177–179). Heisenberg had already told Born
all about BKS and Born had expressed his admiration for the theory in a letter to
Bohr of April 16, 1924.160 Bohr’s visit must have further solidified his enthusiasm. A
week later, however, Einstein passed through town and trashed BKS.161 As a result of
Einstein’s onslaught, Born hedged his bets and did not throw in his fate with the more
controversial aspects of BKS (see Mehra and Rechenberg, 1982–2001, Vol. 2, p. 144;
Cassidy, 1991, p. 179). At the beginning of Sect. 3 of his paper, he writes:

it will be profitable to make use of the intuitive ideas, introduced by Bohr,
Kramers and Slater…but our line of reasoning will be independent of the cri-
tically important and still disputed conceptual framework of that theory, such
as the statistical interpretation of energy and momentum transfer (Born, 1924,
p. 189).162

Born, however, continued to be a true believer in BKS and took its collapse harder
than Bohr himself. On April 24, 1925, he wrote to Bohr:

Today Franck showed me your letter [of April 21, 1925, the day that Bohr
had received word from Geiger about the results of the Bothe–Geiger expe-
riment]…which interested me exceedingly and indeed almost shocked me,

160 See (Bohr, 1972–1996, Vol. 5, p. 299), discussed in (Mehra and Rechenberg, 1982–2001, Vol. 2, p.
143).
161 See Heisenberg to Pauli, June 8, 1924 (Pauli, 1979, Doc. 62). This is the same day that Ladenburg
wrote to Kramers that Einstein’s opinion of BKS was “decidedly not unfavorable” (see above).
162 This illustrates the importance of what Beller (1999) has called the “dialogical approach” to the history
of quantum mechanics (an approach adopted avant la lettre by Hendry [1984]): to resolve the tension
between the two quoted passages in Born’s paper, it is important to be attuned to the voices of both Bohr
and Einstein in his text.
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because in it you abandon the radiation theory that obeyed no conservation
laws (Bohr, 1972–1996, Vol. 5, p. 84).

In contrast to Born, Pauli called the demise of BKS “a magnificent stroke of luck.”163
Pauli’s opposition to BKS was probably fueled by Einstein, who gave him an earful
about the theory during the annual meeting of the Gesellschaft Deutscher
Naturforscher und Ärzte in Innsbruck in September 1924.164 Pauli clearly recognized
that Kramers’ dispersion theory was independent of BKS and that the fall of the latter
did not affect the former. A footnote in (Pauli, 1925) emphasizes

that the formulae of [Kramers and Heisenberg, 1925] used here are independent
of the special theoretical interpretation concerning the detailed description of the
radiation phenomena in the quantum theory taken as a basis by them [i.e., BKS],
since these formulas only apply to averages over a large number of elementary
phenomena (Pauli, 1925, p. 5).

As he explained to Kramers, Pauli wanted to distance himself from the suggestion in
the abstract of (Kramers and Heisenberg, 1925) that “the conclusions, should they be
confirmed, would form an interesting support for this [i.e., the BKS] interpretation”
(cf. Sect. 4.1). Alerting Kramers to the footnote quoted above, Pauli wrote:

if I had not added the footnote in question, it would also have been true that the
conclusions ofmy paper, if they should be confirmed, ‘would form an interesting
support for this interpretation.’ This impression I had, of course, to counteract!165

This letter was written after Pauli had read the manuscript of Heisenberg’s
Umdeutung paper, which was much more to his liking. In the same letter, in cruel
Pauli fashion, he berated Kramers for pushing BKS. That this did not affect Pauli’s
appreciation for Kramers’ work on dispersion is clear from what he wrote to ano-
ther correspondent a few months after this scathing letter: “[m]any greetings also to
Kramers, whom I am very fond of after all, especially when I think of his beautiful
dispersion formula.”166

In his NRC Bulletin, written after the Bothe–Geiger and Compton–Simon expe-
riments, Van Vleck, like Pauli, stressed the independence of the Kramers dispersion
theory and BKS. The rejection of BKS and the acceptance of the light-quantum hy-
pothesis, he wrote

[do] not mean that Slater’s concept of virtual oscillators is not a useful one. We
may assume that the fieldswhich guide the light-quants come froma hypothetical
set of oscillators rather than from the actual electron orbits of the conventional
electrodynamics.167 In this way the appearance of the spectroscopic rather than

163 Pauli to Kramers, July 27, 1925 (Pauli, 1979, pp. 232–234; Bohr, 1972–1996, Vol. 5, p. 87).
164 See Pauli to Bohr, October 2, 1924 (Pauli, 1979, Doc. 66), quoted and discussed in (Wasserman, 1981,
pp. 260–263).
165 Pauli to Kramers, July 27, 1925 (cf. note 163).
166 Pauli to Kronig, October 9, 1925, quoted in (Stolzenburg, 1984, p. 91).
167 At this point, the following footnote is appended: “This viewpoint has been advocated by Slater during
the printing of the present Bulletin. See [Slater, 1925a].”
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the orbital frequency in dispersion can be explained, and the essential features
of the virtual oscillator theory of dispersion…can still be retained. There is an
exact conservation of energy between the atoms and the actual corpuscular light-
quants, but only a statistical conservation of energy between the atoms and the
hypothetical virtual fields (Van Vleck, 1926, pp. 286–287).

Virtual oscillators survived the demise of BKS and happily lived on in the dispersion
theory from which they originated.

These observations by Pauli and Van Vleck make it clear that BKS only played
a limited role in the developments that led to matrix mechanics. It is important to
keep that in mind. As long as we think of the Kramers dispersion theory as part
and parcel of BKS, it looks as if matrix mechanics replaced a decisively refuted
theory. Once we recognize that the Kramers dispersion theory was developed before
and independently of BKS, we see that matrix mechanics grew naturally out of an
eminently successful earlier theory. The BKS theory and its refutation by the Bothe–
Geiger and Compton–Simon experiments then become a sideshow distracting from
the main plot line, which runs directly from dispersion theory to matrix mechanics. A
corollary to this last observation is that the acceptance of the light-quantum hypothesis
was irrelevant to the development of matrix mechanics. Compton scattering provided
convincing evidence for the light-quantum hypothesis and against BKS, but it had no
bearing on dispersion theory. The work of Ladenburg, Kramers, Born, and Van Vleck
crucially depended on Einstein’s A and B coefficients, but not on the theory of light
quanta in which these coefficients were originally introduced.

4.3 Heisenberg, BKS, and virtual oscillators

When Heisenberg first read the BKS paper, he was not impressed: “Bohr’s paper
on radiation is certainly very interesting; but I do not really see any fundamental
progress.”168 He subsequently warmed to the theory, writing to Copenhagen on April
6, 1924 that he hoped Bohr had meanwhile convinced Pauli.169 To Sommerfeld he
wrote onNovember 18, 1924: “MaybeBohr’s radiation theory is amost felicitous [sehr
glücklicke] description of this dualism [i.e., the wave-particle duality of radiation] after
all” (Sommerfeld, 2004, p. 174, quoted in Wasserman, 1981, p. 251). Five years later,
Heisenberg was praising BKS effusively:

This investigation represented the real high point in the crisis of quantum theory,
and, although it could not overcome the difficulties, it contributed, more than
any other work of that time, to the clarification of the situation in quantum theory
(Heisenberg, 1929, p. 492; translated and quoted in Stuewer, 1975, p. 291).

And thirty years later, Heisenberg (1955, p. 12) remembered BKS as “the first serious
attempt to resolve the paradoxes of radiation into rational physics” (quoted in Klein,
1970, p. 37).

168 Heisenberg to Pauli, March 4, 1924 (Pauli, 1979, Doc. 57); quoted by Dresden (1987, p. 202) and
Wasserman (1981, p. 250).
169 See (Bohr, 1972–1996, Vol. 5, pp. 354–355), cited by Cassidy (1991) to support his claim that “by the
end of his March 1924 visit to Copenhagen, Werner was a convert” (p. 176).
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WhywasHeisenberg so takenwithBKS?Wealready cameacross part of the answer.
As he toldKuhn in hisAHQP interview,Heisenberg saw inBKSaprecursor to theBorn
interpretation of the Schrödinger wave function (see Sect. 4.1). This, we feel, mainly
helps explainHeisenberg’s profuse praise after the fact. In the same interview, however,
Heisenberg identified another aspect of BKS that can account for his enthusiasm
for BKS before Umdeutung—or rather, Kuhn identified it for him. What triggered
Heisenberg’s ruminations on probability in BKS and in the Born interpretation was
the observation by Kuhn that despite the experimental refutation of BKS, “a large part
of the basic ideas and the whole use of the Correspondence Principle formulated in
terms of virtual oscillators goes on quite unshaken.”170 Heisenberg’s response does
not address this issue at all, whereupon Kuhn tries again: “In order to do that paper
[BKS] one talks not only about…probability…but also transforms one’s idea of the
atom into a collection of virtual oscillators that operate between states” (ibid., p. 3).
This time Heisenberg takes the bait:

Yes, that was it. This idea, of course, also was there already that an atom was
really a collection of virtual oscillators. Now this…was in some way contrary
to the idea of an electron moving around a nucleus. The obvious connection,
the only possible connection, was that the Fourier components of this motion in
some way corresponded, as Bohr said, to the oscillators. But certainly this paper
[BKS] then prepared the way for this later idea that the assembly of oscillators
is nothing but a matrix. For instance, we can simply say that matrix elements are
the collection of oscillators. In this way, you can say that matrix mechanics was
already contained in this paper [BKS] (ibid., p. 3).

This supports the thesis in (MacKinnon, 1977) mentioned in Sect. 4.2 that matrix
mechanics can be seen as a theory of virtual oscillators. What we want to emphasize is
that what initially seems to have attracted Heisenberg to BKSwas the notion of virtual
oscillators. Given the origin of this concept, Heisenberg’s intellectual debt on this
point was not to BKS but—once again (see Sect. 3.5)—to dispersion theory. During
a subsequent session of the AHQP interview, Heisenberg, in fact, talks about the link
between Fourier components and oscillators in the context of Kramers’ dispersion
theory. “When you say the dispersion formula started from a physical idea,” Kuhn
asked, “do you have a particular thing in mind?” Heisenberg replied:

Well, I would say that his [i.e., Kramers’] idea was that there was the Einstein
paper [with the A and B coefficients] and there was the Ladenburg [1921] paper
connected with Einstein’s. On the other hand there was Bohr’s Correspondence
Principle and the idea finally that this has to do somehow with Fourier compo-
nents as oscillators. Kramers had the force to combine these two possibilities in
one simple formula—the dispersion formula. And this I think was a very impor-
tant idea that one should combine the Einstein paper, which was very far from
the Bohr model[,] with the Bohr model…Behind this idea was already the idea

170 See p. 2 of the transcript of session 4 of the AHQP interview with Heisenberg.
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of connecting the oscillators with the Fourier components, which, as I have said
many times, was in the air somehow in these years.171

Heisenberg explicitly availed himself of virtual oscillators in (Heisenberg, 1925a), a
paper on the polarization of fluorescent light submitted fromCopenhagen inNovember
1924 (i.e., before the Kramers–Heisenberg paper). Talking about this paper in his
interview with Kuhn, Heisenberg said:

I would say that all this is part of the game to make the total table of linear
oscillators be the real picture of the atom. One felt that in the Correspondence
Principle, one should compare one of these linear oscillators with one Fourier
component of a motion …So the whole thing was a program which one had
consciously or unconsciously in one’smind. That is, how canwe actually replace
everywhere the orbits of the electron by the Fourier components and thereby get
into better touch with what happens? Well, that was the main idea of quantum
mechanics later on. One could see, more and more clearly, that the reality were
the Fourier components and not the orbits.172

MacKinnon (1977, pp. 148–155) stresses the importance of (Heisenberg, 1925a) for
the development of matrix mechanics.173 Heisenberg agreed. Commenting on a draft
of MacKinnon’s article, he wrote to the author in July 1974: “I was especially glad
to see that you noticed how important the paper on the polarization of fluorescent
light has been for my further work on quantum mechanics. Actually, in Copenhagen
I felt that this paper contained the first step in which I could go beyond the views of
Bohr and Kramers” (MacKinnon, 1977, p. 149, note 29). As he proudly recounts in his
AHQP interview (see pp. 13–14 of the transcript of session 4), Heisenberg managed to
convince Bohr and Kramers of his approach to this problem, an approach they initially
questioned.

MacKinnon (1977, pp. 157–162) also sees (Heisenberg, 1925b) on the anomalous
Zeeman effect as an important step on the way to matrix mechanics:

In the conclusion Heisenberg outlined a new program for quantum theory. One
should use the virtual oscillator model to work out all the Fourier components
for the electrons in an atom and for the coupling between electrons. In the rest
of this article I will attempt to trace through in detail the way Heisenberg imple-
mented this program and developed quantummechanics (MacKinnon, 1977, pp.
161–162).

Here we part company with MacKinnon. Virtual oscillators are not mentioned at
all in (Heisenberg, 1925b) (though Fourier components are). (Heisenberg, 1925b,
p. 857) does not even refer to virtual oscillators when discussing results pertaining
to incoherent radiation from (Kramers and Heisenberg, 1925). This paper, far from

171 See p. 13 of the transcript of session 6 of the AHQP interview with Heisenberg.
172 See p. 15 of the transcript of session 4 of the AHQP interview with Heisenberg. Parts of this passage are
quoted in (MacKinnon, 1977, p. 155) and in (Mehra and Rechenberg, 1982–2001, Vol. 2, p. 165) (although
the latter cite their own conversations with Heisenberg as their source; cf. notes 5 and 79).
173 For other historical discussions of (Heisenberg, 1925a), see (Cassidy, 1991, pp. 187–188) and (Mehra
and Rechenberg, 1982–2001, Vol. 2, pp. 159–169).
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being another step toward Umdeutung, seems to be mired in the intractable problems
of the old quantum theory: the Zeeman effect, multi-electron atoms, and mysterious
factors of 2 later to be accounted for in terms of electron spin.

MacKinnon, in our opinion, thus overstates his case. Yet, even if we discard what
he has to say about (Heisenberg, 1925b) on the Zeeman effect, ample evidence re-
mains for his claim that “[t]he virtual oscillator model played an essential role in
the process of reasoning that led Heisenberg to the development of quantum mecha-
nics” (MacKinnon, 1977, p. 184). In fact, this thesis is not nearly as controversial as
MacKinnon makes it sound. In the entry on Kramers for the Dictionary of Scientific
Biography, the sober-minded Dutch physicist Hendrik B. G. Casimir (1909–2000)
states matter-of-factly: “The notion of virtual oscillators was the starting point of Hei-
senberg’s quantum mechanics—the virtual oscillators became the matrix elements of
the coordinates” (Casimir, 1973, p. 492). MacKinnon (1977) claims that “after [the
Umdeutung paper] was written the virtual oscillator model sunk from sight and never
resurfaced” (p. 184). We already noted, however, that the term “substitute oscillators”
can still be found in the famous post-Umdeutung paper of Born and Jordan (1925b)
(see Sect. 3.3).What we did not mention so far is that Landé (1926, p. 456) actually in-
troduced the phrase “virtual orchestras” to describe not BKS but matrix mechanics!174
The imagery, if not exactly the language, of an “orchestra of virtual oscillators” was
also used in early popular expositions of matrix mechanics. In a popular book of the
1930s that went through many editions and was endorsed by Max Planck in a short
preface, Ernst Zimmer wrote:175

The state of an atom should no longer be described by the unobservable position
andmomentumof its electrons, but by themeasurable frequencies and intensities
of its spectral lines …Regardless of the nature of the real musicians who play
the optical music of the atoms for us, Heisenberg imagines assistant or auxiliary
musicians [Hilfsmusiker]: everyoneplays just onenote at a certain volume.Every
one of these musicians is represented by a mathematical expression, qmn , which
contains the volume and the frequency of the spectral line as in expressions
in acoustics familiar to physicists. These auxiliary musicians are lined up in
an orchestra [Kapelle] according to the initial and final states n and m of the
transition under consideration. The mathematician calls such an arrangement a
“matrix” (Zimmer, 1934, pp. 161–162).

Zimmer’s Kapelle der Hilfsmusiker was clearly inspired by Landé’s Ersatzorchester
der virtuellen Oszillatoren. Virtual oscillators thus not only survived the demise of
BKS but also the transition to matrix mechanics. In fact, as we shall see in Sect. 7.1,
the features captured by the notion of virtual oscillators can still readily be identified in

174 Landé had worked with Heisenberg in 1924 (Cassidy, 1991, p. 177), resulting in a joint paper (Landé
and Heisenberg, 1924). In his AHQP interview, Landé nonetheless said that Heisenberg (1925c) had been
incomprehensible to him and that it had taken (Born, Heisenberg, and Jordan, 1925) for him to understand
matrix mechanics (p. 3 of the transcript of session 5 of the interview; cf. note 11). These comments seem
to be colored, however, by lingering resentment. Landé felt strongly that Born should have won the Nobel
Prize for his contribution to matrix mechanics and that German anti-Semitism was the only reason he had
not.
175 We are grateful to Jürgen Ehlers for drawing our attention to Zimmer’s book.
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the formalism of modern quantum mechanics. From the point of view of the quantum
theory that emerged in the immediate aftermath of Heisenberg’s Umdeutung paper, in
which the atomic system is quantized but not (as yet) the electromagnetic field, virtual
oscillators are nothing but the Fourier components of the Schrödinger wave func-
tion of the electron. The perturbing electromagnetic field induces additional Fourier
components in this wave function, which in turn results in secondary electromagnetic
radiation. In terms of the language borrowed from BKS, this radiation is emitted by
virtual oscillators.

Acknowledgments Weare grateful to SomaBanerjee, Jeffrey Bub, Jed Buchwald, Olivier Darrigol, Jeroen
van Dongen, Michael Eckert, Jürgen Ehlers, Fred Fellows, Amy Fisher, Clayton Gearhart, Domenico
Giulini, Lee Gohlike, Seth Hulst, David Kaiser, Mary Kenney, Klaas Landsman, Christoph Lehner, John
Norton, Jürgen Renn, Serge Rudaz, Rob Rynasiewicz, Bob Seidel, Philip Stamp, John Stachel, Phil Stehle,
Roger Stuewer, Bill Unruh, Kathreen Woyak, and Carol Zinda for comments, helpful discussion, and
references. Earlier versions of parts of this paper were presented at Seven Pines VIII (Stillwater, MN, May
5–9, 2004), the Max Planck Institute for History of Science (Berlin, July 2004), New Directions in the
Foundations of Physics (College Park, MD, April 29 – May 1, 2005), the annual meeting of the History of
Science Society (Minneapolis, MN, November 3–6, 2005), and HQ0, a workshop on the history of quantum
physics at the Max Planck Institute for History of Science (Berlin, June 13–16, 2006). The final version
benefited greatly from the comments of an anonymous commentator. The authors gratefully acknowledge
support from theMax Planck Institute for History of Science. The research of Anthony Duncan is supported
in part by the National Science Foundation under grant PHY-0554660.

References

Aitchison, I. J. R., D. A. McManus, and T. M. Snyder (2004). Understanding Heisenberg’s “magical” paper
of July 1925: A new look at the calculational details. American Journal of Physics 72: 1370–1379.

Anderson, P. W. (1987). John Hasbrouck Van Vleck, March 13, 1899–October 27, 1980.National Academy
of Sciences Biographical Memoirs 56: 501–540.

Andrade, E. N. da C. (1927). The structure of the atom. 3rd ed. London: G. Bells and Sons.
Assmus, A. (1992). The Americanization of molecular physics. Historical Studies in the Physical and

Biological Sciences 23: 1–34.
Assmus, A. (1999). Edwin C. Kemble. National Academy of Sciences. Biographical Memoirs 76: 178–197.
Baltas, A., K. Gavroglu, and V. Kindi (2000). A discussion with Thomas S. Kuhn. Pp. 255–323 in: J. Conant

and J. Haugeland (eds.), The road since Structure. Chicago: University of Chicago Press.
Barut, A. O., H. Odabasi, A. van der Merwe, eds. (1991). Selected popular writings of E. U. Condon. New

York, Berlin: Springer.
Becker, R. (1924). Über die Absorption und Dispersion in Bohrs Quantentheorie. Zeitschrift für Physik

27: 173–188.
Bederson, B. (2005). Fritz Reiche and the emergency committee in aid of displaced foreign scholars.Physics

in Perspective 7: 453–472.
Beller, M. (1999). Quantum dialogue. The making of a revolution. Chicago: University of Chicago Press.
Bernstein, J. (2004). Oppenheimer. Portrait of an enigma. Chicago: Ivan R. Dee.
Birtwistle, G. (1926). The quantum theory of the atom. Cambridge: The University Press.
Bohr, N. (1913). On the constitution of atoms and molecules (Part I). Philosophical Magazine 26: 1–25.
Bohr, N. (1918). On the Quantum Theory of Line-Spectra. Part 1, On the General Theory. Det Kongelige

Danske Videnskabernes Selskab. Skrifter. Naturvidenskabelig og Matematisk Afdeling 8, no. 4.1: 336.
Reprinted in (Van der Waerden, 1968, pp. 95–136)

Bohr, N. (1922). Der Bau der Atome und die physikalischen und chemischen Eigenschaften der Elemente.
Zeitschrift für Physik 9: 1–67.

Bohr, N. (1923a). The structure of the atom. (Transl. F. C. Hoyt). Nature 112: 29–44. Reprinted in (Bohr,
1972–1996, Vol. 467–482).

123



618 A. Duncan, M. Janssen

Bohr, N. (1923b). Über die Anwendung der Quantentheorie auf den Atombau. I. Die Grundpostulate der
Quantentheorie. Zeitschrift für Physik 13: 117–165. English translation published as a supplement
of Proceedings of the Cambridge Philosophical Society (1924, pp. 1–42) and reprinted in (Bohr,
1972–1996, Vol. 3, 457–499).

Bohr, N. (1972–1996). Collected works. 9 Vols. Edited by L. Rosenfeld et al. Amsterdam: North-Holland.
Bohr, N., H. A. Kramers, and J. C. Slater (1924a). The quantum theory of radiation.PhilosophicalMagazine

47: 785–802. Page references to reprint in (Van der Waerden, 1968, pp. 159–176).
Bohr, N., H. A. Kramers, and J. C. Slater (1924b). Über die Quantentheorie der Strahlung. Zeitschrift für

Physik 24: 69–87.
Born, M. (1924). Über Quantenmechanik. Zeitschrift für Physik 26: 379–395. Page references are to the

English translation in (Van der Waerden, 1968, pp. 181–198).
Born, M. (1925). Vorlesungen über Atommechanik. Berlin: Springer.
Born, M. (1926). Zur Quantenmechanik der Stoßvorgänge. Zeitschrift für Physik 37: 863–867.
Born, M. (1948). Max Karl Ernst Ludwig Planck. Obituary Notices of Fellows of the Royal Society

6: 161–180.
Born, M. (1978).My life. Recollections of a Nobel laureate. New York: Charles Scribner.
Born,M.,W.Heisenberg, and P. Jordan (1925). ZurQuantenmechanik II.Zeitschrift für Physik 35: 557–615.

English translation in (Van der Waerden, 1968, pp. 321–385).
Born, M., and P. Jordan (1925a). Zur Quantentheorie aperiodischer Vorgänge. I. Zeitschrift für Physik 33:

479–505.
Born,M., and P. Jordan (1925b). Zur Quantenmechanik. Zeitschrift für Physik 34: 858–888. Page references

to chs. 1–3 are to the English translation in (Van der Waerden, 1968, pp. 277–306). Ch. 4 is omitted
in this translation.

Born, M., and W. Pauli (1922). Über die Quantelung gestörter mechanisher Systeme. Zeitschrift für Physik
10: 137–158.

Bothe,W., andH.Geiger (1924). EinWeg zur experimentellenNachprüfung der Theorie vonBohr,Kramers,
und Slater. Zeitschrift für Physik 25: 44.

Bothe, W., and H. Geiger (1925a). Experimentelles zur Theorie von Bohr, Kramers, und Slater. Naturwis-
senschaften 13: 440–441.

Bothe, W., and H. Geiger (1925b). Über das Wesen des Comptoneffekts: ein experimenteller Beitrag zur
Theorie der Strahlung. Zeitschrift für Physik 32: 639–663.

Breit, G. (1924a). The polarization of resonance radiation. Philosophical Magazine 47: 832–842.
Breit, G. (1924b). The quantum theory of dispersion. Nature 114: 310.
Breit, G. (1925). Polarization of resonance radiation and the quantum theory of dispersion. Physical Review

25: 242.
Breit, G. (1932). Quantum theory of dispersion. Reviews of Modern Physics 4: 504–576.
Buchwald, J. Z. (1985).FromMaxwell tomicrophysics. Aspects of electromagnetic theory in the last quarter

of the nineteenth century. Chicago: University of Chicago Press.
Cantor, G. N. (1983).Optics after Newton: theories of light in Britain and Ireland, 1704-1840.Dover, N.H.:

Manchester University Press.
Casimir, H. B. G. (1973). Kramers, Hendrik Anthony. Pp. 491–494 in: C. C. Gillispie (ed.), Dictionary of

scientific biography. Vol. VII. New York: Charles Scribner’s Sons.
Cassidy, D. C. (1991). Uncertainty. The life and science of Werner Heisenberg. New York: Freeman.
Charlier, C. L. (1902–1907).Die Mechanik des Himmels. 2 Vols. (Vol. 1: 1902; Vol. 2: 1907). Leipzig: Veit.
Coben, S. (1971). The scientific establisment and the transmission of quantum mechanics to the United

States, 1919–32. American Historical Review 76: 442–466.
Compton, A. H. (1923). A quantum theory of the scattering of X-rays by light elements. Physical Review

21: 483–502.
Compton, A. H., and A. W. Simon (1925). Directed quanta of scattered X-rays. Physical Review 26:

289–299.
Condon, E. U. (1973). Reminiscences of a life in and out of quantum mechanics. Pp. 314–331 in (Barut

et al., 1991).
Cushing, J. T. (1990). Theory construction and selection in modern physics. The S matrix. Cambridge:

Cambridge University Press.
Darrigol, O. (1992). From c-numbers to q-numbers: the classical analogy in the history of quantum theory.

Berkeley: University of California Press.
Darrigol, O. (2000). Electrodynamics from Ampère to Einstein. Oxford: Oxford University Press.

123



On the verge of Umdeutung in Minnesota - Part one 619

Darrigol, O. (2002). Quantum theory and atomic structure, 1900–1927. Pp. 331–349 in:M. J. Nye (ed.), The
Cambridge history of science, Vol. 5, The modern physical and mathematical sciences. Cambridge:
Cambridge University Press, 2002.

Darwin, C. G. (1922). A quantum theory of optical dispersion. Nature 110: 841–842.
Darwin, C. G. (1923). The wave theory and the quantum theory. Nature 111: 771–773.
Davisson, C. J. (1916). The dispersion of hydrogen and helium on Bohr’s theory. Physical Review 8: 20–27.
Davisson, C. J., and L. H. Germer (1927). Diffraction of electrons by a crystal of nickle. Physical Review

30: 705–740.
Debye, P. (1915). Die Konstitution des Wasserstoff-moleküls. Sitzungsberichte der mathematisch-

physikalischen Klasse der Königlichen Bayerischen Akademie der Wissenschaften zu München. 1–26.
Dresden, M. (1987). H. A. Kramers: between tradition and revolution. New York: Springer.
Drude, P. (1900). Lehrbuch der Optik. Leipzig: S. Hirzel. English transl.: The theory of optics. transl.:

C. R. Mann and R. A. Millikan. New York: Longmans, Green, 1902.
Eckert, M. (1993). Die Atomphysiker. Eine Geschichte der theoretischen Physik am Beispiel der Sommer-

feldschule. Braunschweig; Wiesbaden: Vieweg.
Einstein, A. (1905). Zur Elektrodynamik bewegter Körper. Annalen der Physik 17: 891–921. Reprinted in

facsimile as Doc. 23 in (Einstein, 1987–2006, Vol. 2).
Einstein, A. (1916a). Strahlungs-Emission und -Absorption nach der Quantentheorie. Deutsche Physi-

kalische Gesellschaft. Verhandlungen 18: 318–323. Reprinted in facsimile as Doc. 34 in (Einstein,
1987–2006, Vol. 6).

Einstein, A. (1916b). Zur Quantentheorie der Strahlung. Physikalische Gesellschaft Zürich. Mitteilungen
18: 47–62. Reprinted as (Einstein, 1917) and (in facsimile) as Doc. 38 in (Einstein, 1987–2006, Vol. 6).

Einstein, A. (1917). Zur Quantentheorie der Strahlung. Physikalische Zeitschrift 18: 121–128. Reprint of
(Einstein, 1916b). English translation in (Van der Waerden, 1968, pp. 63–77).

Einstein, A. (1987–2006). The collected papers of Albert Einstein. 9 Vols. Edited by J. Stachel et al.
Princeton: Princeton University Press.

Epstein, P. S. (1916). Zur Quantentheorie. Annalen der Physik 51: 168–188.
Epstein, P. S. (1922a). Die Störungsrechnung imDienste der Quantentheorie. I. EineMethode der Störungs-

rechnung. Zeitschrift für Physik 8: 211–228.
Epstein, P. S. (1922b). Die Störungsrechnung imDienste der Quantentheorie. II. Die numerische Durchfüh-

rung der Methode. Zeitschrift für Physik 8: 305–320.
Epstein, P. S. (1922c). Die Störungsrechnung im Dienste der Quantentheorie. III. Kritische Bemerkungen

zur Dispersionstheorie. Zeitschrift für Physik 9: 92–110.
Fellows, F. H. (1985). J. H. Van Vleck: The early life and work of a mathematical physicist. Ph.D. Thesis,

University of Minnesota.
Feynman, R. P., R. B. Leighton, and M. Sands (1964). The Feynman lectures on physics. 3 Vols. Reading,

MA: Addison-Wesley.
Forman, P. (1968). The doublet riddle and atomic physics circa 1924. Isis 59: 156–174.
Forman, P. (1970). Alfred Landé and the anomalous Zeeman effect. Historical Studies in the Physical

Sciences 2: 153–261.
Glazebrook,R.T. (1886).Report onoptical theories. Pp. 157–261 inBritishAssociation for theAdvancement

of Science. Report—1885. London: Spottiswoode.
Gustavson, J. R. (2004). Wolfgang Pauli 1900 to 1930: His early physics in Jungian perspective. Ph.D.

Thesis, University of Minnesota.
Heilbron, J. L. (1985). Artes compilationis. [Review of (Mehra and Rechenberg, 1982–2001, Vols. 1–4)]

Isis 76: 388–393.
Heilbron, J. L., and T. S. Kuhn (1969). The genesis of the Bohr atom. Historical Studies in the Physical

Sciences 1: 211–290.
Heisenberg, W. (1925a). Über eine Anwendung des Korrespondenzprinzips auf die Frage nach der Polari-

sation des Fluoreszenzlichtes. Zeitschrift für Physik 31: 617–626.
Heisenberg, W. (1925b). Zur Quantentheorie der Multiplettstruktur und der anomalen Zeemaneffekte.

Zeitschrift für Physik 32: 841–860.
Heisenberg, W. (1925c). Über die quantentheoretische Umdeutung kinematischer und mechanischer

Beziehungen. Zeitschrift für Physik 33: 879–893. Page references to English translation in (Van der
Waerden, 1968, pp. 261–276).

Heisenberg, W. (1929). Die Entwicklung der Quantentheorie 1918–1928. Die Naturwissenschaften 17:
490–496.

123



620 A. Duncan, M. Janssen

Heisenberg, W. (1943). Die ‘beobachtbaren Grössen’ in der Theorie der Elementarteilchen. Zeitschrift für
Physik 120: 513–538.

Heisenberg,W. (1955). The development of the interpretation of the quantum theory. Pp. 12–29 in:W. Pauli
(ed.), Niels Bohr and the development of physics. London: Pergamon Press.

Heisenberg, W. (1958). Physics and philosophy. The revolution in modern science. New York: Harper.
Heisenberg, W. (1971). Physics and beyond. Encounters and conversations. New York: Harper & Row.

Translation of:Der Teil und das Ganze. Gespräche imUmkreis der Atomphysik.Munich: Piper Verlag,
1969.

Heisenberg, W. (1983). Encounters with Einstein. And other essays on people, places, and particles. Prin-
ceton: Princeton University Press.

Hendry, J. (1981). Bohr–Kramers–Slater: A virtual theory of virtual oscillators and its role in the history
of quantum mechanics. Centaurus 25: 189–221.

Hendry, J. (1984). The creation of quantum mechanics and the Bohr–Pauli dialogue. Dordrecht: Reidel.
Herzfeld, K. F. (1924). Versuch einer quantenhaften Deutung der Dispersion. Zeitschrift für Physik 23:

341–360.
Holton, G. (1968). Mach, Einstein and the search for reality. Daedalus 97: 636–673. Reprinted as Ch. 7 in

Thematic origins of scientific thought. Rev. ed. Cambridge: Harvard University Press, 1988.
Holton, G. (1988). On the hesitant rise of quantum physics research in the United States. Pp. 147–187 in:

Thematic origins of scientific thought. Rev. ed. Cambridge: Harvard University Press.
Holton, G. (2005). Werner Heisenberg and Albert Einstein. Pp. 26–35 in Victory and vexation in science.

Einstein, Bohr, Heisenberg, and others. Cambridge, MA: Harvard University Press.
Hoyt, F. C. (1923). Intensities of spectral lines. Philosophical Magazine 46: 135–145.
Hoyt, F. C. (1924). Relative probabilities of the transitions involved in the Balmer series lines of hydrogen.

Philosophical Magazine 47: 826–831.
Hoyt, F. C. (1925a). The harmonic analysis of electron orbits. Physical Review 25: 174–186
Hoyt, F. C. (1925b). Application of the correspondence principle to relative intensities in series spectra.

Physical Review 26: 749–760.
Hull, M. (1998). Gregory Breit. National Academy of Sciences. Biographical Memoirs 74: 26–57.
Hund, F. (1984). Geschichte der Quantentheorie. Darmstadt: Wissenschaftliche Buchgesellschaft.
Ishiwara, J. (1915). Die universelle Bedeutung des Wirkungsquantum. Toyko Sugaku Buturigakkawi Kizi

8: 106–116.
Jammer, M. (1966). The conceptual development of quantum mechanics. New York: McGraw-Hill.
Janssen, M. (2002). Reconsidering a scientific revolution: the case of Lorentz versus Einstein. Physics in

Perspective 4: 421–446.
Janssen, M., and M. Mecklenburg (2006). From Classical to Relativistic Mechanics: Electromagnetic

Models of the Electron. Pp. 65–134 in: V. F. Hendricks, K. F. Jørgensen, J. Lützen, and S. A.
Pedersen (eds.), Interactions: mathematics, physics and philosophy, 1860–1930. Berlin: Springer.

Janssen, M., and J. Stachel (2004). Optics and Electrodynamics in moving bodies.Max Planck Institute for
the History of Science. Preprint 265. To appear in: John Stachel, Going critical (in preparation); and
(in Italian) in: Sandro Petruccioli et al. (eds.), Storia della scienza, Istituto della Enciclopedia Italiana
(in preparation).

Jordan, P. (1973). Early years of quantum mechanics: some reminiscences. Pp. 294–299 in: J. Mehra (ed.),
The physicist’s conception of nature. Dordrecht: Reidel.

Kemble, E. C. (1921). The probable normal state of the helium atom. Philosophical Magazine 42: 123–133.
Kevles, D. J. (1978). The physicists. The history of a scientific community in modern America. New York:

Knopf.
Klein, M. J., ed. (1967). Letters on wave mechanics. New York: Philosophical Library.
Klein,M. J. (1970). The first phase of theBohr-Einstein dialogue.Historical Studies in the Physical Sciences

2: 1–39.
Klein, O. (1967). Glimpses of Niels Bohr as scientist and thinker. Pp. 74–93 in: S. Rozental (ed.), Niels

Bohr. His life and work as seen by his friends and colleagues. London: Interscience Publishers.
Konno, H. (1993). Kramers’ negative dispersion, the virtual oscillator model, and the correspondence

principle. Centaurus 36: 117–166.
Kragh, H. (1999). Quantum generations. A history of physics in the twentieth century. Princeton: Princeton

University Press.

123



On the verge of Umdeutung in Minnesota - Part one 621

Kramers, H. A. (1919). Intensities of spectral lines.Det Kongelige Danske Videnskabernes Selskab. Skrifter.
Naturvidenskabelig og Matematisk Afdeling 8, no. 3.3: 285–386. Reprinted in (Kramers, 1956, pp.
3–108).

Kramers, H. A. (1923). Über das Modell des Heliumatoms, Zeitschrift für Physik 13: 312–341.
Kramers, H. A. (1924a). The law of dispersion and Bohr’s theory of spectra. Nature 113: 673–676. Page

references to reprint in (Van der Waerden, 1968, pp. 177–180).
Kramers, H. A. (1924b). The quantum theory of dispersion.Nature 114: 310–311. Page references to reprint

in (Van der Waerden, 1968, pp. 199–201).
Kramers, H. A. (1956). Collected scientific papers. Edited by H. B. G. Casimir et al. Amsterdam: North

Holland.
Kramers, H. A., and W. Heisenberg (1925). Über die Streuung von Strahlung durch Atome. Zeitschrift für

Physik 31: 681–707. Page references to English translation in (Van der Waerden, 1968, pp. 223–252).
Kramers, H. A., and H. Holst (1922). Bohrs atomteori: almenfatteligt fremstillet. Copenhagen: Gyldendal

Nordisk forlag.
Kramers, H.A., andH.Holst (1925).DasAtomund die Bohrsche Theorie seines Baues. Gemeinverständlich

dargestellt. F. Arndt, transl. Berlin: Springer.
Kronig, R. (1960). The turning point. Pp. 5–39 in: M. Fierz and V. F. Weisskopf (eds.), Theoretical physics

in the twentieth century. A memorial volume to Wolfgang Pauli. New York: Interscience Publishers.
Kuhn, T. S., J. L. Heilbron, P. Forman, and L. Allen (1967). Sources for the history of quantum physics. An

inventory and report. Philadelphia: American Philosophical Society.
Kuhn, T. S., and J. H. Van Vleck (1950). A simplified method of computing the cohesive energies of

monovalent metals. Physical Review 79: 382–388.
Kuhn, W. (1925). Über die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien. Zeit-

schrift für Physik 33: 408–412. English translation in (Van der Waerden, 1968, pp. 253–257).
Ladenburg, R. (1908). Über die Dispersion des leuchtendenWasserstoffs. Physikalische Zeitschrift 9: 875–

878.
Ladenburg, R. (1921). Die quantentheoretische Deutung der Zahl der Dispersionselektronen. Zeitschrift für

Physik 4: 451–468. Page references to English translation in (Van der Waerden, 1968, pp. 139–157).
Ladenburg, R. (1926). Die quantentheoretische Dispersionsformel und ihre experimentelle Prüfung. Die

Naturwissenschaften 14: 1208–1213.
Ladenburg, R. (1928). Untersuchungen über die anomale Dispersion angeregter Gase. I. Teil. Zur Prüfung

der quantentheoretischen Dispersionsformel. Zeitschrift für Physik 48: 15–25.
Ladenburg, R., and S. Loria (1908). Über die Dispersion des leuchtenden Wasserstoffs. Deutsche Physi-

kalische Gesellschaft. Verhandlungen 10: 858–866. Reprinted in Physikalische Zeitschrift 9 (1908):
875–878.

Ladenburg, R., and R. Minkowski (1921). Die Verdampfungswärme des Natriums und die Übergang-
swahrscheinlichkeiten des Na-Atoms aus dem Resonanz- in der Normalzustand auf Grund optischer
Messungen. Zeitschrift für Physik 6: 153–164

Ladenburg, R., and F. Reiche (1923). Absorption, Zerstreuung und Dispersion in der Bohrschen Atomtheo-
rie. Die Naturwissenschaften 11: 584–598.

Ladenburg, R., and F. Reiche (1924). Dispersionsgesetz und Bohrsche Atomtheorie.Die Naturwissenschaf-
ten 12: 672–673.

Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. Pp. 91–196 in:
I. Lakatos and A. Musgrave (eds.), Criticism and the growth of knowledge. Cambridge: Cambridge
University Press.

Landé, A. (1926). Neue Wege der Quantentheorie. Die Naturwissenschaften 14: 455–458.
Landé, A., and W. Heisenberg (1924). Termstruktur der Multipletts höherer Stufe. Zeitschrift für Physik

25: 279–286.
Landsberg, G. and L. Mandelstam (1928). Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen.

Die Naturwissenschaften 16: 557–558.
Landsman, N. P. (2007). Between classical and quantum. Pp. 417–553 in: J. Butterfield and J. Earman

(eds.), Philosophy of physics. Part A. Amsterdam: Elsevier.
MacKinnon, E. M. (1977). Heisenberg, models, and the rise of matrix mechanics. Historical Studies in the

Physical Sciences 8: 137–188.
MacKinnon, E.M. (1982). Scientific explanation and atomic physics.Chicago: University of Chicago Press.
Mehra, J., and H. Rechenberg (1982–2001). The historical development of quantum theory. 6 Vols. New

York, Berlin: Springer.

123



622 A. Duncan, M. Janssen

Merton, R. K. (1968). The Matthew effect in science. Science 159 (January 5, 1968): 56–63.
Millikan, R. A. (1916). A direct photoelectric determination of Planck’s ‘h’. Physical Review 7: 355–388.
Moyer, A. E. (1985). History of phyics. Pp. 163–182 in: S. Gregory Kohlstedt and M. W. Rossiter (eds.),

Historical writing on American science. Baltimore: Johns Hopkins University Press.
Niessen, K. F. (1924). Ableitung des Planckschen Strahlungsgesetzes für Atome mit zwei Freiheitsgraden.

Annalen der Physik 75: 743–780.
Oseen, C. W. (1915). Das Bohrsche Atommodell und die Maxwellschen Gleichungen. Physikalische Zeit-

schrift 16: 395–405.
Pais, A. (1986). Inward bound. Of matter and forces in the physical world. Oxford: Clarendon Press; New

York: Oxford University Press.
Pauli, W. (1925). Ueber die Intensitäten der im elektrischen Feld erscheinenden Kombinationslinien.

Matematisk-fysiske Meddelelser udgivet af Det Kongelige Danske Videnskabernes Selskab (Køben-
havn) 7, No. 3: 3–20. Reprinted in facsimile in (Pauli, 1964, Vol. 2, pp. 233–250).

Pauli, W. (1926). Quantentheorie. Pp. 1–278 in H. Geiger and K. Scheel (eds.), Handbuch der Physik, Vol.
23. Berlin: Springer. Reprinted in facsimile in (Pauli, 1964, Vol. 1, pp. 269–548).

Pauli, W. (1964). Collected Scientific Papers. 2 Vols. Edited by R. Kronig and V. F. Weisskopf. New York:
Interscience Publishers.

Pauli, W. (1979). Scientific correspondence with Bohr, Einstein, Heisenberg a.o. Volume I: 1919–1929.
Edited by A. Hermann, K. von Meyenn, and V. F. Weisskopf. Berlin: Springer.

Rabi, I. I. (1975). E. U. Condon—the physicist and the individual. Pp. 4–9 in (Barut et al., 1991).
Rabi, I. I. (2006). Stories from the early days of quantummechanics. (A colloquium given in Toronto, April

5, 1979, transcribed and edited by R. Fraser Code.) Physics Today 59 (8): 36–41.
Raman, C. V. (1928). A new radiation. Indian Journal of physics 2: 387–398.
Reiche, F., andW. Thomas (1925). Über die Zahl der Dispersionselektronen, die einem stationären Zustand

zugeordnet sind. Zeitschrift für Physik 34: 510–525.
Rigden, J. S. (1987). Rabi, scientist and citizen. New York: Basic books.
Robertson, P. (1979). The early years. The Niels Bohr institute. Copenhagen: Akademisk Forlag.
Schwarzschild, K. (1916). Zur Quantenhypothese. Königlich Preussische Akademie der Wissenschaften

(Berlin). Sitzungsberichte 1916: 548–568.
Schweber, S. S. (1986). The empiricist temper regnant: Theoretical physics in the United States 1920–1950.

Historical Studies in the Physical and Biological Sciences 17: 55–98.
Schweber, S. S. (1990). The young JohnClarke Slater and the development of quantumchemistry.Historical

Studies in the Physical and Biological Sciences 20: 339–406.
Seidel, R. W. (1978). Physics research in California: The rise of a leading sector in American physics.

Ph.D. Thesis, University of California, Berkeley.
Serwer, D. (1977). Unmechanischer Zwang: Pauli, Heisenberg, and the rejection of the mechanical atom,

1923–1925. Historical Studies in the Physical Sciences 8: 189–256.
Shenstone, A. G. (1973). Ladenburg, Rudolf Walther. Pp. 552–556 in: C. C. Gillispie (ed.), Dictionary of

scientific biography. Vol. VII. New York: Charles Scribner’s Sons.
Slater, J. C. (1924). Radiation and atoms. Nature 113: 307–308.
Slater, J. C. (1925a). A quantum theory of optical phenomena. Physical Review 25: 395–428.
Slater, J. C. (1925b). The nature of resonance radiation. Physical Review 25: 242.
Slater, J. C. (1925c). The nature of radiation. Nature 116: 278.
Slater, J. C. (1968). Quantum physics in America between the wars. Physics Today 21 (1): 43–51.
Slater, J. C. (1973). The development of quantum mechanics in the period 1924–1926. Pp. 19–25 in: W.

C. Price, S. S. Chissick, and T. Ravensdale (eds.), Wave mechanics. The first fifty years. New York,
Toronto: Wiley.

Slater, J. C. (1975). Solid-state and molecular theory: a scientific biography. New York, London, Sydney,
Toronto: John Wiley & Sons.

Smekal, A. (1923). Zur Quantentheorie der Dispersion. Die Naturwissenschaften 11: 873–875.
Sommerfeld, A. (1915a). Zur Theorie der Balmerschen Serie. Königlich Bayerische Akademie der Wissen-

schaften (München). Sitzungsberichte 1915: 425–458.
Sommerfeld, A. (1915b). Die allgemeine Dispersionsformel nach dem Bohrschen Model. Pp. 549–584: in

K. Bergwitz (ed.),Festschrift Julius Elster undHansGeitel.Braunschweig. Reprinted in (Sommerfeld,
1968, Vol. 3, pp. 136–171).

Sommerfeld, A. (1917). Die Drudesche Dispersionstheorie vom Standpunkte des Bohrschen Modelles und
die Konstitution von H2, O2, and N2. Annalen der Physik 53: 497–550.

123



On the verge of Umdeutung in Minnesota - Part one 623

Sommerfeld, A. (1919). Atombau und Spektrallinien. 1st ed. Braunschweig: Vieweg.
Sommerfeld, A. (1922). Atombau und Spektrallinien. 3rd ed. Braunschweig: Vieweg.
Sommerfeld, A. (1968). Gesammelte Schriften. 4 Vols. Edited by F. Sauter. Braunschweig: Vieweg.
Sommerfeld, A. (2004). Wissenschaftliche Briefwechsel. Band 2: 1919–1951. Edited by M. Eckert and K.

Märker. Berlin, Diepholz, Munich: Deutsches Museum, Verlag für Geschichte der Naturwissenschaf-
ten und der Technik.

Sopka, K. R. (1988). Quantum physics in America. The years through 1935. Tomash Publishers/American
Institute of Physics.

Stachel J. (1988). Inside a Physicist [Review of Dresden, 1987].NatureVol. 332, No. 6166 (21 April 1988):
744–745.

Stachel J. (2005). Fresnel’s (dragging) coefficient as a challenge to 19th century optics of moving bodies.
Pp. 1–13 in: J. Eisenstaedt and A. J. Kox (eds.), Einstein studies, Vol. 11, The universe of general
relativity. Boston: Birkhäuser.

Stolzenburg, K. (1984). Introduction. Part 1. The theory of Bohr, Kramers, and Slater. Pp. 3–96 in (Bohr,
1972–1996, Vol. 5).

Stuewer, R. H. (1975). The Compton effect. Turning point in physics. New York: Science History Publica-
tions.

Swann, W. F. G. (1925). The trend of thought in physics. Science 61: 425–435.
Ter Haar, D. (1998). Master of theory. The scientific contributions of H. A. Kramers. Princeton: Princeton

University Press.
Thomas, W. (1925). Über die Zahl der Dispersionselektronen, die einem stationären Zustande zugeordnet

sind (Vorläufige Mitteillung). Die Naturwissenschaften 13: 627.
Thorndike Greenspan, N. (2005). The end of the certain world. The life and science of Max Born. New

York: Basic Books.
Van der Waerden, B. L., ed. (1968). Sources of quantum mechanics. New York: Dover.
Van der Waerden, B. L., and H. Rechenberg (1985). Quantum mechanics (1925–1927). Pp. 329–343 in:

Werner Heisenberg, Gesammelte Werke/Collected Works. Series A/Part I. Berlin: Springer, 1985.
Van Kampen, N. G. (1988). Book review (boekbespreking) of (Dresden, 1987).Nederlands Tijdschrift voor

Natuurkunde A54 (1): 40
Van Vleck, J. H. (1922a). The dilemma of the helium atom. Physical Review 19: 419–420.
Van Vleck, J. H. (1922b). The normal helium atom and its relation to the quantum theory. Philosophical

Magazine 44: 842–869.
Van Vleck, J. H. (1923). Note on the quantum theory of the helium arc spectrum. Physical Review 21:

372–373.
Van Vleck, J. H. (1924a). A correspondence principle for absorption. Journal of the Optical Society of

America 9: 27–30.
Van Vleck, J. H. (1924b). The absorption of radiation by multiply periodic orbits, and its relation to the

correspondence principle and the Rayeigh-Jeans law. Part I. Some extensions of the correspondence
principle. Physical Review 24: 330–346. Reprinted in (Van der Waerden, 1968, pp. 203–222).

Van Vleck, J. H. (1924c). The absorption of radiation by multiply periodic orbits, and its relation to the
correspondence principle and the Rayeigh-Jeans law. Part II. Calculation of absorption by multiply
periodic orbits. Physical Review 24: 347–365.

Van Vleck, J. H. (1925). Virtual oscillators and scattering in the quantum theory. Physical Review 25:
242–243.

Van Vleck, J. H. (1926). Quantum principles and line spectra. Washington, D. C.: National Research
Council (Bulletin of the National Research Council 10, Part 4).

Van Vleck, J. H. (1929). The new quantum mechanics. Chemical Reviews 5: 467–507.
Van Vleck, J. H. (1964). American physics comes of age. Physics Today 17 (6): 21–26.
Van Vleck, J. H. (1971). Reminiscences of the first decade of quantum mechanics. International Journal

of Quantum Chemistry. Symposium No. 5, 1971 (a symposium held in honor of Van Vleck). Edited
by Per-Olov Lödwin. New York, London, Sydney, Toronto: John Wiley & Sons. Pp. 3–20.

Van Vleck, J. H. (1974). Acceptance speech. Koninklijke Nederlandse Akademie van Wetenschappen.
Bijzondere bijeenkomst der afdeling natuurkunde…28 september 1974…voor de plechtige uitreiking
van de Lorentz-medaille aan Prof. Dr. J. H. Van Vleck.

Van Vleck, J. H. (1992). John Hasbrouck Van Vleck. Pp. 351–252 in: S. Lundqvist (ed.), Nobel lectures in
physics (1971–1980). Singapore: World Scientific Publishing.

123



624 A. Duncan, M. Janssen

Van Vleck, J. H., and D. L. Huber (1977). Absorption, emission, and line breadths: A semihistorical
perspective. Reviews of Modern Physics 49: 939–959.

Verschaffelt, J. E., M. de Broglie, W. L. Bragg, and L. Brillouin, eds. (1923). Atomes et électrons. Rapports
et discussions du Conseil de Physique tenu à Bruxelles du 1er au 6 avril 1921 sous les auspices de
l’Institut International de Physique Solvay. Paris: Gauthier-Villars.

Wasserman, N. H. (1981). The Bohr–Kramers–Slater paper and the development of the quantum theory of
radiation in the work of Niels Bohr. Ph.D. Thesis, Harvard.

Weart, S. R. (1979). The physics business in America, 1919–1940: A statistical reconnaissance. Pp. 295–
358 in: N. Reingold (ed.), The sciences in the American context: New perspectives.Washington, D.C.:
Smithsonian Institution Press.

Weinberg, S. (1992). Dreams of a final theory. New York: Pantheon. Page reference is to the edition of
Vintage Books (New York) first published in 1994.

Whittaker, E. T. (1953).A history of the theories of aether and electricity. 2Vols. London: Nelson. Reprinted
as Vol. 7 of The history of modern physics, 1800–1950 (Thomas Publishers/American Institute of
Physics, 1987).

Wilson, W. (1915). The quantum theory of radiation and line spectra. Philosophical Magazine 29: 795–802
Zimmer, E. (1934). Umsturz im Weltbild der Physik.Munich: Knorr & Hirth.

123





Arch. Hist. Exact Sci. (2007) 61:625–671
DOI 10.1007/s00407-007-0009-3

On the verge of Umdeutung in Minnesota: Van Vleck
and the correspondence principle. Part two

Anthony Duncan · Michel Janssen

Received: 19 March 2007 / Published online: 17 July 2007
© Springer-Verlag 2007

Abstract This is the second installment of a two-part paper on developments in
quantum dispersion theory leading up to Heisenberg’s Umdeutung paper. In telling
this story, we have taken a 1924 paper by John H. Van Vleck in The Physical Review as
our main guide. In this second part we present the detailed derivations on which our nar-
rative in the first part rests. The central result that we derive is the Kramers dispersion
formula, which played a key role in the thinking that led to Heisenberg’s Umdeutung
paper. We derive classical formulae for the dispersion, emission, and absorption of
radiation and use Bohr’s correspondence principle to construct their quantum coun-
terparts both for the special case of a charged harmonic oscillator (Sect. 5) and for
arbitrary non-degenerate multiply-periodic systems (Sect. 6). We then rederive these
results in modern quantum mechanics (Sect. 7).

Communicated by J.D. Norton.

This paper was written as part of a joint project in the history of quantum physics of the Max Planck
Institut für Wissenschaftsgeschichte and the Fritz-Haber-Institut in Berlin. The authors gratefully
acknowledge support from the Max Planck Institute for History of Science. The research of Anthony
Duncan is supported in part by the National Science Foundation under grant PHY-0554660.

A. Duncan
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, USA

M. Janssen
Program in the History of Science, Technology, and Medicine, University of Minnesota,
Minneapolis, USA

M. Janssen (B)
Tate Laboratory of Physics, 116 Church St. NE, Minneapolis, MN 55455, USA
e-mail: janss011@umn.edu

123



626 A. Duncan, M. Janssen

5 Van Vleck and the application of the correspondence principle to the
interaction of matter and radiation

In the two-part paper that forms the focal point of our study, Van Vleck (1924b,c)
explored in a systematic and physically cogent fashion the implications of the cor-
respondence principle for several aspects of the interaction of matter and radiation.
The paper is signed June 19, 1924 and appeared in the October 1924 issue of The
Physical Review. In this paper, Van Vleck gave a detailed derivation of the cor-
respondence principle for absorption, which he had introduced in a short note in
the Journal of the Optical Society in America, signed April 7, 1924 (Van Vleck,
1924a). In addition, he thoroughly examined the issues involved in connecting Ein-
stein’s A and B coefficients to features of classical electron orbits. Finally, as we
mentioned in Sect. 3.4 in Part One of our paper, he showed that, in the limit of
high quantum numbers, Kramers’ quantum formula for polarization merges with
the classical formula for polarization in arbitrary non-degenerate multiply-periodic
systems.

In part I of his paper, reproduced in (Van der Waerden, 1968), Van Vleck (1924b)
discusses the transition from quantum-theoretical expressions for emission, absorp-
tion, and dispersion to corresponding classical expressions that one expects to hold
in the limit of high quantum numbers. It is only in part II, not included in
(Van der Waerden, 1968), that Van Vleck (1924c) derives the classical expressions
for absorption and dispersion of radiation by a general non-degenerate multiply-
periodic system, using standard methods of canonical perturbation theory in action-
angle variables. Van Vleck could assume his audience to be thoroughly familiar with
these techniques. This is no longer true today. For the sake of clarity of exposition, we
therefore invert the order of Van Vleck’s own presentation.

In Sect. 5.1, we present the basic elements of the canonical formalism in action-
angle variables and use it to rederive the classical formula (6) in Sect. 3.1 for the dipole
moment of a charged one-dimensional simple harmonic oscillator. Though much more
complicated than the derivation in Sect. 3.1, this new derivation has two distinct
advantages. First, it suggests a way of translating the classical formula into a quantum
formula with the help of Bohr’s correspondence principle and Einstein’s A and B
coefficients. Secondly, both the derivation of the classical formula and its translation
into a quantum formula can easily be generalized to arbitrary non-degenerate multiply-
periodic systems.

In Sect. 5.2, we translate the classical formula for the dipole moment of a simple
harmonic oscillator into a quantum formula. In Sect. 5.3, we similarly convert classical
formulae for emission and absorption by a simple harmonic oscillator to the corres-
ponding quantum formulae. Both the mathematical manipulations and the physical
interpretation are particularly transparent in the case of a simple harmonic oscilla-
tor, and Van Vleck himself frequently used this example for illustrative purposes. The
generalization of the various results to arbitrary non-degenerate multiply-periodic sys-
tems, which is a primary focus of Van Vleck’s paper, will be deferred to Sect. 6. In
Sect. 7, we present (or outline) modern derivations of various results in Sects. 5 and
6. In Sect. 8, we summarize our conclusions.
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5.1 Deriving the classical formula for the dipole moment of a simple harmonic
oscillator using canonical perturbation theory

In this subsection we rederive formula (6) in Sect. 3.4 for the dipole moment of a
charged one-dimensional simple harmonic oscillator, using canonical perturbation
theory in action-angle variables. Like Kramers, Van Vleck was a master of these
techniques in classical mechanics. As Van Vleck recalled 50 years after the fact:

In 1924 I was an assistant professor at the University of Minnesota. On an
American trip, Ehrenfest gave a lecture there …[He] said he would like to hear
a colloquium by a member of the staff. I was selected to give a talk on my “Cor-
respondence Principle for Absorption” …I remember Ehrenfest being surprised
at my being so young a man. The lengthy formulas for perturbed orbits in my
publication on the three-body problem of the helium atom [Van Vleck, 1922] had
given him the image of a venerable astronomer making calculations in celestial
mechanics (Van Vleck, 1974, p. 9).176

We begin by reviewing some of the mathematical tools we need.177 Consider a
classical Hamiltonian system with phase space coordinates (qi , pi ), i = (1, 2, . . . , N )

and Hamiltonian H(qi , pi ), which does not explicitly depend on time. Hamilton’s
equations are

q̇i = ∂ H

∂pi
, ṗi = −∂ H

∂qi
. (15)

Consider a contact transformation (qi , pi ) → (q ′
i , p′

i ) preserving the form of Hamil-
ton’s equations, in the sense that there exists a new Hamiltonian H ′ such that

q̇ ′
i = ∂ H ′

∂p′
i
, ṗ′

i = −∂ H ′

∂q ′
i
. (16)

Since Hamilton’s equations (15) and (16) must hold simultaneously, the variational
principles

δ

t2∫

t1

(∑
i

pi q̇i − H(qi , pi )

)
dt = 0, δ

t2∫

t1

(∑
i

p′
i q̇

′
i − H ′(p′

i , q ′
i )

)
dt = 0 (17)

176 Van Vleck failed to conform to Ehrenfest’s image of a young physicist in another respect. In an interview
in 1973, “Van Vleck recalled, “I shocked Ehrenfest …when I told him I liked popular music.” Ehrenfest, he
said, “thought that was completely irreconcilable with my having written any respectable papers.” (Fellows,
1985, p. 54)
177 This material is covered in standard graduate textbooks on classical mechanics, such as (Goldstein,
1980), heavily influenced by (Born, 1925) and (Goldstein, 1980, pp. 429, 493, 540). We recommend
(Matzner and Shepley, 1991).
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for arbitrary times t1 and t2 must also hold simultaneously. This implies that the
difference between the two integrands in Eq. (17) must be a total time derivative

(∑
i

pi q̇i − H(qi , pi ) −
∑

i

p′
i q̇

′
i + H ′(p′

i , q ′
i )

)
dt = dF, (18)

which will not contribute to the variation of the action. The apparent dependence of
F on the 4N + 1 variables (qi , pi , q ′

i , p′
i , t) can be reduced to 2N + 1 variables via

the equations for the contact transformation (qi , pi ) → (q ′
i , p′

i ). If we choose to write
F as a function of the initial and final coordinates, F = F(qi , q ′

i , t), then the partial
derivatives of F can be read off directly from Eq. (18):

∂ F

∂t
= H ′ − H,

∂ F

∂qi
= pi ,

∂ F

∂q ′
i

= −p′
i . (19)

By solving (at least in principle!) the second of these three equations for q ′
i as a function

of (qi , pi ), and then substituting the result in the third to obtain p′
i , we see that the

function F encodes the full information of the transformation (qi , pi ) → (q ′
i , p′

i ).
This function is called the generating function of the transformation. Given F the
form of the new Hamiltonian H ′ can be obtained (again, in principle!) from the first
of Eqs. (19).

A special case of great interest occurs when the generating function F can be
chosen so that the resulting Hamiltonian is independent of the new coordinates q ′

i
(which are then called ignorable). Hamilton’s equations then immediately imply that
the associated momenta p′

i are time independent, and that the new coordinates q ′
i

are linear in time. In this circumstance the new momenta are usually called action
variables—the notation Ji is conventional for these—while the new coordinates are
dubbed angle variables, with the conventional notation wi .

To illustrate the above with a concrete example, which we shall be using
throughout this section, consider a one-dimensional simple harmonic oscillator with
Hamiltonian:178

H = p2

2m
+ 1

2
mω2

0q2. (20)

Consider the transformation induced by

F = 1

2
mω0q2 cot q ′. (21)

178 A short digression on the (almost inevitable) notational confusions lurking in this subject is in order. We
shall continue to use the conventional notation ω to denote angular frequencies, with the ordinary frequency
(reciprocal period) denoted by the Greek letter ν. Unfortunately, Van Vleck uses ω to denote ordinary
frequency! Moreover, there is the embarrassing similarity of the angle variables wi to the frequencies ωi .
Also, there is the need to distinguish between the frequencies of the isolated mechanical system (ω0 = 2πν0
for the simple harmonic oscillator) and the frequency of an applied electromagnetic wave, which we shall
denote as ω = 2πν throughout.
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This function does not explicitly depend on time, so H ′ = H (see Eq. (19)). Eq. (19)
also tells us that

p = ∂ F

∂q
= mω0q cot q ′, p′ = − ∂ F

∂q ′ = 1

2
mω0q2 csc2 q ′. (22)

From the latter equation it follows that q2 = (2p′/mω0) sin2 q ′ or that

q =
√

2p′
mω0

sin q ′. (23)

Inserting this expression for q into the expression for p, we find

p = √
2mω0 p′ cos q ′. (24)

Substituting Eqs. (23)–(24) for q and p into Eq. (20) we find

H = ω0 p′. (25)

Since H ′ = H , this means that the new coordinate variable q ′ is ignorable, as desired.
Hamilton’s equations for (q ′, p′) are:

q̇ ′ = ∂ H

∂p′ = ω0, ṗ′ = −∂ H

∂q ′ = 0, (26)

from which it follows that q ′ = ω0t + ε and that p′ = H/ω0 is time independent. Ins-
tead of the canonically conjugate variables (p′, q ′) it is customary to employ rescaled
action-angle variables

J ≡ 2πp′, w ≡ 1

2π
q ′. (27)

Hamilton’s equations for (J, w) are:

ẇ = ∂ H

∂ J
= ν0, J̇ = −∂ H

∂w
= 0. (28)

It follows that J = H/ν0 and w = ν0t + ε (appropriately redefining the arbitrary
phase ε) for our one-dimensional oscillator.

The connection to the terminology action variable is easily seen in this example.
In this simple case, the action is defined as the area enclosed by a single orbit of
the periodic system in the two-dimensional phase space spanned by the coordinates
(p, q):

J =
∮

p dq. (29)
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Inserting Eqs. (23) and (24) into the integrand, we find

∮ (√
2mω0 p′ cos q ′) d

⎛
⎝

√
2p′
mω0

sin q ′
⎞
⎠ =

2π∫

0

2p′ cos2 q ′dq ′ = 2πp′, (30)

which is just the expression for J in Eq. (27).
The result (23) represents, of course, the solution of the equation of motion of the

oscillator
q(t) = D cos 2πν0t = D cos 2πw, (31)

where we have chosen the phase shift ε to start the oscillator at maximum displacement
at t = 0, and where the amplitude is a function of the action variable

D =
√

J

mπω0
. (32)

We now turn to our basic model for dispersion, i.e., a charged one-dimensional simple
harmonic oscillator subjected to the periodically varying electric field of an electroma-
gnetic wave. Earlier, we used elementary techniques of classical mechanics to analyze
this system (see Eqs. (2)–(6) in Sect. 3.1). Although such methods are physically
transparent, they depend on an explicit treatment of the equations of motion of a spe-
cific and completely specified Hamiltonian. The same results can be obtained by the
methods of canonical perturbation theory, where general formulas can be obtained for
the perturbation in the coordinate(s) of the system completely independently of the
specific nature of the dynamics. As Van Vleck put it:

If we were to study the perturbations in the motion produced by the incident
wave purely with the aid of [Newton’s second law] it would be impossible to
make further progress without specializing the form of the potential function
[such as, e.g., 1

2 mω2
0q2 in Eq. (20)] …However, it is quite a different story when

we seek to compute the perturbations …in the “angle variables” w1, w2, w3 and
their conjugate momenta J1, J2, J3 …In fact by using them rather than x, y, z,
which is the essential feature of the present calculation, the periodic properties
of the system come to light even without knowing the form of [the potential]
(Van Vleck, 1924c, p. 350).

Using canonical perturbation theory in action-angle variables, we rederive Eq. (6) of
Sect. 3.1 for the polarization of a one-dimensional charged simple harmonic oscillator.
In Sect. 6.2, we turn to the general case of an arbitrary non-degenerate multiply-
periodic system.

The Hamiltonian is now the sum of the Hamiltonian H0 given by Eq. (20) and a
perturbative term Hint describing the interaction between the harmonic oscillator and

123



On the verge of Umdeutung in Minnesota - Part two 631

the electromagnetic wave179:

H = H0 + Hint = p2

2m
+ 1

2
mω2

0x2 + eEx cos ωt . (33)

The subscript ‘0’ in ν0 or ω0 refers to the characteristic frequency of the unperturbed
oscillator. Without subscript ν and ω refer to the frequency of the external electric
field.

Absent a perturbing field (E = 0, H = H0), we can write x(t) in terms of the
action-angle variables J and w = ν0t :

x(t) =
∑

τ=±1

Aτ (J )e2π iτw, (34)

where Aτ has to satisfy the conjugacy relation Aτ = A∗−τ to ensure that x(t) in Eq. (34)
is real (x(t) = x∗(t)). Note that we have changed notation somewhat compared
to Eq. (31). We returned to Cartesian coordinate notation (x instead of q), and the
amplitude has been redefined:180

D = 2|Aτ |. (35)

The action-angle variables J = H0/ν0 and w = ν0t satisfy Hamilton’s equations (see
Eq. (28)):

0 = − J̇ = ∂ H0

∂w
,

∂ H0

∂ J
= ẇ = ν0. (36)

It is a special feature of the simple harmonic oscillator that the frequency ν0 is inde-
pendent of the amplitude of motion (and thereby of the action). The generating func-
tion for the contact transformation from (x, p) to (w, J ) is time independent (cf.
Eq. (21)), so Eq. (19) implies that the old and new Hamiltonians coincide in value
(i.e., one simply reexpresses the original Hamiltonian in the new variables). Even with
the perturbation turned on we shall continue to use the same contact transformation,
computing the perturbations (�w,�J ) induced by the applied field in the action-angle
variables (w, J ) as an expansion in E . These are not action-angle variables for the
full Hamiltonian H0 + Hint, only for the unperturbed Hamiltonian H0 (cf. Van Vleck,
1926, pp. 200–201).

Eventually, we are interested in the displacement �x in the particle coordinate (to
first order in E) induced by the applied field. To first order, �x is given by

�x = ∂x

∂ J
�J + ∂x

∂w
�w. (37)

179 As before, we assume that the electric field is in the direction of motion of the oscillator (cf. Sect. 3.1).
It follows from Eq. (33) that the force F = −∂V/∂x of the electric field on the charge is −eE cos ωt , in
accordance with Eq. (3) in Sect. 3.1 (recall that we use e to denote the absolute value of the electron charge).
180 Inserting Aτ = |Aτ |eiϕ into Eq. (34), we find x(t) = (|Aτ | + |A−τ |) cos (2πw + ϕ). Since Aτ =
A∗−τ , |Aτ |2 = Aτ A∗

τ is equal to |A−τ |2 = A−τ A∗−τ . The phase angle ϕ is immaterial.
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Using Eq. (34) to evaluate ∂x/∂ J and ∂x/∂w, we can rewrite this as:

�x =
∑

τ=±1

(
∂ Aτ

∂ J
�J + 2π iτ Aτ�w

)
e2π iτw. (38)

Assuming the external field to be switched on at time zero, the first-order shifts �w

and �J are given by:

�J =
t∫

0

� J̇dt, �w =
t∫

0

�ẇdt, (39)

where the integrands � J̇ and �ẇ are determined by Hamilton’s equations.
The perturbation in Eq. (33) will induce a time dependence in the action variable,

as Hamilton’s equation for the action variable in the presence of the perturbing field
now reads

J̇ = −∂ H0

∂w
− eE

∂x

∂w
cos 2πνt = −eE

∂x

∂w
cos 2πνt . (40)

Note that we still have ∂ H0/∂w = 0, so � J̇ = J̇ . At this point it is convenient to
replace cos 2πνt by 1

2 (e2π iνt + e−2π iνt ). Inserting Eq. (34) into Eq. (40), we find

� J̇ = −π ieE
∑

τ=±1

τ Aτ

(
e2π i(τw+νt) + e2π i(τw−νt)

)
. (41)

To obtain the polarization, which is a linear effect in the applied field E , we only need
�J and �w to first order in E . This means that the angle variables w in the exponents
in Eq. (41) can be taken to zeroth order, i.e., w = ν0t . Integrating � J̇ we find:

�J =
t∫

0

� J̇dt = eE

2

∑
τ=±1

τ Aτ

{
1 − e2π i(τν0t+νt)

τν0 + ν
+ 1 − e2π i(τν0t−νt)

τν0 − ν

}
. (42)

Next, we need to compute the first order shift �w in the angle variable w. Hamilton’s
equation for the angle variable w in the presence of the perturbation is:181

ẇ = ∂ H0

∂ J
+ eE

∂x

∂ J
cos 2πνt

= ν0 + eE

2

∑
τ=±1

∂ Aτ

∂ J

(
e2π i(τw+νt) + e2π i(τw−νt)

)
. (43)

181 It is a special feature of the simple harmonic oscillator that the characteristic frequency ν0 is independent
of the amplitude and thus of the action variable J (see Eq. (32)). In general, ν0 will be a function of J . The
first term on the right-hand side of Eq. (43) would then become ∂ H0/∂ J = ν0(J ) = ν0 + (∂ν0/∂ J )�J .
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Once again, w may be replaced by ν0t in the exponentials in Eq. (43). Integrating the
second term in Eq. (43), which gives the shift �ẇ due to Hint, we find:

�w =
t∫

0

�ẇdt = ieE

4π

∑
τ=±1

∂ Aτ

∂ J

{
1 − e2π i(τν0t+νt)

τν0 + ν
+ 1 − e2π i(τν0t−νt)

τν0 − ν

}
. (44)

Substituting expressions (42) and (44) for �J and �w into Eq. (38), we find

�x = eE

2

∑
τ ′=±1

∑
τ=±1

{
∂ Aτ ′

∂ J
τ Aτ − τ ′ Aτ ′

∂ Aτ

∂ J

}
1 − e2π i(τν0t−νt)

τν0 − ν
e2π iτ ′ν0t (45)

+ (ν → −ν),

where “(ν → −ν)” here and below is shorthand for: “the same term with ν replaced
by −ν everywhere.” The coherent contribution to the polarization comes from the
terms in Eq. (45) with the same time dependence as the applied field, i.e., from terms
in which the time dependence is given by the factor e±2π iνt . In the terminology of
Van Vleck (1924c): “the part of the displacement which is resonant to the impressed
wave” (p. 361). These are the terms in which the summation indices, which in the case
of the simple harmonic oscillator only take on the values ±1, have opposite values,
i.e., τ = −τ ′. The contribution of such terms to the first-order displacement is

�xcoh = eE

2

∑
τ=±1

{(
∂ A−τ

∂ J
τ Aτ + τ A−τ

∂ Aτ

∂ J

) −e−2π iνt

τν0 − ν
+ (ν → −ν)

}

= eE

2

∑
τ=±1

τ
∂|Aτ |2

∂ J

{
e−2π iνt

ν − τν0
− e2π iνt

ν + τν0

}
. (46)

The imaginary part of this expression is a sum over the product of odd and even
functions of the index τ ,

−eE

2

∑
τ=±1

τ
∂|Aτ |2

∂ J

(
1

ν − τν0
+ 1

ν + τν0

)
sin 2πνt, (47)

and therefore vanishes, leaving only the real part:

�xcoh = eE

2

∑
τ

τ
∂|Aτ |2

∂ J

(
1

ν − τν0
− 1

ν + τν0

)
cos 2πνt

= eE

2

∑
τ

τ
∂|Aτ |2

∂ J

(
2τν0

ν2 − τ 2ν2
0

)
cos 2πνt . (48)

Since |Aτ |2 = |A−τ |2 (see note 180) and since τ only takes on the values ±1 in the
case of the simple harmonic oscillator, τ 2 = 1 and the two terms in the summation
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over τ are identical. Although in this special case the derivative with respect to J only
acts on |Aτ |2, we are free to include the expression 2ν0/(ν

2 − ν2
0 ) within the scope

of the derivative (recall that ν0 does not depend on J in this case). Equation (48) then
becomes

�xcoh = 2eE
∂

∂ J

(
ν0

ν2 − ν2
0

|Aτ |2
)

cos 2πνt . (49)

The resulting expression for the dipole moment, p(t) = −e�xcoh, of a one-
dimensional charged simple harmonic oscillator is a special case of the expressions
for the dipole moment of a general non-degenerate multiply-periodic system with
the same charge given by Kramers and Van Vleck. Kramers (1924b, p. 310, Eq. 2∗)
denotes this quantity by P and gives the following formula:

P = E

2

∑ ∂

∂ I

(
C2ω

ω2 − ν2

)
cos 2πνt . (50)

In the special case of a one-dimensional charged simple harmonic oscillator, ω, I , and
C correspond to ν0, J , and 2|Aτ | in our notation, respectively. There appears to be
a factor e2 missing in Kramers’ formula. We shall derive the corresponding formula
(41) in (Van Vleck, 1924c, p. 361) in Sect. 6.2.

Equation (49) is equivalent to Eq. (6), the result of our much simpler derivation in
Sect. 3.1. Recalling that (cf. Eqs. (31)–(32), (34)–(35) and note 180)

x(t) = 2|Aτ | cos 2πν0t =
√

J

2π2mν0
cos 2πν0t, (51)

we have |Aτ |2 = J/(8π2mν0), and Eq. (49) reduces to

�xcoh = eE cos 2πνt

4π2m(ν2 − ν2
0 )

. (52)

The dipole moment is thus given by:

p(t) = −e�xcoh = e2 E

4π2m(ν2
0 − ν2)

cos 2πνt, (53)

in agreement with Eq. (6) in Sect. 3.1.
The preceding discussion employs a version of canonical perturbation theory in

which a single set of action-angle variables, chosen for the unperturbed Hamiltonian,
is used throughout the calculation, even after the time-dependent perturbation is swit-
ched on. Accordingly, the new action variables are no longer constant, and the new
angle variables are no longer linear in time. The same classical polarization result is
derived in a somewhat different manner by Born (1924) and Kramers and Heisenberg
(1925). Born performs a contact transformation in which the generating function F
(cf. Eq. (18)) is chosen as a function of (qi , p′

i ), the old coordinates and the new
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momenta, which is then evaluated systematically order by order in the perturbation
to maintain the constancy of the new action variables. In (Kramers and Heisenberg,
1925) the same procedure is followed, but as only the first order result is needed, it
suffices to use the infinitesimal form of the contact transformation.182

5.2 Converting the classical formula for dispersion to a quantum formula in the
special case of a simple harmonic oscillator

Using Bohr’s correspondence principle as our guide, we now ‘translate’ the classical
formula (49) for displacement (and thence for polarization) into a quantum formula.
Two main ingredients go into this particular application of the correspondence prin-
ciple: (1) a rule—commonly attributed to Born (1924)183 but found independently by
both Kramers and Van Vleck (see below)—for replacing derivatives with respect to the
action variables in classical formulae by difference quotients involving neighboring
quantum states; (2) the A and B coefficients of Einstein’s quantum theory of radiation.
In general, the “translation” of a classical formula into a quantum formula involves a
third step. The orbital frequencies need to be replaced by transition frequencies. The
case of a simple harmonic oscillator has the special features that the only relevant tran-
sitions are between adjacent states and that the transition frequency νi→ f coincides
with the mechanical frequency ν0. Another special feature is that the correspondence
between quantum and classical results for large quantum numbers continues to hold
all the way down to the lowest quantum numbers, due to the extremely simple form
of the energy spectrum, with uniformly spaced levels.

Using the rule for replacing derivatives by difference quotients, we obtain the quan-
tum formula for polarization from Eq. (49) by the formal correspondence replacement

∂ F(w, J )

∂ J

∣∣∣∣
J=rh

→ 1

h
(F(r + 1) − F(r)), (54)

where F can be any dynamical quantity of the system. Classically, it is a function
F(w, J ) on phase space. F(r) denotes its value, F(w, J = rh), in the quantum state
specified by the integer quantum number r . In the correspondence limit where r gets
very large, the difference between the values rh and (r + 1)h for the action variable
J becomes so small that the difference quotient to the right of the arrow in Eq. (54)
approaches the derivative on the left. With this prescription, the classical formula
Eq. (49) turns into a quantum expression for the coherent part of the displacement of
the particle in quantum state r :

�xr
coh = 2eE

h

(
ν0|Ar+1|2
ν2 − ν2

0

− ν0|Ar |2
ν2 − ν2

0

)
cos 2πνt . (55)

182 For a discussion of infinitesimal canonical transformations, see Chapter 11 of (Matzner and Shepley,
1991).
183 See, e.g., (Jammer, 1966, p. 193), (MacKinnon, 1977, p. 148), (Cassidy, 1991, pp. 178, 186, 188), or
(Aitchison et al., 2004, p. 1372).
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The amplitudes Ar correspond to the Aτ (with τ = ±1) in Eq. (49), and are related
to the amplitudes Dr in Eq. (32) for an oscillator in state r by Dr = 2|Ar | (see
Eq. (51)). As we saw in Sect. 3.3, Ladenburg (1921) showed how these amplitudes
can be connected to the Einstein A coefficients for spontaneous emission (not to be
confused with the amplitudes Ar ).

At this point we briefly review Einstein’s quantum theory of radiation (Einstein,
1916a,b, 1917), using the notation of (Van Vleck, 1924b). Imagine an ensemble
of atoms—or indeed, any conceivable quantized mechanical system, such as one-
dimensional quantized oscillators—in interaction and statistical equilibrium with an
ambient electromagnetic field of spectral density ρ(ν). If we label the stationary states
of the atoms by indices r, s, . . ., the number of atoms in state r (of energy Er ) by Nr ,
and recall the Bohr frequency condition νrs = (Er − Es)/h, Einstein’s analysis gives
the average rate of energy emission of light of frequency νrs for an atom in state r as

dEr→s

dt
= hνrs (Ar→s + Br→sρ(νrs)) , (56)

and the average rate of energy absorption of light of frequency νrs by an atom in state
s as

dEs→r

dt
= hνrs Bs→rρ(νrs), (57)

where Ar→s , Br→s , and Bs→r are the transition probabilities for spontaneous emis-
sion, stimulated emission, and absorption, respectively. Einstein’s analysis of the
requirements for thermodynamic equilibrium and comparison with Planck’s law of
black-body radiation then yields the critical relations

Br→s = Bs→r = c3

8πhν3
rs

Ar→s . (58)

For a charged simple harmonic oscillator, the only allowed transitions amount to
changes in the action by one unit of Planck’s constant h, so there is only a single
Einstein coefficient for spontaneous emission from the state r + 1, namely Ar+1→r .
The correspondence principle dictates that we associate the rate of spontaneous energy
emission for high quantum numbers,

dEr+1→r

dt
= hν0 Ar+1→r (59)

(cf. Eq. (56), in the absence of external radiation) with the classical result for the
power emitted by an accelerated (in this case, oscillating) charge, given by the Larmor
formula (Jackson, 1975; Feynman et al., 1964, Vol. 1, Ch. 32):

P = 2

3

e2

c3 v̇2. (60)

For an oscillator in state r , with x(t) = Dr cos ω0t , this becomes, for the instantaneous
power emission Pr in state r
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Pr = 2

3

e2

c3 ω4
0 D2

r cos2 ω0t, (61)

the time average of which, 1
3 (e2/c3)ω4

0 D2
r , then gives the desired connection between

the amplitudes Dr = 2|Ar | appearing in Eq. (55) and the Einstein coefficient Ar+1→r

in the correspondence limit:

hν0 Ar+1→r = 4

3

e2

c3 ω4
0|Ar+1|2

|Ar+1|2 = 3hc3

64π4e2ν3
0

Ar+1→r . (62)

Van Vleck (1924b) refers to this connection as the “correspondence principle for
emission” (p. 333). Substituting the expression for |Ar+1|2 in Eq. (62) into Eq. (55)
for �xr

coh and multiplying by the charge −e to obtain the dipole moment per oscillator
and by the number density of oscillators nosc, we arrive at the following result for the
polarization induced by the electric field E :

Pr = 3
noscc3

32π4 E

(
Ar+1→r

ν2
0 (ν2

0 − ν2)
− Ar→r−1

ν2
0 (ν2

0 − ν2)

)
cos 2πνt . (63)

Of course, for the special case of the ground state of the oscillator, r = 0, the second
term in Eq. (63) cannot be present. Ladenburg’s quantum formula for dispersion accor-
dingly only had the equivalent of the first term in Eq. (63) (see Eq. (8) in Sect. 3.3).
The full equation corresponds to Eq. (5) in (Kramers, 1924a), and to Eq. (17) in (Van
Vleck, 1924b), except for a factor of 3, as we have not assumed random orientation
of the oscillators (Van Vleck, 1924b, footnote 25).

One may easily guess that the corresponding formula for a more general, multiply-
periodic system will take the form of (Van Vleck, 1924b, Eq. (17)), in analogy to
Eq. (63):

Pr = 3
noscc3

32π4 E

(∑
s

As→r

ν2
sr (ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
r t (ν

2
r t − ν2)

)
cos 2πνt, (64)

where the sum over s (resp. t) corresponds to states higher (resp. lower) than the state
r , and where νi j is Van Vleck’s notation for the transition frequency νi→ j . In the
correspondence limit where r is very large and neither s nor t differ much from r , the
transition frequencies νsr and νr t become equal to the orbital frequencies in the orbits
characterized by the values rh, sh, and th for the action variable J . For the harmonic
oscillator, the sums in Eq. (64) degenerate to a single term each (with s = r + 1,
t = r − 1), and the transition frequencies νsr , νr t are all equal to the mechanical
frequency ν0. In Sect. 6.2 we shall present Van Vleck’s derivation of Eq. (64) in
detail.

As we indicated above, there is some disagreement in the historical literature as to
who was (or were) responsible for the key move in the construction of the quantum
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dispersion formula on the basis of the correspondence principle, viz. the replacement
(54) of derivatives with respect to the action variable by difference quotients. Jammer
(1966, p. 193) and Mehra and Rechenberg (1982–2001, Vol. 2, p. 173) suggest that
Kramers got the idea from Born via Heisenberg. Dresden (1987, p. 222) makes it clear
that Kramers found the rule before Born, but allows for the possibility that Born found
it independently, as Kramers (1924a) did not state the rule in his first Nature note, the
only presentation of the Kramers dispersion formula that Born had seen when he wrote
(Born, 1924). Van Vleck certainly discovered the replacement (54) of derivatives by
difference quotients for himself. Since Van Vleck (1924a) announced the correspon-
dence principle for absorption, which he could not have derived without this rule, in a
paper submitted in April 1924, whereas (Born, 1924) was not received by Zeitschrift
für Physik until June 1924, Van Vleck clearly could not have taken the rule from
Born’s paper. That Kramers, Van Vleck, and probably Born independently hit upon
the same idea, underscores that the rule (54) for replacing derivatives by difference
quotients is so natural that it readily comes to mind when one is trying to connect
quantum-theoretical expressions to classical ones on the basis of the correspondence
principle.

Writing to Born in 1924, Van Vleck sounds slightly annoyed at Born’s insinuation
that he, Van Vleck, did not realize that one needs to replace derivatives by difference
quotients to get from classical to quantum-theoretical expressions. In the letter from
which we already quoted in Sect. 2.4, Born had written:

I am sending you my paper On Quantum Mechanics [Born, 1924], which pursues
a goal similar to yours. While you limit yourself to the correspondence with high
quantum numbers, I conversely aim for rigorous laws for arbitrary quantum
numbers.184

To which Van Vleck replied:

I have read with great interest your important, comprehensive article. There is,
as you say, considerable similarity in the subject matter in your article and mine,
especially as regards to dispersion185 …As noted in your letter you mention more
explicitly than do I the fact that formulas of the quantum theory result from those
of the classical theory by replacing a derivative by a difference quotient. I have
stressed the asymptotic connection of the two theories but I think it is clear in the
content of my article that in the problems considered the classical and quantum
formulas are connected as are derivatives and difference quotients.186

As we already mentioned in Sect. 1.2 (see note 17) and Sect. 3.4 (note 104), Van Vleck
used the correspondence principle—in particular, the replacement of derivatives by
difference quotients—to check that quantum formulae merge with classical formulae

184 Born to Van Vleck, 24 October, 1924 (AHQP).
185 Van Vleck seems to be talking here about (Van Vleck, 1924b,c), whereas Born was talking about
(Van Vleck, 1924a). Born asked Van Vleck to send him “an offprint of your extensive calculations.” Van
Vleck obliged: “As you requested, I am sending you under separate cover a reprint of Parts I and II of my
computations,” presumably (Van Vleck, 1924b,c).
186 Van Vleck to Born, November 30, 1924 (AHQP).
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in the limit of high quantum numbers, whereas Born wanted to use the principle to
construct quantum formulae out of their classical counterparts. We sympathize with
Van Vleck’s point in response to Born that the difference between the two approaches
should not be exaggerated. Although Van Vleck could take the quantum formulae for
emission and dispersion from (Ladenburg and Reiche, 1923) and (Kramers, 1924a),
respectively, he had to construct his own quantum formula for absorption on the basis
of Einstein’s quantum theory of radiation. The formula for absorption was undoub-
tedly easier to guess than the one for dispersion, which took the combined efforts of
Ladenburg and Kramers (see Sects. 3.3–3.4), but, given that Ladenburg and Reiche
(1923) got it wrong, it was not completely trivial either (see Sect. 5.3). Moreover, Van
Vleck’s crucial insight that what matters is the differential absorption was guided by
the analogy between the quantum and the classical case. In fact, as Van Vleck (1924a,
p. 30) himself pointed out (in a passage we quoted in Sect. 3.4), his insight that one
needs to take into account the effects of “negative absorption” (stimulated emission) to
arrive at a quantum absorption formula that merges with the classical absorption for-
mula in the correspondence limit, is precisely analogous to the insight that one needs
to add a term describing such effects to the Ladenburg dispersion formula to arrive
at a quantum dispersion formula, the Kramers formula, that merges with the classical
dispersion formula in the correspondence limit. As we also saw in Sect. 3.4, Van Vleck
formulated his correspondence principle of absorption before Kramers (1924a) publi-
shed his dispersion formula. In short, Van Vleck knew perfectly well how to construct
quantum formulae on the basis of correspondence considerations when he had to. And
while it is true that Born put more emphasis on the constructive use of the correspon-
dence principle, this did not lead Born to additional results of any consequence for
subsequent developments (Mehra and Rechenberg, 1982–2001, Vol. 3, pp. 55–57). It
was left to Heisenberg to show how one could use the correspondence principle as a
guide not just to a few new formulae but to a whole new theory. In the aftermath of
Heisenberg’s breakthrough, the Göttingen–Copenhagen attitude seems to have been
that the correspondence principle had been the ladder that had allowed physicists to
get from the old quantum theory to the new matrix mechanics, a ladder that in the safe
possession of the new theory could be discarded. Interestingly, Van Vleck’s attitude
toward the correspondence principle did not change. In early 1928 he published a
paper the aim of which is described as follows in the introduction:

In studying the very significant statistical interpretation [of quantum mechanics],
the writer at first experienced considerable difficulty in understanding how the
quantum formulas for averages and probabilities merge into the analogous clas-
sical expressions in the region of large quantum numbers and also, of course, in
the limit h = 0. In the present note we shall aim to trace through the asymptotic
connection between the formulas of the two theories, which does not seem to
have been adequately elucidated in existing papers (Van Vleck, 1928, p. 178).187

187 We are grateful to John Stachel for drawing our attention to this paper, in which Van Vleck introduced
what has become known as the “Van Vleck determinant.”
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Even post-Umdeutung, Van Vleck thus continued to think of the correspondence prin-
ciple in terms of checking rather than constructing quantum formulae.

5.3 Emission and absorption classically and quantum-theoretically in the special
case of a simple harmonic oscillator

Before we present Van Vleck’s “correspondence principle for absorption” (for the
special case of a simple harmonic oscillator), we gather some useful results from
the classical theory of a charged oscillator (of natural frequency ν0) coupled to a
Maxwellian electromagnetic field. Such an oscillator (1) emits electromagnetic radia-
tion of frequency ν0 in the absence of an external field, (2) absorbs energy from an
applied electromagnetic field of frequency ν, and (3) undergoes a net displacement
coherent with an applied electromagnetic field (or “polarization”, analyzed above).

The Larmor formula (60) gives the power loss due to radiation by our charged
harmonic oscillator. The energy loss of the oscillating system can be ascribed to a
radiative reaction force given by

Frad = 2e2

3c3 v̈ ≡ mτDv̈, (65)

where we shall assume that the characteristic radiation damping time τD is very short
in comparison to the mechanical period: ω0τD << 1, so that radiation damping is
very slow on the time scale of the mechanical oscillations of the system. The equation
of motion of the oscillator (in the absence of external applied forces) now becomes

v̇ − τDv̈ + ω2
0x = 0. (66)

To a good approximation, the coordinates and velocities of this system are still beha-
ving as harmonic oscillations of frequency ω0 so we may assume v̈ � −ω2

0v in Eq. (66)
and obtain

ẍ + τDω2
0 ẋ + ω2

0x = 0. (67)

Inserting the Ansatz x(t) = De−αt into Eq. (67), we find:

(α2 − τDω2
0α + ω2

0)De−αt = 0. (68)

Neglecting a term with τ 2
Dω4

0 (recall that ω0τD << 1, so that τ 2
Dω4

0 << ω2
0),188 we

can rewrite the expression in parentheses as:

(α − 1

2
τDω2

0 + iω0)(α − 1

2
τDω2

0 − iω0). (69)

It follows that:

α � 1

2
τDω2

0 ± iω0 ≡ �/2 ± iω0. (70)

188 Such terms are treated incorrectly in any event by the approximation leading to Eq. (67).
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Thus, we have a solution of the form

x(t) = De−�t/2 cos ω0t, (71)

from which the average rate of oscillator energy loss from the Larmor formula (60)
at small times (i.e., when damping due to the e−�t/2 factor can be ignored) is easily
seen to be

−dEosc

dt
= e2

3c3 D2ω4
0 = 16π4e2

3c3 D2ν4
0 (72)

(where we used that v̇ � ω2
0 D). The constant � = τDω2

0 is called the radiative decay
constant. We emphasize again that the preceding discussion presupposes the narrow
resonance limit, � << ω0. In terms of �, the basic equation of motion (67) can be
written as

ẍ + � ẋ + ω2
0x = 0. (73)

Now suppose that our charged oscillator is immersed in an ambient electroma-
gnetic field, characterized by a spectral function (energy density per unit spectral
interval) ρ(ν). As we are dealing with one-dimensional oscillators we shall sim-
plify the discussion by assuming that only the x-component of the electric field is
relevant as all the oscillators are so aligned. Then (using overbars to denote time
averages) the average value of the electromagnetic energy density is (in Gaussian

units) (1/4π)Ē
2 = (3/4π)Ēx

2 = ρ(ν)�ν in the frequency interval (ν, ν + �ν). If

Ex = E cos 2πνt we have Ēx
2 = E2/2 so finally we have

E2 = 8π

3
ρ(ν)�ν. (74)

The equation of motion (73) must be modified to include the coupling to the external
field (switching back temporarily to angular frequencies, ω = 2πν, and using complex
notation to encode amplitude and phase information):

ẍ + � ẋ + ω2
0x = eE

m
eiωt ≡ Fapp/m, (75)

and the average rate of energy absorption of the oscillator from the ambient field is
simply the time average 〈Fapp ẋ〉. This linear second order equation is solved by a sum
of transients (i.e. solutions of the homogeneous equation: see Eq. (73))

xtr(t) = De−�t/2 cos ω0t, (76)

plus the following particular solution coherent with the applied perturbation

xcoh(t) = Re
eE

m

eiωt

ω2
0 − ω2 + i�ω

, (77)
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so that the desired time average 〈Fapp ẋ〉 = 〈Fapp(ẋtr + ẋcoh)〉 giving the energy
absorption rate becomes

〈Fapp ẋ〉 =
〈

eE cos ωt
eE

m
Re

(
iωeiωt

ω2
0 − ω2 + i�ω

)〉
. (78)

Note that the transient part of the particle coordinate xtr(t) is not coherent with the
applied field (we assume ω �= ω0), and therefore does not contribute to the time
average of the energy absorption. This explains why the amplitude D of the oscillations
is absent from the final result, which will instead depend only on the specific energy
density of the ambient field. In other words, even though the charged particle may be
executing very large amplitude oscillations xtr(t), the only part of the full coordinate
x(t) responsible for a nonvanishing average absorption is the part of the displacement
xcoh(t) induced by the applied field, which is proportional to E and does not involve
the amplitude D. As we shall see below, the corresponding feature of the quantum
calculation in the correspondence limit led Van Vleck to the very important realization
that the net energy absorption involves a difference in the amount of absorption and
stimulated emission as described in Einstein’s quantum theory of radiation.

Only the cosine part of the complex exponential in Eq. (78) will contribute to the
time average. Using 〈cos2 ωt〉 = 1/2 and Eq. (74), we find

〈Fapp ẋ〉 = e2 E2�

2m

ω2

(ω2
0 − ω2)2 + �2ω2

= 4πe2

3m
ρ

( ω

2π

)
�

ω2

(ω2
0 − ω2)2 + �2ω2

1

2π
�ω (79)

for the energy absorption rate due to the ambient field in the frequency interval (ν, ν +
�ν) = (ω, ω+�ω). Since Eq. (79) contains the electric field E squared, it is apparent
that the generalization of this linear simple harmonic oscillator result to an arbitrary
multiply-periodic system will require a second-order canonical perturbation theory
calculation, which will necessarily be more involved than the corresponding classical
polarization calculation, which only involves the electric field to the first order. In the
case of interest, where � << ω0, the line resonance shape in Eq. (79) is highly peaked
around the resonance frequency ω0, so we may use the distributional limit

ε

x2 + ε2 → πδ(x), ε → 0 (80)

with x = ω2 − ω2
0 and ε = �ω to execute the integration over ω in Eq. (79) and

compute the total absorption rate:

〈Fapp ẋ〉 ≈ 2e2

3m

∫
ρ

( ω

2π

)
�

π

�ω
ω2δ(ω2 − ω2

0)dω

= πe2

3m
ρ(ν0). (81)
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This classical result is found in (Planck, 1921) (Van Vleck, 1924b, p. 339, note 12)189

and gives the rate at which a classical charged oscillator gains energy when immersed
in an ambient classical electromagnetic field.

In Eq. (62) we found the connection in the limit of high quantum numbers between
the Einstein A coefficients and the amplitudes Dr = 2|Ar | of the mechanical motion
in the emitting state r :

Ar→s � 16π4e2

3hc3 D2
r ν3

rs . (82)

From the Einstein relation (58) this implies a corresponding result for the
B-coefficients:

Br→s = Bs→r = 2π3e2

3h2 D2
r . (83)

In the r -th quantized state of the oscillator, we have J = rh so from Eq. (32) the
corresponding amplitude Dqu

r of the quantized motion becomes

Dqu
r =

√
rh

2π2mν0
, (84)

and the quantum result for the A coefficients in the present case of a linear simple
harmonic oscillator becomes

Ar→r−1 = 8π2e2ν2
0r

3mc3 , (85)

while the quantum result for the B coeffficients takes the form

Br→r−1 = Br−1→r = πe2r

3hmν0
. (86)

The Einstein analysis of A and B coefficients makes it clear that at the quantum level
we must consider what Van Vleck (1924b, p. 340) calls the “differential absorption
rate”: the rate of energy absorption of the oscillator in state r going to state r + 1 via
Eq. (57) minus the stimulated emission induced by the ambient field and causing the
transition r to r − 1 (the B term in Eq. (56)). From Eq. (86) we therefore have for the

189 Van Vleck probably got the references to (Planck, 1921) from (Ladenburg and Reiche, 1923). Both
Van Vleck (1924b, p. 339, note 12; p. 340, note 14) and Ladenburg and Reiche (1923, p. 588, note 19;
p. 591, note 30) cite “equations (260) and (159)” and “section 158” in (Planck, 1921).
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differential absorption rate of an oscillator in state r

dEnet

dt
= hν0(Br→r+1 − Br→r−1)ρ(ν0)

= hν0(Br+1→r − Br→r−1)ρ(ν0)

= hν0(r + 1 − r)
πe2

3hmν0
ρ(ν0)

= πe2

3m
ρ(ν0), (87)

which is precisely the classical result (81). Note that the dependence on the quantum
state r (or classically, the amplitude of the motion Dr ) has cancelled in the differential
absorption rate, corresponding to the lack of coherence discussed previously between
the transient and impressed motion.

Van Vleck derived this result in Sect. 4 of his paper. He concluded:

We thus see that in the limiting case of large quantum numbers, where [Eq. (86)]
is valid, the classical value [in Eq. (81)] for the rate of absorption of energy
is nothing but the differential rate of absorption in the quantum theory. This
connection of the classical and quantum differential absorption we shall term
the correspondence principle of absorption (Van Vleck, 1924b, p. 340).190

In Sect. 5, he generalized the result to arbitrary non-degenerate multiply-periodic
systems. Van Vleck’s correspondence principle for ‘differential absorption’ (i.e., the
excess of absorption over stimulated emission) also clarifies the correspondence
principle for dispersion. As Kramers (1924a,b) emphasized, the negative terms in
the dispersion formula were difficult to account for on the basis of purely classi-
cal concepts—they somehow corresponded to a negative value for e2/m for those
virtual oscillators corresponding to transitions from the initial atomic level to lower
energy levels (see Sect. 3.4). Similar negative contributions in the case of absorption
are physically much more transparent: transitions to higher levels result in a positive
absorption of energy from the ambient electromagnetic field, whereas transitions to
lower levels result in energy being returned to the field. The latter process was there-
fore known as “negative absorption” at the time, a term used by both Kramers (1924a,
p. 676) and Van Vleck (1924b, p. 338). Noticing the greater physical transparency
of his correspondence-principle results for absorption, and under the impression that
Kramers’ correspondence-principle arguments for the dispersion formula rested only
on a treatment of harmonic oscillators, Van Vleck added sections on dispersion to his
paper. Section 6, “The general correspondence principle basis for Kramers’ disper-
sion formula,” was added to the first quantum-theoretical part of the paper; Sect. 15,
“Computation of polarization,” to the classical part (see the letter from Van Vleck to
Kramers of September 1924, quoted in Sect. 3.4).

190 Van Vleck points out that this “is a purely mathematical consequence of the correspondence principle
for emission, which was used in deriving [Eq. (86)]” (ibid.). A few pages later, Van Vleck (1924b, p. 343)
notes that he could also have done the reverse, deriving the correspondence principle for emission from that
for absorption.
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When Kuhn in his AHQP interview with Van Vleck brought up the paper on the
correspondence principle for absorption, Van Vleck said: “I think that was one of my
better papers.” “How did you get into that?,” Kuhn wanted to know. Van Vleck told
him:

Through a misunderstanding of something Gregory Breit [Van Vleck’s colleague
in Minnesota at the time] told me. He said that the net absorption was the dif-
ference between the fluctuations up and the fluctuations down, referred to some
paper of—I think it was (Kretschmann)—but that was an entirely different thing.
It was concerned with the fact that under certain phase relations the light did
work on the atom and under certain phase relations the atom did work on the
light. It was dealing essentially with statistical fluctuations. I misunderstood his
remark and proceeded to try and get the differential effect between the absorption
up from a given stationary state and a[b]sorption going down.191

The paper Breit was referring to is presumably (Kretschmann, 1921). In this paper,
Erich Kretschmann (1887–1973), a student of Planck better known for his work in
general relativity (Kretschmann, 1917), gave a purely classical discussion of the emis-
sion and absorption of radiation. What Van Vleck says here about this paper fits with
its contents. Van Vleck’s comments, however, are also reminiscent of the following
passage in (Ladenburg and Reiche, 1923):

…according to Einstein’s assumptions the effect of external radiation on a quan-
tum atom corresponds to the effect a classical oscillator experiences from an
incident wave. When the frequency of such a wave does not differ much or
not at all from the characteristic frequency of the oscillator, the reaction of the
oscillator consists in an increase or a decrease of its energy, depending on the
difference in phase between the external wave and the motion of the oscillator.
In analogy to this, Einstein assumes that the atom in state i has a probability
characterized by the factor bik to make a transition to a higher state k under
absorption of the energy hν of the incident wave (“positive irradiation”) and that
the atom in state k has another probability (bki ) to return to the state i under the
influence of an external wave (“negative irradiation”) (Ladenburg and Reiche,
1923, p. 586)

As we mentioned in Sect. 3.3, Ladenburg and Reiche appealed to the correspondence
principle to justify their quantum formulae for emission, absorption, and dispersion.
Except in the case of emission, however, their arguments were fallacious. We conjec-
ture that this is what inspired Van Vleck to use his expertise in techniques from celestial
mechanics to find the correct expressions for emission and absorption merging with

191 See p. 22 of the transcript of the first session of the AHQP interview with Van Vleck. Van Vleck told
this story in somewhat greater detail to Katherine Sopka. He also explained to her why he acknowledged
Breit in (Van Vleck, 1924a, p. 28) but not in (Van Vleck, 1924b,c): “As he [Van Vleck] remembers it, he
wanted to thank Breit in the latter, but Breit objected on the ground that the phase fluctuations he had in
mind were quite different from the difference effect employed by Van Vleck and so, overmodestly, felt no
acknowledgment was in order” (Sopka, 1988, p. 135, note 184; this note makes no mention of Kretschmann).
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classical results in the sense of the correspondence principle.192 Van Vleck (1924b,
p. 339, note 13; p. 344, note 21) cited Ladenburg and Reiche but gave no indication that
their paper was an important source of inspiration for his own. It is not implausible,
however, that Van Vleck simply preferred to pass over their badly flawed calculations
in silence rather than touting his own clearly superior results. As we mentioned in
Sect. 3.3, one of the problems with the “correspondence” arguments of Ladenburg
and Reiche is that, following (Planck, 1921) and in the spirit of the derivation of the A
and B coefficients in (Einstein, 1917), they focus on collections of atoms in thermal
equilibrium rather than on individual atoms. What is suggestive of a possible influence
of (Ladenburg and Reiche, 1923) on (Van Vleck, 1924b,c) is that the exact same pas-
sages of (Planck, 1921) are cited in both papers (see note 189 above) and that Van Vleck
(1924b) explicitly comments on the issue of many atoms in thermal equilibrium versus
single atoms, noting that in Planck’s discussion “no explicit mention is made of the
asymptotic connection of the classical absorption and the differential absorption for a
single orbit (where thermodynamic equilibrium need not be assumed) which is the pri-
mary concern of the present paper” (p. 340, note 14). The topic of the third installment
that Van Vleck originally planned to add to his two-part paper also becomes unders-
tandable in light of our conjecture about the connection between (Van Vleck, 1924b,c)
and (Ladenburg and Reiche, 1923). As Van Vleck explained in 1977 (see Sect. 2.4):
“Part III was to be concerned with the equilibrium between absorption and emission
under the Rayleigh-Jeans law” (Van Vleck and Huber, 1977, p. 939). If Ladenburg
and Reiche did indeed stimulate Van Vleck’s work, however, it is somewhat puzzling
that he does not seem to have recognized that the virtual oscillators of BKS, which, as
we saw in Sects. 3.4, 4.1, and 4.2, he consistently attributed to Slater, were essentially
just the substitute oscillators of (Ladenburg and Reiche, 1923). We also saw, however,
that Van Vleck was hardly alone in associating virtual oscillators with BKS. We thus
conclude that it is plausible that Van Vleck was inspired by (Ladenburg and Reiche,
1923) to formulate correspondence principles for emission and absorption. For one
thing, this would explain why Van Vleck, who had not worked on radiation theory
before, turned his attention to the interaction between matter and radiation.

6 Generalization to arbitrary non-degenerate multiply-periodic systems

6.1 The correspondence principle for absorption

The primary result of (Van Vleck, 1924b,c) was an extension of Eq. (87) to an arbitrary
non-degenerate multiply-periodic system of a single particle in three dimensions, and
the demonstration that the quantum-differential absorption coincides with this more
general result in the correspondence limit. Before giving Van Vleck’s result we recall
some basic features of multiply-periodic systems, which we shall in any event need
in Sect. 6.2, where we give a completely explicit derivation (following, with minor
notational changes, the one laid out by Van Vleck) of the corresponding formula for
polarization.

192 As we saw in Sect. 3.4, Van Vleck’s calculations for dispersion were inspired by (Kramers, 1924a).
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The transition from one-dimensional periodic (and harmonic) systems such as the
linear simple harmonic oscillator to three-dimensional multiply-periodic ones is fairly
straightforward. Apart from the obvious need to introduce vector quantities, there
are only two significant additional features. First, there is the appearance of multiple
overtones in the general multiply-periodic expansion (so that the multiplicity variables
in the analogue of Eq. (34) take arbitrary positive and negative integral values, not
just ±1). Second, the mechanical frequencies ν1, ν2, ν3 (with νi = ∂ H0/∂ Ji ) of the
separated coordinates are now in general functions of the amplitude of the classical
path, which is to say, of the action variables Ji (with i = 1, 2, 3). We assume as before
that the imposed electric field is in the X -direction so the x-coordinate of our electron
is the relevant one for computing the induced coherent polarization, and in analogy to
Eq. (34) we now have

x(t) =
∑


τ
A
τ e2π i
τ · 
w, (88)

where in the absence of the external field the angle variables 
w = (w1, w2, w3) =
(ν1, ν2, ν3)t ≡ 
νt and 
τ = (τ1, τ2, τ3) with τi taking on all (positive and negative)
integer values. It will be useful to write Eq. (88) in an alternative purely real form, as
a cosine expansion:

x(t) =
∑


τ ,
τ ·
ν>0

X 
τ cos (2π 
τ · 
νt). (89)

The complex amplitudes A
τ satisfy the conjugacy condition A
τ = A∗
−
τ to ensure that

x(t) is real and we have the relation X2

τ = 4A
τ A−
τ .193

As before (cf. Eq. (33)), the full Hamiltonian has the form

H = H0 + eEx(t) cos 2πνt . (90)

The subscripted mechanical frequencies νi with i = 1, 2, 3 (comprising the vector 
ν)
must be distinguished from the single frequency ν (unsubscripted) corresponding to
the applied field.

With these notations, Van Vleck’s (1924b, p. 342, Eq. (16)) result for the absorption
rate becomes:

dEnet

dt
= 2

3
π3e2

[
ρ(
τ · 
ν)τk

∂Gτ

∂ Jk
+ ρ′(
τ · 
ν)Gτ τk

∂

∂ Jk
(
τ · 
ν)

]
. (91)

where ρ′ ≡ ∂ρ/∂ν and where summation over k = (1, 2, 3) is implied and where
Gτ ≡ 
τ · 
νD2


τ with D2

τ ≡ X2


τ +Y 2

τ + Z2


τ . In the special case of the harmonic oscillator,
the term with ρ′, the derivative of the spectral function, vanishes as there is only a
single mechanical frequency ν = ν0, which is independent of the action variable J .
In the first term, we get simply

dEnet

dt
= 2

3
π3e2ρ(ν0)

∂

∂ J
(ν0 D2). (92)

193 Cf. Eqs. (34)–(35) and note 180 in Sect. 6.1.
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Using Eq. (32), D = √
J/mπω0, for the amplitude, we recover the previous result,

Eq. (87).
Equation (91) is the product of a highly nontrivial application of canonical per-

turbation techniques, where quantities of second order in the applied field need to be
properly evaluated (cf. our discussion following Eq. (79)). The polarization calculation
presented in full in Sect. 6.2 only involves canonical perturbation theory to first order.
For the absorption calculation, the variation in the action variables �Jk in particular
is needed to second order, and the integration of the result obtained for a monochro-
matic incident field needed to pass to the case of continuous radiation specified by an
arbitrary spectral function ρ(ν) requires considerable care.

Slater also tried his hand at this calculation, as can be inferred from a letter from
Kramers to Van Vleck, from which we already quoted in Sect. 3.4. Kramers wrote:

Slater had, on my request, made the same calculation, and he stated that the clas-
sical mean-absorption formula gave the right result in the limit of high quantum
numbers. I did, however, not see his formula, and am not quite sure that he had
not forgotten the term with ∂ρ/∂ν, without which the thing is not complete of
course.194

Van Vleck clearly remembered this point almost 40 years later. Talking to Kuhn about
his 1924 absorption papers, he mentioned: “I got the term in partial rho with respect
to nu. I’m very proud of the fact that I picked that one up …Slater, at Kramers’
suggestion I guess, made a completely parallel calculation in Copenhagen which he
never published.”195

6.2 The correspondence principle for polarization

In this section we retrace the derivation given by Van Vleck (1924c) of the classical
polarization formula for a general non-degenerate multiply-periodic system (with a
single electron) in three dimensions. We remind the reader that this result is by no
means new to Van Vleck, nor, for that matter, to Born or Kramers, who also produced
derivations of the same result at around this time, using slightly different versions of
canonical perturbation theory (cf. our comments at the end of Sect. 5.1). The formula
obtained is basically identical to a formula originally derived in celestial mechanics
to compute the perturbation in the orbits of the inner planets due to the outer ones.
As we saw in Sect. 3.2, Epstein had been the first to use the relevant techniques from
celestial mechanics in the context of the old quantum theory. As Van Vleck reminded
Slater: “The classical formula analysis to the Kramer[s] formula appears to be first
ca[lc]ulated by Epstein [1922c].”196

The derivation is basically a straightforward generalization of the derivation of
Sect. 5.1 for the special case of a charged simple harmonic oscillator in an electroma-
gnetic field (see Eqs. (37)–(49)). The first-order perturbation in the coordinate x(t)

194 Kramers to Van Vleck, November 11, 1924 (AHQP).
195 See p. 22 of the transcript of the first session of the AHQP interview with Van Vleck.
196 Van Vleck to Slater, December 15, 1924 (AHQP).
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(the direction of the electric field in the incident electromagnetic wave) corresponding
to the shifts (�Jl ,�wl) in the action-angle variables is given by the three-dimensional
version of Eq. (37):

�x =
∑

l

(
∂x

∂ Jl
�Jl + ∂x

∂wl
�wl

)
. (93)

As in Sect. 5.1, we imagine that the external field is switched on at time zero, so that
the shifts (�Jl , �wl) are the integrals of their time derivatives from 0 to t . In analogy
with Eq. (42) and using Eq. (88) for x(t), we can immediately write down the equation
for �Jl to first order in E :

�Jl =
t∫

0

J̇ldt = eE

2

∑

τ

τl A
τ

{
1 − e2π i(
τ ·
ν+ν)t


τ · 
ν + ν
+ (ν → −ν)

}
. (94)

All the terms inside the summation can be taken to zeroth order in the applied field.
The computation of the first-order shifts �wl is a little more involved as new terms, not
present in the harmonic-oscillator case, enter (cf. note 181). The Hamilton equation
for ẇl for the full Hamiltonian Eq. (90) is (cf. Eq. (43)):

ẇl = νl + eE

2

∑

τ

∂ A
τ
∂ Jl

{
e2π i(
τ ·
ν+ν)t + (ν → −ν)

}
. (95)

Both terms in Eq. (95) contribute to the first-order deviation�ẇl from the value ofνl for
the unperturbed system. Since νl depends on Jk , there will be a term

∑
k(∂νl/∂ Jk)�Jk

(cf. note 181). The second term is just the generalization of the corresponding term in
Eq. (43). Hence, we get:

�ẇl =
∑

k

∂νl

∂ Jk
�Jk + eE

2

∑

τ

∂ A
τ
∂ Jl

{
e2π i(
τ ·
ν+ν)t + (ν → −ν)

}
. (96)

Upon substitution of Eq. (94) for �Jk this turns into

�ẇl = eE

2

∑

τ ,k

{
∂ A
τ
∂ Jl

e2π i(
τ ·
ν+ν)t + τk
∂νl

∂ Jk
A
τ

1 − e2π i(
τ ·
ν+ν)t


τ · 
ν + ν

}

+ (ν → −ν). (97)

Integrating Eq. (97), we find

�wl = eE

4π

∑

τ ,k

{
i
∂ A
τ
∂ Jl

1 − e2π i(
τ ·
ν+ν)t


τ · 
ν + ν

+ τk
∂νl

∂ Jk
A
τ

2π(
τ · 
ν + ν)t − i(1 − e2π i(
τ ·
ν+ν)t )

(
τ · 
ν + ν)2

}
+ (ν → −ν). (98)
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Inserting Eq. (88) into Eq. (93), we arrive at

�x(t) =
∑

τ ′,l

(
∂ A
τ ′

∂ Jl
�Jl + 2π iA
τ ′τ ′

l �wl

)
e2π i
τ ′·
νt . (99)

Inserting Eqs. (94) and (98) for �Jl and �wl , respectively, into this expression, we
obtain

�x(t) = eE

2

∑

τ ,
τ ′,k,l

{
τl

∂ A
τ ′

∂ Jl
A
τ

1 − e2π i(
τ ·
ν+ν)t


τ · 
ν + ν
− τ ′

l
∂ A
τ
∂ Jl

A
τ ′
1 − e2π i(
τ ·
ν+ν)t


τ · 
ν + ν

+ A
τ A
τ ′τk
∂νl

∂ Jk
τ ′

l
2π i(
τ · 
ν + ν)t + 1 − e2π i(
τ ·
ν+ν)t

(
τ · 
ν + ν)2

+ (ν → −ν)

}
e2π i
τ ′·
νt . (100)

As in Sect. 5.1, we are only interested in the coherent contribution to the polarization,
so we omit all terms in Eq. (100) whose time dependence is not precisely e±2π iνt and
find, writing for convenience

∑
k τk(∂/∂ Jk) ≡ 
τ · 
∇J ,

�xcoh = eE

2

∑

τ

{
−
τ · 
∇J (A
τ A−
τ )

e2π iνt


τ · 
ν + ν

+ A
τ A−
τ 
τ · 
∇J (
τ · 
ν)
e2π iνt

(
τ · 
ν + ν)2

}
+ (ν → −ν). (101)

Note that the coherent contribution derives from terms in which 
τ ′ = −
τ , as otherwise
the uncancelled overtones from the mechanical system would shift the spectral line
(as in Raman scattering). Essentially the only additional physics of (Kramers and
Heisenberg, 1925) in comparison to (Van Vleck, 1924b,c) is a detailed examination
of such terms, predicted earlier in (Smekal, 1923). The terms in Eq. (101) involving
sin 2πνt vanish, as can be seen with the help of the identities

∑

τ

τ j

(
1


τ · 
ν + ν
− 1


τ · 
ν − ν

)
· (even function of 
τ) = 0

∑

τ

τ jτk

(
1

(
τ · 
ν + ν)2 − 1

(
τ · 
ν − ν)2

)
· (even function of 
τ) = 0.
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Thus Eq. (101) simplifies to

�xcoh = −eE

2
cos 2πνt

∑

τ

{

τ · 
∇J (

A
τ A−
τ

τ · 
ν + ν

) + (ν → −ν)

}

= −eE cos 2πνt
∑


τ

τ · 
∇J

( 
τ · 
ν A
τ A−
τ
(
τ · 
ν)2 − ν2

)
. (102)

With the replacement X2

τ = 4A
τ A−
τ , we may go over to the cosine form of the

expansion in Eq. (102) (cf. Eqs. (88)–(89)), summing over only positive values of 
τ · 
ν
(with a factor of 2):

�xcoh = −eE

2
cos 2πνt

∑

τ ,
τ ·
ν>0


τ · 
∇J

( 
τ · 
νX2

τ

(
τ · 
ν)2 − ν2

)
. (103)

This is the generalization of Eq. (49) for the harmonic oscillator.
Finally, we obtain the polarization by multiplying the displacement by Nr , the

number of electrons per unit volume (the subscript r refers to the fact that we shall
shortly consider only electrons in a particular quantum state r ), and by −e for the
electron charge

P = Nr
e2

2
E cos 2πνt

∑

τ ·
ν>0


τ · 
∇J

( 
τ · 
νX2

τ

(
τ · 
ν)2 − ν2

)
(104)

which is Eq. (41) in (Van Vleck, 1924c; in Van Vleck’s notation, 
τ · 
ν is written ωτ )
and equivalent to Eq. 2∗ in (Kramers, 1924b) (see Eq. (50) above).

The equivalence of Eq. (104) to the Kramers dispersion formula (64) in the cor-
respondence limit is sketched in (Kramers, 1924b) and fully explained in Sect. 6 of
(Van Vleck, 1924b).197 Here we follow the latter. So we begin with Eq. (64) for the
polarization of a quantized system in state r , without the factor of 3 corresponding
to the assumption that all oscillators be aligned with the applied field (rather than
randomly in three-dimensional space), and writing Nr instead of nosc:

Pr = Nr c3

32π4 E cos 2πνt

(∑
s

As→r

ν2
sr (ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
r t (ν

2
r t − ν2)

)
. (105)

The sums over s (resp. t) refer to states higher (resp. lower) in energy than the fixed state
r under consideration. In the correspondence limit, we take the state r to correspond
to very high quantum numbers (n1, n2, n3). The states s, t are associated to the central

197 Cf. Van Vleck to Kramers, September 22, 1924 (AHQP), quoted in Sect. 3.4.
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state r in symmetrical pairs:

s → (n1 + τ1, n2 + τ2, n3 + τ3),

r → (n1, n2, n3), (106)

t → (n1 − τ1, n2 − τ2, n3 − τ3),

with 
τ · 
ν > 0 so that the states s (resp. t) do indeed correspond to higher (resp. lower)
energy states. Furthermore, we assume that 
τ · 
ν << 
n · 
ν so that the transitions
s → r → t correspond to very slight changes in the classical orbitals (and differences
approximate well to derivatives). The Bohr–Sommerfeld quantization condition (1)
associates action values Ji = ni h with a given quantized state, so the formal corres-
pondence principle becomes (cf. Eq. (54) in Sect. 6.2):

δ
τ F(
n) ≡ F(
n) − F(
n − 
τ) → h
τ · 
∇J F. (107)

In this notation, formula (105) the polarization can be written as

Pr = Nr c3

32π4 E cos 2πνt
∑


τ
δ
τ

(
As→r

ν2
sr (ν

2
sr − ν2)

)
, (108)

with As→r given by Van Vleck’s “correspondence principle for emission” (see
Eqs. (82) and (62))

As→r = 16π4e2

3hc3 D2
s ν3

sr , (109)

where D2
s = (X (s)


τ )2 + (Y (s)

τ )2 + (Z (s)


τ )2 is the full vector amplitude squared for
the Fourier component of the classical path responsible for the transition 
n + 
τ → 
n.
Substituting Eqs. (107) and (109) into Eq. (108) and replacing the difference frequency
νsr by its classical counterpart 
τ · 
ν, we obtain,:

Pr = Nr E cos 2πνt
c3

32π4

16π4e2

3hc3 h
∑

τ ·
ν>0


τ · 
∇J

( 
τ · 
νD2
s

(
τ · 
ν)2 − ν2

)

= Nr
e2

2
E cos 2πνt

∑

τ ·
ν>0


τ · 
∇J

(

τ · 
ν 1

3 D2
s

(
τ · 
ν)2 − ν2

)
. (110)

With the replacement 1
3 D2

s → X2

τ appropriate for randomly oriented atoms, Eq. (110)

becomes identical to the classical formula (104). This shows that the Kramers dis-
persion formula (105) does indeed merge with the classical result in the limit of high
quantum numbers, as Van Vleck set out to demonstrate.
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7 Derivation of the formulae for dispersion, emission, and absorption in
modern quantum mechanics

Describing the impact of the new quantum mechanics on dispersion theory, Van Vleck
wrote in 1929:

Dispersion was particularly bothersome in the old quantum theory, which could
never explain why the resonance frequencies in dispersion were experimen-
tally the spectroscopic frequencies given by the Bohr frequency condition rather
than the altogether different frequencies of motion in orbits constituting the
stationary states [cf. our discussion in the introduction of Sect. 3]. The new
mechanics, however, yields the Kramers dispersion formula, previously derived
semi-empirically from the correspondence principle …As the result of the mas-
terful treatment by Dirac [1927], a mechanism has at last to a certain extent been
found for the previously so mysterious quantum jumps between stationary states
(Van Vleck, 1929, pp. 494–495).

That same year, in the first installment of what would turn out to be an eight-part
paper entitled “Investigations of anomalous dispersion in excited gases,” Ladenburg
likewise provided a brief synopsis of recent developments in dispersion theory:

The first successful treatment of dispersion phenomena on the basis of Bohr’s
atomic theory implicitly contained the assumption that the orbital frequencies
of the Bohr electrons are the special values at which dispersion changes sign.198

In contrast to this, the point of departure of the newer development of dispersion
theory is the empirical fact that not the orbital frequencies of the electrons but the
frequencies, observable in emission and absorption, of “quantum jumps,” i.e.,
spectral lines, are the singular values of anomalous dispersion. These correspond
to the characteristic frequencies of quasi-elastically bound electrons in the clas-
sical electron theory [discussed in Sect. 3.1]. Tying together the notions of this
theory with Bohr’s atomic theory has taught us that the “strength” of the disper-
sion or of the “substitute oscillators,” which at Bohr’s suggestion were introduced
as carriers of the scattered radiation needed for dispersion, is determined in non-
classical fashion by the “strength,” i.e., the probability of quantum jumps[,] and
by the density of atoms in the “lower” atomic state involved in such quantum
jumps.199 H. A. Kramers then showed,200 through correspondence considera-
tions, that the dispersion formula obtained by the author [cf. Eq. (8) in Sect. 3.3]
only holds exactly in the case of non-excited or meta-stable atoms; in the case of
excited non-meta-stable atoms, which can also make spontaneous transitions to
states of lower energy, this formula is incomplete and has to be supplemented by
terms of “negative dispersion,” which correspond to the “negative absorption”

198 At this point, Ladenburg refers to the papers by Sommerfeld, Debye, and Davisson and the criticism
of them by Bohr and Epstein that we discussed in Sect. 3.2.
199 At this point, Ladenburg refers to his own work, Bohr’s favorable reaction to it, and his subsequent
work with Reiche, all discussed in Sect. 3.3.
200 At this point, Ladenburg refers to Kramers’ two Nature notes and to the Kramers-Heisenberg paper
discussed in Sect. 3.4.
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[i.e., stimulated emission] of the radiation theory of Planck and Einstein. Thus
originated the “quantum-theoretical dispersion formula” [cf. Eq. (9) in Sect. 3.4]
which has finally been given a fully consistent foundation in quantum mechanics
and wave mechanics;201 this new quantum theory completely avoids concepts
like orbital frequencies of electrons in stationary states, and one of its points
of departure was precisely the quantum-theoretical interpretation of dispersion
phenomena mentioned above (Ladenburg, 1928, pp. 15–16)

Rather than pursuing the history of dispersion post-Umdeutung, we shall present our
own modern derivations of quantum formulae for dispersion (Sect. 7.1), (sponta-
neous) emission (Sect. 7.2), and absorption (Sect. 7.3). Seeing how modern quantum
mechanics sanctions the formulae found by Kramers, Van Vleck and others in the
old quantum theory on the basis of Einstein’s quantum theory of radiation and Bohr’s
correspondence principle will illuminate various aspects of the relation between the
old and the new theory.

First, we show how the orchestra of virtual oscillators of pre-Umdeutung dispersion
theory survives in the guise of a sum over matrix elements of the position operator.
Second, we show how the diagonal matrix elements of the fundamental commutation
relation for position and momentum, [X, P] = i h̄, are given by the high-frequency
limit of the Kramers dispersion formula, a formula known as the Thomas–Kuhn
(–Reiche) sum rule (Thomas, 1925, Kuhn, 1925, Reiche and Thomas, 1925). This
formula replaces the Bohr–Sommerfeld condition as the fundamental quantization
condition in the Umdeutung paper (see Sect. 3.5). Heisenberg obtained the sum rule
by applying the procedure introduced in the Umdeutung paper for translating classical
quantities into quantum-theoretical ones to (a derivative of) the Bohr–Sommerfeld
quantization condition. He then showed that the sum rule also obtains by comparing
the high-frequency limit of the Kramers dispersion formula with the polarization of a
charged harmonic oscillator in the limit where ν >> ν0 (see our Eq. (53)). In hindsight,
we can see clearly in the Umdeutung paper how close Heisenberg came to recognizing
the presence of the commutation relation between position and momentum in the sum
rule serving as his quantization condition. As he told Kuhn:

I had written down, as the quantization rule the Thomas-Kuhn sum rule, but I
had not recognized that this was just pq minus qp. That I had not seen.202

That he did not take this step is probably due to two important obstacles, one concep-
tual, the other technical. The conceptual framework of the entire Umdeutung paper is
Lagrangian (as opposed to Hamiltonian): the essential problem is to find a quantum-
theoretical reinterpretation of the classical concepts of position x(t) and velocity ẋ(t)
of a particle. Indeed, the conventional symbol for momentum, p, appears only once

201 At this point, Ladenburg refers to the treatments of dispersion in (Born, Heisenberg, and Jordan, 1925,
pp. 330–338) [see also (Born and Jordan, 1930, pp. 240–250)], (Schrödinger, 1926), and (Dirac, 1927).
For discussion of Schrödinger’s wave-mechanical treatment of dispersion, see (Mehra and Rechenberg,
1982–2001, Vol. 5, pp. 789–796).
202 See p. 12 of the transcript of session 5 of the AHQP interview with Heisenberg. See also p. 9 of
the transcript of session 7. Cf. our discussion in Sect. 3.5. Heisenberg obtained his result by computing
(
∮

pdq)n+1 − (
∮

pdq)n .
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in the entire paper, in the statement of the Bohr–Sommerfeld quantization condition
(Eq. (12) in the paper). From this point on, p is replaced everywhere by mẋ(t). The
canonical connection between position and momentum (so central, ironically, to the
canonical perturbation theory that led to the dispersion formula in the first place203)
seems simply to have vanished from Heisenberg’s thinking at this point. The other,
technical, obstacle was an inconvenient division of the sum over quantum states in the
sum rule, which, though very natural from the point of dispersion theory, obscured its
connection to a commutator, as we shall see below.

It will also become clear in the course of our modern derivation that the Kramers
dispersion formula is an even more general result in modern quantum mechanics
than it was in the old quantum theory. In the old quantum theory, it held for any
non-degenerate multiply-periodic system with an unperturbed Hamiltonian such that
the unperturbed motion can be solved in action-angle variables. In modern quantum
mechanics, the result holds for any system with a Hermitian Hamilton operator such
that the unperturbed part has a spectrum that is at least partially discrete. This helps to
explain why the Kramers dispersion formula carries over completely intact from the
old quantum theory to modern quantum mechanics.

7.1 Dispersion

In this subsection, we derive the Kramers dispersion formula in time-dependent pertur-
bation theory. We then examine the high-frequency limit of this formula and discuss
the role it played in (Heisenberg, 1925) as the fundamental quantization condition
replacing the Bohr–Sommerfeld condition.

We consider a quantized charged system (valence electron) with states labeled by
discrete indices r, s, t, ..., and with the Hamilton operator

H = H0 + V (t) = H0 + eEx cos ωt . (111)

We want to calculate the first-order perturbation (in the electric field E) in the expec-
tation value of the electron position in a particular state |r, t〉. It is convenient to work
in the interaction picture.204 The state |r, t〉int in the interaction picture is related to
the state |r, t〉 in the Schrödinger picture via:

|r, t〉int ≡ ei H0t/h̄ |r, t〉. (112)

An operator Oint(t) in the interaction picture is related to the corresponding operator
O in the Schrödinger picture via

Oint(t) ≡ eiH0t/h̄ Oe−iH0t/h̄ . (113)

203 Of course, it was also central to (Dirac, 1925).
204 The special role of H0 in the time dependence of states and operators in the interaction picture is
analogous to the choice of action-angle variables for the free rather than the full Hamiltonian in the version
of canonical perturbation theory used by Van Vleck. This is what lies behind the close similarities between
the calculations in this section and those in Sects. 5.1 and 6.2.
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It follows that expectation values are the same in the two pictures:

int〈r, t |Oint(t)|r, t〉int = 〈r, t |O|r, t〉. (114)

The evolution of the states in the interaction picture is given by:

∂

∂t
|r, t〉int = i

h̄
ei H0t/h̄ H0|r, t〉 + eiH0t/h̄ ∂

∂t
|r, t〉

= i

h̄
eiH0t/h̄ (H0 − H) |r, t〉, (115)

where in the last step, we used the Schrödinger equation

∂

∂t
|r, t〉 = − i H

h̄
|r, t〉. (116)

Since H0 − H = −V (t) (see Eq. (111)), we can write Eq. (115) as:

∂

∂t
|r, t〉int = − i

h̄
eiH0t/h̄ V (t)e−iH0t/h̄ |r, t〉int

= − i

h̄
Vint(t)|r, t〉int, (117)

where we used Eqs. (112)–(113). To first order in Vint(t) (i.e., to first order in the field
E), the solution of Eq. (117) is

|r, t〉int = |r, 0〉int − i

h̄

t∫

0

dτ Vint(τ )|r, 0〉int

= |r, 0〉int − ieE

h̄

t∫

0

dτ xint(τ ) cos ωτ |r, 0〉int. (118)

At t = 0 the states (and operators) in the interaction picture coincide with those in
the Schrödinger picture. From now on we thus simply write |r〉 for |r, 0〉int. The dual
(‘bra’) of the vector (‘ket’) in Eq. (118) is:

int〈r, t | = 〈r | + ieE

h̄

t∫

0

dτ cos ωτ 〈r |xint(τ ). (119)

To find the dipole moment Pr (t) of the system in state r to first order in E , we calculate
the first-order contribution to the expectation value of the displacement 〈�x〉r in the
state r induced by the field E :

〈�x〉r ≡ int〈r, t |xint(t)|r, t〉int − 〈r |xint(t)|r〉. (120)
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Inserting Eqs. (118)–(119) into this expression, we find:

〈�x〉r = ieE

h̄

t∫

0

dτ 〈r | {xint(τ )xint(t) − xint(t)xint(τ )} |r〉 cos ωτ. (121)

Writing cos ωτ = 1
2 (eiωτ + e−iωτ ), and inserting a complete set of eigenstates of the

unperturbed Hamiltonian H0 (1 = ∑
s |s〉〈s|) between the two coordinate operators,

we obtain

〈�x〉r = ieE

2h̄

∑
s

t∫

0

dτ
(
〈r |eiH0τ/h̄ xe−iH0τ/h̄ |s〉〈s|eiH0t/h̄ xe−iH0t/h̄ |r〉

− 〈r |eiH0t/h̄ xe−iH0t/h̄ |s〉〈s|eiH0τ/h̄ xe−iH0τ/h̄ |r〉
)

eiωτ

+ (ω → −ω)

= ieE

2h̄

∑
s

t∫

0

dτ
(

ei(Er −Es+h̄ω)τ/h̄ei(Es−Er )t/h̄

− ei(Er −Es )t/h̄ei(Es−Er +h̄ω)τ/h̄
)

〈r |x |s〉〈s|x |r〉
+ (ω → −ω). (122)

We introduce the notation Xrs ≡ 〈r |x |s〉 for the matrix elements of the coordinate
operator. Note that these matrix elements in Eq. (122) are accompanied by time-
development phases ei(Er −Es )t/h̄ of purely harmonic form: they are the precise cor-
relates in modern quantum mechanics of the substitute oscillators of Ladenburg and
Reiche (1923) or, equivalently, the virtual oscillators of BKS, as was clearly recogni-
zed, for instance, by Landé (1926) (cf. the discussion at the end of Sect. 4.3).205

Performing the time integral in Eq. (122), we find

〈�x〉r = eE

2

∑
s

[
ei(Er −Es+h̄ω)t/h̄ − 1

Er − Es + h̄ω
ei(Es−Er )t/h̄

− ei(Es−Er +h̄ω)t/h̄ − 1

Es − Er + h̄ω
ei(Er −Es )t/h̄

]
Xrs Xsr

+ (ω → −ω). (123)

(cf. Eqs. (42) and (44) in Sect. 6.1 and Eqs. (94) and (98) in Sect. 5.2). The coherent
terms in 〈�x〉r , i.e. the terms with a time-dependence e±iωt (cf. Eq. (46) in Sect. 6.1

205 Once the electromagnetic field itself is quantized, it becomes more natural to identify the virtual
oscillators of BKS with the Fourier components of the quantized electromagnetic field, which correspond
to time-dependent operators creating (or destroying) the photons emitted (or absorbed) by the atom.
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and Eq. (101) in Sect. 5.2), are:

〈�xcoh〉r = eE

2

∑
s

Xrs Xsr eiωt
[

1

Er − Es + h̄ω
− 1

Es − Er + h̄ω

]
(124)

+ (ω → −ω).

Using the Bohr frequency condition h̄ωrs = Er − Es , we can write the expression in
square brackets in Eq. (124) as:

1

h̄ωrs + h̄ω
− 1

h̄ωsr + h̄ω
= 2ωrs

h̄(ω2
rs − ω2)

. (125)

Inserting this result into Eq. (124) and noting that the terms proportional to sin ωt
vanish, we find the following result for the dipole moment of the system in state r (cf.
Eq. (6) or (53))

Pr (t) = −e〈�xcoh〉r = 2e2 E

h̄

∑
s

ωsr Xrs Xsr

ω2
sr − ω2 cos ωt . (126)

The sum over s can naturally be separated into states s of higher energy than r , with
ωsr > 0, and states t of lower energy, with ωr t > 0 (ωr t = 0 for r = t):

Pr = 2e2 E

h̄

(∑
s

ωsr Xsr Xrs

ω2
sr − ω2 −

∑
t

ωr t Xrt Xtr

ω2
r t − ω2

)
cos ωt . (127)

If we recall the correspondence principle for emission (82), and identify D2
s with

3(Xs
τ )

2 = 12Aτ A−τ and the Fourier coefficients Aτ → Xsr , A−τ → Xrs we get

As→r = 64π4e2

hc3 ν3
sr Xsr Xrs, (128)

whence we recover the original form (64) of the dispersion formula

Pr = c3

32π4 E cos ωt

(∑
s

As→r

ν2
sr (ν

2
sr − ν2)

−
∑

t

Ar→t

ν2
r t (ν

2
r t − ν2)

)
. (129)

Of course, the above identification of classical Fourier components with matrix ele-
ments of the position operator is at the core of Heisenberg’s 1925 breakthrough.

Returning for a moment to Eq. (127), we see that in the Thomson limit where
the frequency of incident radiation far exceeds the difference frequencies ωrs for the
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electron states r, s,206 the polarization Pr becomes asymptotically

Pr � −2e2 E

h̄ω2

(∑
s

ωsr Xsr Xrs −
∑

t

ωr t Xrt Xtr

)
cos ωt . (130)

The preceding equation is in content identical with the next to last (unnumbered)
equation in Sect. 2 in (Heisenberg, 1925), where the Kramers dispersion theory is
explicitly invoked. For large frequencies, we expect the polarization to approach our
previously derived result (see Eq. (6) or (53)) for the polarization of a charged harmonic
oscillator in the limit where ν >> ν0:207

Pr = − e2 E

mω2 cos ωt, (131)

Comparing Eq. (130) with Eq. (131) we find Eq. (16) in (Heisenberg, 1925):

h = 4πm

(∑
s

ωsr Xsr Xrs −
∑

t

ωr t Xrt Xtr

)
. (132)

This result is first obtained by Heisenberg from the Bohr–Sommerfeld quantization
condition by applying the quantum-theoretical transcription procedure, which was
introduced in Sect. 1 of the Umdeutung paper and had been inspired by dispersion
theory. It replaces the Bohr–Sommerfeld condition as the fundamental quantization
constraint in Heisenberg’s new theory. That the same result can be obtained directly
from the high-frequency limit of the Kramers dispersion formula is clearly regarded
by Heisenberg as strong evidence for the validity of his transcription procedure. Using
Eq. (132), together with the formal transcription of the classical equation of motion,
ẍ + f (x) = 0 (Eq. (11) of the Umdeutung paper), Heisenberg (1925) asserts the
possibility of “a complete determination not only of frequencies and energy values,
but also of quantum-theoretical transition probabilities” (p. 268). As Heisenberg points
out, Eq. (132) is completely equivalent to the sum rules for oscillator strengths given
by Thomas (1925) and Kuhn (1925).208

The realization that Eq. (132) is equivalent to (the diagonal matrix elements of)
the fundamental commutator relation [P, X ] = h̄/ i of modern quantum theory came
shortly after this, in the work of Born and Jordan (1925). The recognition of Eq. (132)

206 Or, alternatively, when the incident photon energy far exceeds the energy needed to ionize the electron,
so that the latter can be regarded as essentially a free, unbound particle.
207 This result is obtained in (Kuhn, 1925) by equating the energy scattered by an electron in the Thomson
limit to the radiation emitted by an oscillating dipole according to the Larmor formula.
208 Heisenberg’s logic is slightly different from ours. Instead of pointing out that the high-frequency limit
(130) of the Kramers dispersion formula and the well-established classical result (131) imply Heisenberg’s
quantization condition (132), Heisenberg (1925, pp. 269–270) points out that Eqs. (132) and (130) imply
Eq. (131). This is only a cosmetic difference. The point of the exercise is still to show that the new
quantization condition, found through Umdeutung of the derivative of the Bohr–Sommerfeld condition,
follows from well-established results in Kramers’ dispersion theory and classical electrodynamics. We are
nonetheless grateful to Christoph Lehner for alerting us to this point.
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as a commutator is mathematically obscured by the separation of the sum into states
higher (s) and lower (t) than the given state r—a separation which is very natural
given the history of the Kramers dispersion formula. If Heisenberg had applied his
own transcription rules for associating classical variables with quantum two-index
quantities to the momentum P ≡ m Ẋ in the unnumbered equation immediately fol-
lowing Eq. (13) in the Umdeutung paper (Heisenberg, 1925, p. 267), he would have
found (using modern matrix notation):209

Prs = imωrs Xrs . (133)

That Heisenberg did not write down this equation is probably, as we suggested above,
because he was thinking in terms of the Lagrange rather than the Hamilton formalism.
Rewriting Eq. (132) as a single sum over all states s, but splitting the sum into two
equal pieces via the identity 2ωsr = ωsr − ωrs , we find

h = 4πm
∑

s

ωsr Xrs Xsr

= 2πm
∑

s

(Xrsωsr Xsr − ωrs Xrs Xsr ) (134)

= −2π i
∑

s

(Xrs Psr − Prs Xsr ),

where in the last step we used Eq. (133). In modern notation, this last expression is
immediately recognized as the diagonal matrix element of the fundamental commu-
tator [X, P] = ih̄:

i
h

2π
= 〈r |X P − P X |r〉

=
∑

s

(〈r |X |s〉〈s|P|r〉 − 〈r |P|s〉〈s|P|r〉). (135)

Although Heisenberg recognized the significance of the noncommutativity of
quantum-theoretic quantities in his formalism (see the last three paragraphs of Sect. 1),
the simplicity of x(t)p(t) − p(t)x(t) implied by his fundamental quantization rela-
tion (132) eluded him. He was thinking in terms of velocity rather than momentum.
Moreover, even if he had been thinking in terms of momentum, the origin of his quan-
tization condition in dispersion theory might well have prevented him from rewriting
the summations the way we did in Eq. (134).

209 Following Heisenberg’s procedure in the Umdeutung paper for translating classical equations
into quantum-mechanical ones, we would translate his classical equation for momentum, mẋ =
m

∑
α aα(n)iαωneiαωn t , into the following quantum-mechanical equation: P(n, n + α) = ima(n, n +

α)ω(n, n + α). In modern notation, this becomes: Prs = im Xrsωrs (no summation).
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7.2 Spontaneous emission

To begin with, we note that we are dealing throughout with the dipole approximation,
which is implicit in the 1924 work, corresponding to the regime where the wavelength
of light is much larger than atomic dimensions (or equivalently, where photon momen-
tum is much smaller than electron momentum). Once again, note that the notation of
Van Vleck (1924b, Eq. (1)),

x =
∑

τ1τ2τ3

X (τ1, τ2, τ3) cos {2π(τ1ω1 + τ2ω2 + τ3ω3)t + · · · }

=
∑{

1

2
X (τ1, τ2, τ3)e

+2π i(τ1ω1+τ2ω2+τ3ω3)t+··· (136)

+ 1

2
X (τ1, τ2, τ3)e

−2π i(τ1ω1+τ2ω2+τ3ω3)t+···
}

,

implies that van Vleck’s D2 = X2+Y 2+Z2 (Van Vleck, 1924b, line following Eq. (8))
corresponds to four times the square of the matrix element of the quantum position
operator appearing in the dipole transition formulas of modern quantum mechanics.
For the latter we shall follow the treatment of (Baym, 1969, Ch. 13).

In the dipole approximation, the spontaneously emitted power per unit solid angle
is given by (Baym, 1969, p. 282, Eq. 13–100), for emitted light of polarization vector

λ, in a transition from state r to state s:

dP

d�
= ω4e2

2πc3 〈r |
λ · 
x |s〉〈s|
λ · 
x |r〉

=
3∑

i, j=1

ω4e2

2πc3 λiλ j 〈r |xi |s〉〈s|x j |r〉. (137)

Here (unlike Baym) we take real polarization vectors 
λ (plane polarized) rather than
complex (circularly polarized) ones as our basis. We want the total spontaneously
emitted power in any event, summed over the two possible polarizations for any
momentum vector 
k of the emitted photon (so the basis of photon states is irrelevant).
This requires the polarization sum

2∑
λ=1

λiλ j = δi j − k̂i k̂ j , (i, j = 1, 2, 3), (138)

which follows from the fact that the two polarization vectors are any pair of orthogonal
unit vectors perpendicular to the unit vector k̂ along the photon direction. Finally, we
want the total power emitted in any direction, so the polarization sum (138) must be
integrated over all solid angles:

∫
d�k̂(δi j − k̂i k̂ j ) = 4π

(
2

3
δi j

)
. (139)
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The Einstein coefficient Ar→s in (Van Vleck, 1924b, Eqs. (5) and (9)) refers to a rate
of photon emission (not energy emission) so we must divide Eq. (137) by h̄ω. Putting
together the above results, we find:

Ar→s = 1

h̄ω

∫
d�k̂

dP

d�k̂

= ω4e2

2π h̄ωc3

8π

3

∑
i

〈r |xi |s〉〈s|xi |r〉. (140)

Using the notation Xrs ≡ 〈r |x |s〉, etc. for the matrix elements of position introduced
above we can rewrite this as:

Ar→s = ω4e2

2π h̄ωc3

8π

3

(
|Xrs |2 + |Yrs |2 + |Zrs |2

)
. (141)

Replacing the matrix elements Xrs , Yrs , and Zrs by the amplitude Dr in the correspon-
dence limit as indicated in the preceding section (cf. the remarks preceding Eq. (128))
and substituting ω = 2πν, we arrive at:

Ar→s = 16π4e2ν3

3hc3 D2
r . (142)

D2
r is the amplitude defined in (Van Vleck, 1924b) immediately following Eq. (8), to

be replaced by Dr (τ1, τ2, τ3)
2 in Eq. (9), with which Eq. (142) is seen to be identical.

7.3 Absorption

The Einstein formula for absorption (Van Vleck, 1924b, Eq. (6)), when combined with
the stimulated emission (“negative absorption”) term to yield (ibid., Eq. (15)), leads
directly to the correspondence limit result (ibid., Eq. (16)). Here, we check the identity
of Eq. (15) in (Van Vleck, 1924b) (more precisely, the unnumbered equation imme-
diately following this one) with the modern absorption calculation given in (Baym,
1969). For the rate of absorption of light leading to a transition from state s to (higher)
state r , (Baym, 1969, Eq. 13–40) reads (in the dipole approximation, 
j
k → 
p/m):

�abs
s→r = 2πe2

h̄2c2

ω2

(2πc)3

∫
d�k̂

∑
λ

〈s|
λ · 
p
m

|r〉〈r |
λ · 
p
m

|s〉|A
k
λ|2. (143)

As usual, in the dipole approximation we can use (Baym, 1969, Eq. 13–98) to replace
matrix elements of the momentum operator with those of the coordinate operator
(using the equations of motion). For Hamiltonians of the form H = ( 
p2/2m)+ V (
x),

[H, x j ] = 1

2m
[pi pi , x j ] = 1

m
pi [pi , x j ] = pi

m

h̄

i
δi j = h̄

i

p j

m
, (144)
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whence

〈r | 
p
m

|s〉 = i

h̄
〈r |[H, 
x]|s〉

= i

h̄
(Er − Es)〈r |
x |s〉 (145)

= iω〈r |
x |s〉,

where h̄ω = Er − Es . Once again, in Eq. (145), we see the “monstrous” difference
frequencies characteristic of quantum theory, which wreaked havoc on classical inter-
pretations of radiation phenomena, making their appearance in the modern formalism.
Accordingly, Eq. (143) becomes

�abs
s→r = 2πe2

h̄2c2

ω4

(2πc)3

∫
d�k̂

∑
λ

〈s|λi xi |r〉〈r |λ j x j |s〉|A
k
λ|2. (146)

Now we are going to assume that the ambient light is unpolarized and isotropic so
that the squared amplitude |A
k
λ|2 is in fact independent of λ, k̂, and the only angular
dependence comes in via the polarization vectors. The angle average of the polarization
sum in Eq. (146) can then be performed as in Eq. (139) to yield

�abs
s→r = 4πe2

3h̄2c2

ω4

(2πc)3 〈s|xi |r〉〈r |xi |s〉
∫

d�k̂ |A
k
λ|2. (147)

Next, we need to establish the relation between the squared mode amplitudes |A
k
λ|2
and the specific energy density function ρ(ν) defined as the energy per unit volume per
unit frequency interval. The mode amplitudes A
k
λ correspond to discrete modes for
electromagnetic radiation in a box of volume V , with each mode contributing energy
density

1

V
|A
k
λ|2

ω

2πc2 (148)

(Baym, 1969, Eq. 13–14). As the box volume goes to infinity we have the usual
correspondence

1

V

∑
k

→
∫

k2dkd�k̂

(2π)3 , (149)

so that the total energy density between frequency ν and frequency ν + �ν is

ρ(ν)�ν = 1

V

∑
2πν<kc<2π(ν+�ν)

2|A
k
λ|2
ω2

2πc2

→ 1

(2π)3

∫
d�k̂

2π(ν+�ν)/c∫

2πν/c

dk k2 ω2

2πc2 2|A
k
λ|2. (150)
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Note that although we continue to write the mode amplitudes A
k
λ as depending on
polarization and momentum vector of the photon, we are really assuming that there is
no dependence on the polarization or photon direction. Hence the factor of 2, with no
remaining sum over λ. Equation (150) gives

ρ(ν)�ν = 1

(2π)3

2π

c
k2 ω2

2πc2 2
∫

d�k̂ |A
k
λ|2�ν, (151)

or, equivalently ∫
d�k̂ |A
k
λ|2 = 4π3c5

ω4 ρ(ν). (152)

Inserting Eq. (152) into Eq. (147) and multiplying by h̄ω to get the rate of energy
absorption (instead of the number rate of photon absorption) we find, using the usual
association of squares of matrix elements of the position operator to the classical orbit
amplitude 1

4 D2
r ,

h̄ω�abs
s→r = 4πe2ω

3h̄c2

ω4

(2πc)3

4π3c5

ω4 ρ(ν)
1

4
D2

r

= 2π3e2

3h
νρ(ν)D2

r , (153)

which coincides with the first term in van Vleck’s equation (Van Vleck, 1924b, the
equation following Eq. (15)) for the part of the total absorption rate due to upward
transitions. Of course, the second (negative absorption, or stimulated emission) term
is of exactly the same form (with a minus sign) due to the symmetry of the Einstein
B coefficients.

8 Conclusion

Our study of Van Vleck’s two-part paper on the application of the correspondence
principle to the interaction of matter and radiation (Van Vleck, 1924b,c) has led us to
consider three clusters of questions. First, there are questions about the paper itself.
What made Van Vleck decide to work in this area? He had not published on radiation
theory before. And—as one is inevitably tempted to ask—why did Van Vleck not take
the next step and arrive at something like matrix mechanics? That gets us to the second
cluster of questions, about the developments in quantum theory that provide the natural
context for Van Vleck’s work, especially the transition from the old quantum theory of
Bohr and Sommerfeld to matrix mechanics. What was important for this development
and what was not? The third group of questions concerns the relative importance of
American contributions to these developments. In this final section we collect the
(partial) answers we have found to these biographical, conceptual, and sociological
questions.

Let us first dispose of the issue of American contributions to early quantum theory.
Since we focused on the work of only two individuals, Van Vleck and Slater, we are
in no position to draw strong conclusions. Still, it seems safe to say that our study
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supports the thesis of Sam Schweber (1986) and others that, by the early 1920s, the
United States had a homegrown tradition in quantum theory, which, to be sure, was
reinforced, but certainly not created by the influx of European émigrés in the 1930s.
We are less sanguine about the thesis of Alexi Assmus (1992) that American theorists
contributed mainly to molecular rather than to atomic physics, although she may be
right that Slater and Van Vleck are just exceptions to the rule (see Sect. 2.4). However,
we did come across several other contributions (some admittedly minor) to atomic
theory by Americans (Breit, Davisson, Hoyt, Kemble) or by Europeans working in
America (Epstein, Swann). And we do want to emphasize that the contributions to
atomic theory by our main protagonists were absolutely first rate, even if they did
not always receive the recognition they deserved from their European colleagues (see
the correspondence between Born and Van Vleck cited in Sects. 2.4 and 5.2). The
quickly refuted but highly influential Bohr–Kramers–Slater (BKS) theory was built
around Slater’s idea of a virtual radiation field emitted by an atom while in a stationary
state (see Sect. 4.1). The derivation of a correspondence principle of absorption for
a general non-degenerate multiply-periodic system, the centerpiece of (Van Vleck,
1924b,c), is a tour de force that may well have been the most sophisticated application
of the correspondence principle in the old quantum theory. All in all, the Americans
had definitely established a presence in atomic theory by the early 1920s. In the period
we examined, they were certainly more prominent than the British, not to mention the
French. Ultimately, however, the decisive steps were taken in Europe, not in the United
States.

This brings us to the question of why Van Vleck stopped short of these decisive steps.
Before we offer our best guess as to why Van Vleck did not do what he did not do, we
want to say a few words about why he did what he did. His papers on the correspondence
principle for absorption (Van Vleck, 1924a,b,c) constitute his first foray into quantum
radiation theory. His earlier publications had dealt with such topics as the extension of
Bohr’s model of the atom to helium and the specific heat of molecular hydrogen. The
formulation of a correspondence principle for absorption, Van Vleck told Kuhn in his
interview for the AHQP in 1963, had been triggered by a comment of his Minnesota
colleague Breit (see also Van Vleck, 1924a, p. 28). Breit’s remark, we conjectured
(in Sect. 5.3), may have directed Van Vleck to the work of Ladenburg and Reiche
(1923), who proposed quantum formulae for emission, absorption, and dispersion,
invoking but not always correctly implementing the correspondence principle. Van
Vleck likewise proposed quantum formulae for emission and absorption and used his
considerable expertise in classical mechanics to show that these formulae as well as
the Kramers dispersion formula merged with the classical formulae in the limit of high
quantum numbers.

So why did Van Vleck not take the next step? The trivial explanation is that he
was too busy working on his Bulletin for the National Research Council on the old
quantum theory (Van Vleck, 1926) to pursue his own research. But even if he had not
been burdened by this Bulletin, we seriously doubt that Van Vleck would have done
what Heisenberg did—as he himself acknowledged both in a biographical statement
prepared for the AHQP and in his interview for the project (see Sect. 1.1). Van Vleck,
it seems, was too wedded to the orbits of the Bohr–Sommerfeld theory to completely
discard them, a prerequisite for Heisenberg’s Umdeutung. This is clear at several points
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in (Van Vleck, 1924b). At the end of Sect. 1, for instance, we find a formula expressing
the Einstein coefficient Ar→s as an average over the frequencies of orbits, not allowed
by the Bohr–Sommerfeld quantization condition, between the initial state r and the
final state s. Section 2 of the paper is devoted to “a correspondence principle for orbital
distortions” (Van Vleck, 1924b, p. 334, our emphasis). On the issue of how seriously
one should take the orbits of the Bohr–Sommerfeld theory, Van Vleck might have
benefited from direct contact with the Europeans. He had the distinct disadvantage
of reading Sommerfeld instead of talking to Bohr and his circle.210 Bohr and Pauli
certainly prepared Heisenberg for the step of leaving orbits behind.

The emphasis on observable quantities in the Umdeutung paper, however, struck a
chord with Van Vleck, who had been primed for such a positivist turn by his Harvard
teacher Bridgman.211 Explaining the new quantum mechanics in Chemical Reviews
in 1929,212 he wrote:

Heisenberg’s epoch-making development of the matrix theory was spurred by
Born’s repeated emphasis to his colleagues at Göttingen that the reason the old
quantum theory was then (1925) failing was that we were all too anxious to use
the same concepts of space and time within the atom as in ordinary measurable
large-scale events. …the concepts of distance and time have a meaning only when
we tell how they can be measured. This is very nicely emphasized in Bridgman’s
recent book, “The Logic of Modern Physics” [Bridgman, 1927] …one cannot
use a meter stick to measure the diameter of an atom, or an alarm clock to record
when an electron is at the perihelion of its orbit. Consequently we must not
be surprised if within the atom the correlation of space and time is something
which cannot be visualized, and that models cannot be constructed with the same
kind of mechanics as Henry Ford uses in designing an automobile. …The goal
of theoretical physics and chemistry must ever be to explain observable rather
than unobservable phenomena …What the physicist observes about an atom is
primarily its radiations …We may say that we have a sound atomic theory when
we have a set of a small number of mathematical postulates from which these
observed things can be calculated correctly, even though it forces us to discard
the usual space-time models (Van Vleck, 1929, p. 468).

Van Vleck was thus ready enough to give up orbits once Heisenberg had shown the
way. He failed to take this step on his own.

210 According to Assmus (1992, pp. 8, 15), Americans had a tendency to follow Sommerfeld rather than
Bohr anyway.
211 In the biographical note written for the AHQP, Van Vleck wrote: “I suspect that Bridgman’s operatio-
nal philosophy may have subconsciously influenced my approach to theoretical physics.” At a ceremony
honoring Bridgman’s 1946 Nobel prize, Slater went as far as suggesting a genetic link between Bridgman’s
operationalism and Heisenberg’s uncertainty principle! Schweber (1990) quotes Slater as saying on this
occasion: “It is very likely that this principle, so much like Bridgman’s attitude, is actually derived to a very
considerable extent from Bridgman’s thinking” (p. 391).
212 For the benefit of the chemists, Van Vleck (1929) compared a matrix to a baseball schedule: “the entry
in row 3 and column 2, for instance, gives information about a transition between a 3 and 2 quantum state,
just as the analogous baseball entry does about the meetings between teams 3 and 2” (p. 469).
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The study of Van Vleck’s paper illuminates various aspects of the transition from the
old quantum theory to matrix mechanics that tend to get obscured when one approaches
these developments through, say, (Kramers and Heisenberg, 1925). Most importantly
perhaps, following (Van Vleck, 1924b,c) rather than (Kramers and Heisenberg, 1925)
or (Born, 1924), we were able to give a transparent and explicit version of the derivation
needed to show that the crucial Kramers dispersion formula reduces to the classical
formula in the limit of high quantum numbers (see Sects. 5.1–5.2 for the special
case of a simple harmonic oscillator, Sect. 6.2 for the generalization to arbitrary non-
degenerate multiply-periodic systems, and Sect. 7.1 for a closely analogous derivation
of the Kramers formula in modern quantum mechanics). That Van Vleck confirmed
the Kramers dispersion formula without relying on the Bohr–Kramers–Slater (BKS)
theory makes it particularly clear that matrix mechanics grew directly out of dispersion
theory and that BKS was mainly a sideshow (see Sect. 4). The only element of the
BKS theory used by Van Vleck is the concept of virtual oscillators. We saw that this
concept actually predates BKS. ‘Virtual oscillators’ was Bohr’s new name for the
substitute oscillators introduced into dispersion theory the year before and at Bohr’s
suggestion by Ladenburg and Reiche (1923). In addition to popularizing the notion
of virtual oscillators, BKS may have contributed to instilling skepticism about the
electron orbits of the Bohr–Sommerfeld theory. In that sense, it might have helped
Van Vleck had he embraced BKS more wholeheartedly. Overall, however, we argued
that BKS played only a limited role in the breakthrough to matrix mechanics. The
broad acceptance of Einstein’s light-quantum concept following the discovery of the
Compton effect played no role in this development. Physicists working in dispersion
theory, while accepting the Compton effect as decisive evidence for light quanta,
happily continued to treat light as a wave phenomenon.

What was it about dispersion theory that made it so important for the transition from
the Bohr–Sommerfeld theory to the theory of Heisenberg’s Umdeutung paper? As we
suggested in the introduction of Sect. 3, the answer is that the discrepancy between
orbital frequencies and radiation frequencies—one of the most radical, if not the most
radical aspect of the Bohr model of the atom—manifested itself glaringly and unavoi-
dably in dispersion theory. The natural approach to adapting the successful classical
dispersion theory of Helmholtz, Lorentz and Drude to Bohr’s new theory inevitably
led to a dispersion formula with resonance poles at the orbital frequencies (Sommer-
feld, 1915b, Debye, 1915, Davisson, 1916, Epstein, 1922), whereas experiment clearly
indicated that the resonance poles should be at the radiation frequencies, associated
in Bohr’s theory with transitions between orbits. Employing Einstein’s A and B coef-
ficients and Bohr’s correspondence principle (in conjunction with techniques from
celestial mechanics customized to the problems at hand) and building on pioneering
work by Ladenburg (1921) and Ladenburg and Reiche (1923), Kramers (1924a,b)
constructed a quantum formula for dispersion with resonance poles at the transition
frequencies rather than at the orbital frequencies and claimed that this formula merged
with the classical formula in the limit of high quantum numbers. Van Vleck (1924b,c)
and Born (1924) were the first to publish an explicit proof that the Kramers quantum
formula does indeed merge with the classical formula for dispersion in a general non-
degenerate multiply-periodic system in the correspondence limit. The three key moves
in translating the classical formula into a quantum-theoretical one were to (1) replace
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orbital frequencies by transition frequencies; (2) relate amplitudes to Einstein’s A
coefficients; and (3) replace derivatives with respect to the action variable by difference
quotients. The first move goes back to the embryonic version of the correspondence
principle in (Bohr, 1913) (Heilbron and Kuhn, 1969, pp. 274–275). Ladenburg (1921)
introduced the second move. It was made more precise by Kramers and Van Vleck
(cf. Jordan’s remarks quoted in Sect. 2.4). Born (1924) is usually credited with the third
move and the rule for replacing derivatives by difference quotients is sometimes even
called “Born’s correspondence rule” (Jammer, 1966, p. 193) or “Born’s discretizing
rule” (Cassidy, 1991, p. 181). It was found independently, however, by both Kramers
and Van Vleck (see the discussion at the end of Sect. 5.2).

The Kramers dispersion formula no longer contains any reference to the orbits of
the Bohr–Sommerfeld theory, but only to transitions between them. This signaled to
Heisenberg that orbits could be dispensed with altogether. Dispersion theory further
told Heisenberg how to generate quantum formulae from classical formulae in his
Umdeutung scheme. The procedure consisted of the same three moves listed above:
one had to replace (1) classical frequencies (more specifically: the Fourier overtones
of the classical mechanical motion) by quantum transition frequencies; (2) classical
amplitudes associated with definite orbits by quantum transition amplitudes associated
with pairs of stationary states; and (3) derivatives by difference quotients.213 Disper-
sion theory also furnished the fundamental quantization condition for Heisenberg’s
new theory. Heisenberg formulated this condition by applying his Umdeutung pro-
cedure to the Bohr–Sommerfeld quantum condition, which was no longer acceptable
because of its explicit reference to orbits. That Heisenberg’s new condition also emer-
ged in the high-frequency limit of the Kramers dispersion formula (see Sect. 7.1)
convinced him that he had found a sensible replacement for the Bohr–Sommerfeld
condition. The relevant formula had been found in quantum dispersion theory before
and was known as the Thomas–Kuhn(–Reiche) sum rule (Thomas, 1925, Kuhn, 1925,
Reiche and Thomas, 1925). Van Vleck actually had been the first to find this rule, even
though he did not emphasize the result because he thought it was problematic (see
Sect. 3.5). In his later years, Van Vleck nonetheless used to mention this achievement
with pride to several of his colleagues (Roger Stuewer, private communication). The
Kramers dispersion formula and the Thomas–Kuhn sum rule are the critical physical
ingredients in the first two sections of (Heisenberg, 1925), in which the Umdeutung
procedure is motivated. Van Vleck was fully cognizant of these same ingredients by
mid-1924. Van Vleck can thus truly be said to have been on the verge of Umdeutung
in Minnesota in the summer of 1924.

Acknowledgements We are grateful to the following institutions, as repositories of original documents
and owners of literary rights, and descendants of physicists discussed in our paper, as owners of literary
rights, for permission to quote from unpublished materials available on microfilm as part of the Archive for
History of Quantum Physics (AHQP): Niels Bohr Library & Archives, American Institute of Physics (AIP),
College Park, MD, USA (literary rights to Van Vleck’s writings), American Philosophical Society (APS),

213 Another factor in Van Vleck’s failure to take the next step might have been that he used these
correspondence-principle replacements to check rather than to construct quantum formulae. However, even
though Born had emphasized the constructive use of these replacements (see Sect. 5.2), he did not do what
Heisenberg did either.

123



On the verge of Umdeutung in Minnesota - Part two 669

Philadelphia, PA, USA (repository for AHQP interviews and letters from Born, Slater, and Van Vleck;
literary rights to Slater’s writings), Niels Bohr Archive, Copenhagen, Denmark (repository for letters from
Kramers, Ladenburg, Reiche, and Van Vleck), Gustav Born, Jochen Heisenberg, Martine Kramers, Agnete
Kuiper-Kramers, Suus Perk-Kramers, Eva Ladenburg Mayer, and Eva Reiche Bergmann. We also want
to thank Finn Aaserud (Niels Bohr Archive), Joe Anderson (AIP), Charles Greifenstein (APS), and Urs
Schoepflin (Max Planck Institut für Wissenschaftsgeschichte) for their help in securing these permissions.

References

Aitchison, I. J. R., D. A. McManus, and T. M. Snyder (2004). Understanding Heisenberg’s “magical” paper
of July 1925: A new look at the calculational details. American Journal of Physics 72: 1370–1379.

Assmus, A. (1992). The Americanization of molecular physics. Historical Studies in the Physical and
Biological Sciences 23: 1–34.

Baym, G. (1969). Lectures on quantum mechanics. Reading, MA: Addison-Wesley.
Bohr, N. (1913). On the constitution of atoms and molecules (Part I). Philosophical Magazine 26: 1–25.
Bohr, N. (1972–1996). Collected works. 9 Vols. Edited by L. Rosenfeld et al. Amsterdam: North-Holland.
Bohr, N., H. A. Kramers, and J. C. Slater (1924). The quantum theory of radiation. Philosophical Magazine

47: 785–802. Page references to reprint in (Van der Waerden, 1968, pp. 159–176).
Born, M. (1924). Über Quantenmechanik. Zeitschrift für Physik 26: 379–395. Page references are to the

English translation in (Van der Waerden, 1968, pp. 181–198).
Born, M. (1925). Vorlesungen über Atommechanik. Berlin: Springer.
Born, M., and P. Jordan (1925). Zur Quantenmechanik. Zeitschrift für Physik 34: 858–888. English trans-

lation in (Van der Waerden, 1968, pp. 277–306).
Born, M., and P. Jordan (1930). Elementare Quantenmechanik. Berlin: Springer.
Born, M., W. Heisenberg, and P. Jordan (1925). Zur Quantenmechanik II. Zeitschrift für Physik 35: 557–615.

English translation in (Van der Waerden, 1968, pp. 321–385).
Bridgman, P. W. (1927). The logic of modern physics. New York: MacMillan.
Cassidy, D. C. (1991). Uncertainty. The life and science of Werner Heisenberg. New York: Freeman.
Davisson, C. J. (1916). The dispersion of hydrogen and helium on Bohr’s theory. Physical Review 8: 20–27.
Debye, P. (1915). Die Konstitution des Wasserstoff-moleküls. Sitzungsberichte der mathematisch-

physikalischen Klasse der Königlichen Bayerischen Akademie der Wissenschaften zu München. 1–26.
Dirac, P. A. M. (1925). The fundamental equations of quantum mechanics. Proceedings of the Royal Society

of London A109: 642–653.
Dirac, P. A. M. (1927). The quantum theory of dispersion. Proceedings of the Royal Society of London

A114: 710–728.
Dresden, M. (1987). H.A.Kramers: between tradition and revolution. New York: Springer.
Einstein, A. (1916a). Strahlungs-Emission und -Absorption nach der Quantentheorie. Deutsche Physi-

kalische Gesellschaft. Verhandlungen 18: 318–323. Reprinted in facsimile as Doc. 34 in (Einstein,
1987–2004, Vol. 6).

Einstein, A. (1916b). Zur Quantentheorie der Strahlung. Physikalische Gesellschaft Zürich. Mitteilungen
18: 47–62. Reprinted as (Einstein, 1917) and (in facsimile) as Doc. 38 in (Einstein, 1987–2004, Vol.
6).

Einstein, A. (1917). Zur Quantentheorie der Strahlung. Physikalische Zeitschrift 18: 121–128. Reprint of
(Einstein, 1916b). English translation in (Van der Waerden, 1968, pp. 63–77).

Einstein, A. (1987–2004). The collected papers of Albert Einstein. 9 Vols. Edited by J. Stachel et al.
Princeton: Princeton University Press.

Epstein, P. S. (1922). Die Störungsrechnung im Dienste der Quantentheorie. III. Kritische Bemerkungen
zur Dispersionstheorie. Zeitschrift für Physik 9: 92–110.

Fellows, F. H. (1985). J.H.Van Vleck: The early life and work of a mathematical physicist. Ph.D. Thesis,
University of Minnesota.

Feynman, R. P., R. B. Leighton, and M. Sands (1964). The Feynman lectures on physics. 3 Vols. Reading,
MA: Addison-Wesley.

Goldstein, H. (1980). Classical mechanics. 2nd ed. Reading, MA: Addison-Wesley.
Heilbron, J. L., and T. S. Kuhn (1969). The genesis of the Bohr atom. Historical Studies in the Physical

Sciences 1: 211–290.

123



670 A. Duncan, M. Janssen

Heisenberg, W. (1925). Über die quantentheoretische Umdeutung kinematischer und mechanischer Bezie-
hungen. Zeitschrift für Physik 33: 879–893. English translation in (Van der Waerden, 1968, pp. 261–
276). Page references are to this volume.

Jackson, J. D. (1975). Classical electrodynamics. 2nd ed. New York: Wiley.
Jammer, M. (1966). The conceptual development of quantum mechanics. New York: McGraw-Hill.
Kramers, H. A. (1924a). The law of dispersion and Bohrs theory of spectra. Nature 113: 673–676. Reprinted

in (Van der Waerden, 1968, pp. 177–180).
Kramers, H. A. (1924b). The quantum theory of dispersion. Nature 114: 310–311. Reprinted in (Van der

Waerden, 1968, pp. 199–201).
Kramers, H. A., and W. Heisenberg (1925). Über die Streuung von Strahlung durch Atome. Zeitschrift für

Physik 31: 681–707. English translation in (Van der Waerden, 1968, pp. 223–252).
Kretschmann, E. (1917). Über den physikalischen Sinn der Relativitätspostulate. A. Einsteins neue und

seine ursprüngliche Relativitätstheorie. Annalen der Physik 53: 575–614.
Kretschmann, E. (1921). Über die Wirkung des Planckschen Oszillators auf die spektrale Energieverteilung

des Strahlungsfeldes. Annalen der Physik 65: 310–334.
Kuhn, W. (1925). Über die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien.

Zeitschrift für Physik 33: 408–412. English translation in (Van der Waerden, 1968, pp. 253–257).
Ladenburg, R. (1921). Die quantentheoretische Deutung der Zahl der Dispersionselektronen. Zeitschrift für

Physik 4: 451–468. English translation in (Van der Waerden, 1968, pp. 139–157).
Ladenburg, R. (1928). Untersuchungen über die anomale Dispersion angeregter Gase. I. Teil. Zur Prüfung

der quantentheoretischen Dispersionsformel. Zeitschrift für Physik 48: 15–25.
Ladenburg, R., and F. Reiche (1923). Absorption, Zerstreuung und Dispersion in der Bohrschen Atomtheo-

rie. Die Naturwissenschaften 11: 584–598.
Landé, A. (1926). Neue Wege der Quantentheorie. Die Naturwissenschaften 14: 455–458.
Matzner, R. A., and L. C. Shepley (1991). Classical Mechanics. Englewood Cliffs, NJ: Prentice Hall.
MacKinnon, E. M. (1977). Heisenberg, models, and the rise of matrix mechanics. Historical Studies in the

Physical Sciences 8: 137–188.
Mehra, J., and H. Rechenberg (1982–2001). The historical development of quantum theory. 6 Vols. New

York, Berlin: Springer.
Planck, M. (1921). Vorlesungen über die Theorie der Wärmestrahlung. 4th ed. Leipzig: Barth.
Reiche, F., and W. Thomas (1925). Über die Zahl der Dispersionselektronen, die einem stationären Zustand

zugeordnet sind. Zeitschrift für Physik 34: 510–525.
Schrödinger, E. (1926). Quantisierung als Eigenwertproblem (Vierte Mitteilung). Annalen der Physik 81:

109–139. English translation on pp. 102–123 of E. Schrödinger, Collected papers on wave mechanics
(London: Blackie & Son, 1928).

Schweber, S. S. (1986). The empiricist temper regnant: Theoretical physics in the United States 1920–1950.
Historical Studies in the Physical and Biological Sciences 17: 55–98.

Schweber, S. S. (1990). The young John Clarke Slater and the development of quantum chemistry. Historical
Studies in the Physical and Biological Sciences 20: 339–406.

Smekal, A. (1923). Zur Quantentheorie der Dispersion. Die Naturwissenschaften 11: 873–875.
Sommerfeld, A. (1915). Die allgemeine Dispersionsformel nach dem Bohrschen Model. pp. 549–584 in:

K. Bergwitz (ed.), Festschrift Julius Elster und Hans Geitel. Braunschweig. Reprinted on pp. 136–171
of Vol. 3 of: F. Sauter (ed.), Arnold Sommerfeld: Gesammelte Schriften. 4 Vols. Edited by F. Sauter.
Braunschweig: Vieweg, 1968.

Sopka, K. R. (1988). Quantum physics in America. The years through 1935. Tomash Publishers/American
Institute of Physics.

Thomas, W. (1925). Über die Zahl der Dispersionselektronen, die einem stationären Zustande zugeordnet
sind (Vorläufige Mitteillung). Die Naturwissenschaften 13: 627.

Van der Waerden, B. L., ed. (1968). Sources of quantum mechanics. New York: Dover.
Van Vleck, J. H. (1922). The normal helium atom and its relation to the quantum theory. Philosophical

Magazine 44: 842–869.
Van Vleck, J. H. (1924a). A correspondence principle for absorption. Journal of the Optical Society of

America 9: 27–30.
Van Vleck, J. H. (1924b). The absorption of radiation by multiply periodic orbits, and its relation to the

correspondence principle and the Rayeigh-Jeans law. Part I. Some extensions of the correspondence
principle. Physical Review 24: 330–346. Reprinted in (Van der Waerden, 1968, pp. 203–222).

123



On the verge of Umdeutung in Minnesota - Part two 671

Van Vleck, J. H. (1924c). The absorption of radiation by multiply periodic orbits, and its relation to the
correspondence principle and the Rayeigh-Jeans law. Part II. Calculation of absorption by multiply
periodic orbits. Physical Review 24: 347–365.

Van Vleck, J. H. (1926). Quantum principles and line spectra. Washington, D. C.: National Research
Council (Bulletin of the National Research Council 10, Part 4).

Van Vleck, J. H. (1928). The correspondence principle in the statistical interpretation of quantum mechanics.
Proceedings of the National Academy of Sciences 14: 178–188.

Van Vleck, J. H. (1929). The new quantum mechanics. Chemical Reviews 5: 467–507.
Van Vleck, J. H. (1974). Acceptance speech. Koninklijke Nederlandse Akademie van Wetenschappen. Bij-

zondere bijeenkomst der afdeling natuurkunde …28 september 1974 …voor de plechtige uitreiking
van de Lorentz-medaille aan Prof. Dr. J. H. Van Vleck.

Van Vleck, J. H., and D. L. Huber (1977). Absorption, emission, and line breadths: A semihistorical
perspective. Reviews of Modern Physics 49: 939–959.

123



ar
X

iv
:1

20
1.

09
81

v1
  [

ph
ys

ic
s.

hi
st

-p
h]

  4
 J

an
 2

01
2

String Theory 1

THE EARLY HISTORY OF

STRING THEORY AND SUPERSYMMETRY
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California Institute of Technology

Pasadena, CA 91125, USA

Abstract

This lecture presents a brief overview of the early history of string theory and

supersymmetry. It describes how the S-matrix theory program for understand-

ing the strong nuclear force evolved into superstring theory, which is a promising

framework for constructing a unified quantum theory of all forces including grav-

ity. The period covered begins with S-matrix theory in the mid 1960s and ends

with the widespread acceptance of superstring theory in the mid 1980s. Further

details and additional references can be found in Schwarz (2007).

1 S-Matrix Theory

In UC Berkeley, where I was a graduate student in the mid 1960s, Geoffrey Chew (my thesis

advisor), Stanley Mandelstam, and others focussed their efforts on constructing a theory of

the strong nuclear force, i.e., a theory of hadrons. Chew’s approach to understanding the

strong nuclear force was based on S-matrix theory. He argued that quantum field theory,

which was so successful in describing QED, was inappropriate for describing a strongly in-

teracting theory, where a weak-coupling perturbation expansion would not be useful. One

reason for holding this view was that none of the hadrons seemed more fundamental than

any of the others. Therefore a field theory that singled out some subset of the hadrons did

not seem sensible. Also, it seemed impossible to formulate a quantum field theory with a

fundamental field for every hadron. Chew spoke of nuclear democracy and the bootstrap

principle to describe this situation. Chew advocated focussing attention on physical quanti-

ties, especially the S Matrix, which describes on-mass-shell scattering amplitudes. The goal

was to develop a theory that would determine the hadron spectrum and hadronic S matrix.

The quark concept also arose during this period, but the prevailing opinion in the mid

1960s was that quarks are mathematical constructs, rather than physical entities, whose main

use is as a mathematical technique for understanding symmetries and quantum numbers. The

SLAC deep inelastic scattering experiments in the late 1960s made it clear that quarks and

gluons are physical (confined) particles. It was then natural to try to base a quantum field

theory on them, and QCD was developed a few years later with the discovery of asymptotic

freedom. Thus, with the wisdom of hindsight, it is clear that Chew et al. were wrong to

reject quantum field theory. Nonetheless, their insights were very influential, perhaps even

http://arxiv.org/abs/1201.0981v1
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crucial, for the discovery of string theory, which can be regarded as the ultimate realization

of the S-Matrix program.

Some of the ingredients that went into the S-matrix theory program, such as unitarity

and maximal analyticity of the S matrix, were properties (deduced from quantum field

theory) that encode the requirements of causality and nonnegative probabilities. Another

important ingredient was analyticity in angular momentum. The idea is that partial wave

amplitudes al(s), which are defined in the first instance for angular momenta l = 0, 1, . . .,

can be extended to an analytic function of l, a(l, s). The uniqueness of this extension results

from imposing suitable asymptotic behavior in l. The Mandelstam invariant s is the square

of the center-of-mass energy of the scattering reaction. The analytic function a(l, s) can

have isolated poles called Regge poles. (Branch points are also possible, but they are usually

ignored.) The position of a Regge pole is given by a Regge trajectory l = α(s). A value of s

for which l = α(s) takes a physical value corresponds to a physical hadron of spin l.

Theoretical work in this period was strongly influenced by experimental results. Many

new hadrons were discovered in experiments at the Bevatron in Berkeley, the AGS in

Brookhaven, and the PS at CERN. Plotting masses squared versus angular momentum

(for fixed values of other quantum numbers), it was noticed that the Regge trajectories are

approximately linear with a common slope

α(s) = α(0) + α′s α′ ∼ 1.0 (GeV)−2 .

Using the crossing-symmetry properties of analytically continued scattering amplitudes, one

argued that exchange of Regge poles (in the t channel) controlled the high-energy, fixed

momentum transfer, asymptotic behavior of physical amplitudes:

A(s, t) ∼ β(t)(s/s0)
α(t) s→ ∞, t < 0.

In this way one deduced from data that the intercept of the ρ trajectory, for example, was

αρ(0) ∼ .5. This is consistent with the measured mass mρ = .76GeV and the Regge slope

α′ ∼ 1.0 (GeV)−2.

The approximation of linear Regge trajectories describes long-lived resonances, whose

widths are negligible compared to their masses. This approximation is called the narrow

resonance approximation. In this approximation branch cuts in scattering amplitudes, whose

branch points correspond to multiparticle thresholds, are approximated by a sequence of

resonance poles. This is what one would expect in the tree approximation to a quantum

field theory in which all the resonances appear as fundamental fields. However, there was

also another discovery, called duality, which clashed with the usual notions of quantum field

theory. In this context duality means that a scattering amplitude can be expanded in an

infinite series of s-channel poles, and this gives the same result as its expansion in an infinite

series of t-channel poles. To include both sets of poles, as usual Feynman diagram techniques

might suggest, would amount to double counting.
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2 The Discovery of String Theory

Veneziano (1968) discovered a simple analytic formula that exhibits duality with linear Regge

trajectories. It is given by a sum of ratios of Euler gamma functions:

T = A(s, t) + A(s, u) + A(t, u), where A(s, t) = g2
Γ(−α(s))Γ(−α(t))

Γ(−α(s)− α(t))
,

g is a coupling constant, and α is a linear Regge trajectory

α(s) = α(0) + α′s.

The Veneziano formula gives an explicit realization of duality and Regge behavior in the

narrow resonance approximation. The function A(s, t) can be expanded as an infinite series

of s-channel poles or of t-channel poles. The motivation for writing down this formula was

largely phenomenological, but it turned out that formulas of this type describe scattering

amplitudes in the tree approximation to a consistent quantum theory!

A generalization to incorporate adjoint SU(N) quantum numbers was formulated by

Paton and Chan (1969). Chan–Paton symmetry was initially envisaged to be a global (flavor)

symmetry, but it was shown later to be a local gauge symmetry.

Very soon after the appearance of the Veneziano amplitude, Virasoro (1969) proposed an

alternative formula

T = g2
Γ(−1

2
α(s))Γ(−1

2
α(t))Γ(−1

2
α(u))

Γ(−1
2
α(t)− 1

2
α(u))Γ(−1

2
α(s)− 1

2
α(u))Γ(−1

2
α(s)− 1

2
α(t))

,

which has similar virtues. Since this formula has total stu symmetry, it describes particles

that are singlets of the Chan–Paton symmetry group.

Over the course of the next year or so, dual models, as the subject was then called,

underwent a sudden surge of popularity, marked by several remarkable discoveries. One was

the discovery (by several different groups) of an N -particle generalization of the Veneziano

formula

AN(k1, k2, . . . , kN) = gN−2
open

∫

dµN(y)
∏

i<j

(yi − yj)
α′ki·kj ,

where y1, y2, . . . , yN are real coordinates. I will omit the description of the measure dµN(y),

which can be found in Schwarz (2007). This formula has cyclic symmetry in the N external

lines. Soon thereafter Shapiro (1970) formulated an N -particle generalization of the Virasoro

formula:

AN(k1, k2, . . . , kN) = gN−2
closed

∫

dµN(z)
∏

i<j

|zi − zj |
α′ki·kj ,

where z1, z2, . . . , zN are complex coordinates. This amplitude has total symmetry in the N

external lines.

Both of these formulas for multiparticle amplitudes were shown to have poles whose

residues factorize in a consistent manner on an infinite spectrum of single-particle states.
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This spectrum is described by a Fock space associated to an infinite number of harmonic

oscillators

{aµm} µ = 0, 1, . . . , d− 1 m = 1, 2, . . .

where d is the dimension of Minkowski spacetime, which was initially assumed to be four.

There is one set of such oscillators in the Veneziano case and two sets in the Shapiro–Virasoro

case. These spectra were interpreted as describing the normal modes of a relativistic string:

an open string (with ends) in the first case and a closed string (loop) in the second case.

Amazingly, the formulas were discovered before this interpretation was proposed. In the

above formulas, the y coordinates parametrize points on the boundary of a string world

sheet, where particles that are open-string states are emitted or absorbed, whereas the z

coordinates parametrize points on the interior of a string world sheet, where particles that

are closed-string states are emitted or absorbed. (It is also possible to construct amplitudes

in which both types of particles participate.)

Having found the factorization, it became possible to compute radiative corrections (loop

amplitudes). Gross, Neveu, Scherk, and Schwarz (1970) discovered unanticipated singulari-

ties in a particular one-loop diagram for which the world sheet is a cylinder with two external

particles attached to each of the two boundaries. The computations showed that this dia-

gram gives branch points that violate unitarity. This was a very disturbing conclusion, since

it seemed to imply that the classical theory does not have a consistent quantum extension.

However, soon thereafter it was pointed out by Lovelace (1971) that these branch points

become poles provided that

α(0) = 1 and d = 26.

Prior to this discovery, everyone assumed that the spacetime dimension should be d = 4.

We had no physical reason to consider extra dimensions. It was the mathematics that forced

us in that direction. Later, these poles were interpreted as closed-string states in a one-loop

open-string amplitude. Nowadays this is referred to as open-string/closed-string duality.

This is closely related to gauge/gravity duality, which was discovered 27 years later.

The analysis also required there to be an infinite number of decoupling conditions, which

turned out to coincide with the constraints proposed by Virasoro (1970) and further elab-

orated upon by Fubini and Veneziano (1971). Since the string has an infinite spectrum

of higher-spin states, there are corresponding gauge invariances that eliminate unphysical

degrees of freedom. The operators that describe the constraints that arise for a particular

covariant gauge choice satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n,

where m,n are arbitrary integers. These operators can also be interpreted as generators

of conformal symmetry for the two-dimensional string world sheet. The central charge (or

conformal anomaly) c is equal to the spacetime dimension d. This anomaly cancels for d = 26

when the contribution of Faddeev–Popov ghosts is included.
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3 The RNS Model and the Discovery of Supersymme-

try

In a very inspired and important development, Ramond (1971) constructed a stringy analog

of the Dirac equation, which describes a fermionic string. Just as the string momentum pµ

is the zero mode of a density P µ(σ), where the coordinate σ parametrizes the string, he

proposed that the Dirac matrices γµ should be the zero modes of densities Γµ(σ). Then he

considered the Fourier modes of the dot product:

Fn =

∫ 2π

0

e−inσΓ(σ) · P (σ)dσ n ∈ Z.

In particular,

F0 = γ · p+ additional terms.

He proposed that physical states of a fermionic string should satisfy the following analog of

the Dirac equation

(F0 +M)|ψ〉 = 0.

He also observed that in the case of the fermionic string the Virasoro algebra generalizes to

a super-Virasoro algebra

{Fm, Fn} = 2Lm+n +
c

3
m2δm,−n

[Lm, Fn] = (
m

2
− n)Fm+n

[Lm, Ln] = (m− n)Lm+n +
c

12
m3δm,−n.

Ramond’s paper does not include the central extension, which turns out to be c = 3d/2,

where d is the spacetime dimension. A little later, it was realized that consistency requires

d = 10 and M = 0. These conditions are the analogs of d = 26 and α(0) = 1 for the bosonic

Veneziano string theory.

A couple of months later Neveu and Schwarz (1971a) constructed a new interacting

bosonic string theory, which was called the dual pion model. It has a similar structure

to the fermionic string, but the periodic density Γµ(σ) is replaced by an antiperiodic one

Hµ(σ + 2π) = −Hµ(σ). Then the Fourier modes, which differ from an integer by 1/2,

Gr =

∫ 2π

0

e−irσH · Pdσ r ∈ Z+ 1/2

satisfy a similar super-Virasoro algebra. Neveu and Schwarz (1971a) refers to this algebra as

a supergauge algebra, a terminology that was sensible in the context at hand. The Neveu–

Schwarz bosons and Ramond fermions were combined in a unified interacting theory of

bosons and fermions by Neveu and Schwarz (1971b) and by Thorn (1971). This theory (the

RNS model) was an early version of superstring theory. As will be explained shortly, a few

crucial issues were not yet understood.
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After a few more months, Gervais and Sakita (1971) showed that the the RNS model is

described by the string world-sheet action

S = T

∫

dσdτ
(

∂αX
µ∂αXµ − iψ̄µγα∂αψµ

)

,

where the coefficient T is the string tension. They also explained that it has two-dimensional

supersymmetry, though that terminology was not used yet, by showing that it is invariant

under the transformations

δXµ = ε̄ψµ, δψµ = −iγαε∂αX
µ,

where ε is an infinitesimal constant spinor. To the best of my knowledge, this is the first

supersymmetric theory identified in the literature! There are two possibilities for the world-

sheet fermi fields ψµ. When it is antiperiodic ψµ = Hµ, which gives the boson spectrum

(Neveu–Schwarz sector), and when it is periodic ψµ = Γµ, which gives the fermion spectrum

(Ramond sector).

Five years later, Brink, Di Vecchia, and Howe (1976) and Deser and Zumino (1976) con-

structed a more fundamental world-sheet action with local supersymmetry. This formulation

of the world-sheet theory has the additional virtue of also accounting for the super-Virasoro

constraints. From this point of view, the significance of the super-Virasoro algebra is that the

world-sheet theory, when properly gauge fixed and quantized, has superconformal symmetry.

Again, the anomaly cancels for d = 10 when the Faddeev–Popov ghosts are included.

At about the same time as Ramond’s paper, the four-dimensional super-Poincaré algebra

was introduced in a paper by Golfand and Likhtman (1971), who proposed constructing 4d

field theories with this symmetry. This paper went unnoticed in the West for several more

years. In fact, the celebrated paper of Wess and Zumino (1974), which formulated a class of

4d supersymmetric theories, was motivated by the search for 4d analogs of the 2d Gervais–

Sakita world-sheet action. The Wess-Zumino paper launched the study of supersymmetric

field theories, which proceeded in parallel with the development of supersymmetric string

theory. Wess and Zumino (1974) used the expression supergauge, following the terminology of

Neveu and Schwarz (1971), but in their subsequent papers they switched to supersymmetry,

which was more appropriate for what they were doing.

4 The Temporary Demise of String Theory

String theory is formulated as an on-shell S-matrix theory in keeping with its origins dis-

cussed earlier. However, the SLAC deep inelastic scattering experiments in the late 1960s

made it clear that the hadronic component of the electromagnetic current is a physical

off-shell quantity, and that its asymptotic properties imply that hadrons have hard point-

like constituents. Moreover, all indications (at that time) were that strings are too soft to

describe hadrons with their pointlike constituents.
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By 1973–74 there were many good reasons to stop working on string theory: a success-

ful and convincing theory of hadrons (QCD) was discovered, and string theory had severe

problems as a theory of hadrons. These included an unrealistic spacetime dimension (d = 10

or d = 26), an unrealistic spectrum (including a tachyon and massless particles), and the

absence of pointlike constituents. A few years of attempts to do better had been unsuccess-

ful. Moreover, convincing theoretical and experimental evidence for the Standard Model was

rapidly falling into place. That was where the action was. Even for those seeking to pursue

speculative theoretical ideas there were options other than string theory that most people

found more appealing, such as grand unification and supersymmetric field theory. Under-

standably, string theory fell out of favor. What had been a booming enterprise involving

several hundred theorists rapidly came to a grinding halt. Only a few diehards continued to

pursue it.

5 Gravity and Unification

Among the problems of the known string theories, as a theory of hadrons, was the fact

that the spectrum of open strings contains massless spin 1 particles, and the spectrum of

closed strings contains a massless spin 2 particle (as well as other massless particles), but

there are no massless hadrons. In 1974, Joël Scherk and I decided to take string theory

seriously as it stood, rather than forcing it to conform to our preconceptions. This meant

abandoning the original program of describing hadron physics and interpreting the massless

spin 2 state in the closed-string spectrum as a graviton. Also, the massless spin 1 states in

the open-string spectrum could be interpreted as particles associated to Yang–Mills gauge

fields. Specifically, Scherk and Schwarz (1974) proposed trying to interpret string theory as a

unified quantum theory of all forces including gravity. Neveu and Scherk (1972) had shown

that string theory incorporates the correct gauge invariances to ensure agreement at low

energies (compared to the scale given by the string tension) with Yang–Mills theory. Yoneya

(1973,1974) and Scherk and Schwarz (1974) showed that it also contains gauge invariances

that ensure agreement at low energies with general relativity.

To account for Newton’s constant, the most natural choice for the fundamental string

length scale was ls ∼ 10−33 cm (the Planck length) instead of ls ∼ 10−13 cm (the typical

size of a hadron). Thus the strings suddenly shrank by 20 orders of magnitude, but the

mathematics was essentially unchanged. The string tension is proportional to l−2
s , so it

increased by 40 orders of magnitude.

The proposed new interpretation had several advantages:

• Gravity and Yang–Mills forces are required by string theory.

• String theory has no UV divergences.

• Extra spatial dimensions could be a good thing.

Let me say a few words about the last point. In a nongravitational theory, the spacetime

geometry is a rigid background on which the dynamics takes place. In that setup, the fact
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that we observe four-dimensional Minkowski spacetime is a compelling argument to formulate

the theory in that background geometry. As you know very well, this is part of the story of

the Standard Model. However, in a gravitational theory that abides by the general principles

laid out by Einstein, the spacetime geometry is determined by the dynamical equations. In

such a setup extra dimensions can make sense provided that the equations of the theory have

a solution for which the geometry is the product of four-dimensional Minkowski spacetime

and a compact manifold that is sufficiently small to have eluded detection. It turns out that

there are many such solutions. Moreover, the details of the compact manifold play a crucial

role in determining the symmetries and particle content of the effective low-energy theory in

four dimensions, even when the compact dimensions are much too small to observe directly.

6 Supersymmetry, Supergravity, and Superstrings

In the second half of the 1970s the study of supersymmetric field theories become a ma-

jor endeavor. A few important supersymmetric theories that were formulated in that era

included

• N = 1, d = 4 supergravity, discovered by Freedman, Van Nieuwenhuizen, and Ferrara

(1976) and Deser and Zumino (1976).

• N = 1, d = 10 and N = 4, d = 4 supersymmetric Yang–Mills theory discovered by Brink,

Scherk, and Schwarz (1977) and Gliozzi, Scherk, and Olive (1977).

• N = 1, d = 11 supergravity discovered by Cremmer, Julia and Scherk (1978).

Gliozzi, Scherk, and Olive (1976, 1977) proposed a truncation of the RNS string theory

spectrum – the GSO Projection – that removes half of the fermion states and the “odd G-

parity” bosons. In particular, the latter projection eliminates the tachyon. They showed

that after the projection the number of physical bosonic degrees of freedom is equal to the

number of physical fermionic degrees of freedom at every mass level. This was compelling

evidence for ten-dimensional spacetime supersymmetry of the GSO-projected theory. Prior

to this, we knew about the supersymmetry of the two-dimensional string world-sheet theory,

but we had not considered the possibility of spacetime supersymmetry. In fact, the GSO

projection is not just an option; it is required for consistency.

In 1979 Michael Green and I began a collaboration, which had the initial goal of under-

standing and proving the ten-dimensional spacetime supersymmetry of the GSO-projected

version of the RNS theory. The highlights of our work included Green and Schwarz (1981,

1984a), which developed a new formalism in which the spacetime supersymmetry of the

GSO-projected RNS string is manifest, and Green and Schwarz (1982), which classified the

consistent ten-dimensional superstring theories and giving them the names Type I, Type

IIA, and Type IIB. We were excited about these (and other) developments, but they did not

arouse much interest in the theory community. String theory was still in the doldrums.

In the early 1980s there was growing interest in supersymmetry and extra dimensions. In

particular, a small community became intrigued by Kaluza–Klein reduction of 11-dimensional
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supergravity. Only the string ingredient was missing from their considerations. That changed

following our next discovery.

7 Anomalies

If a unified theory is to make contact with the Standard Model, and have a chance of be-

ing realistic, parity violation is an essential ingredient. However, parity-violating classical

theories generically have gauge anomalies, which means that they cannot be used to de-

fine quantum theories. The gauge symmetry is broken by one-loop quantum corrections,

rendering the would-be quantum theory inconsistent. In the case of the Standard Model,

if one were to change the theory by removing all of the leptons or all of the quarks, the

theory would become inconsistent. When both the quarks and the leptons are included all

gauge anomalies beautifully cancel, and so the Standard Model is a well-defined quantum

theory. These considerations raise the question whether the potential gauge anomalies in

chiral superstring theories also cancel, so that they give consistent quantum theories.

We knew that Type I superstring theory is a well-defined ten-dimensional theory at tree

level for any SO(n) or Sp(n) gauge group, and that for every such group it is chiral (i.e.,

parity violating). However, evaluation of a one-loop hexagon diagram in ten-dimensional

super Yang–Mills theory, which describes the massless open-string states, exhibits explicit

nonconservation of gauge currents, signalling a gauge anomaly. The only hope for consistency

is that inclusion of the closed-string (gravitational) sector cancels this gauge anomaly without

introducing new ones.

Type IIB superstring theory, which only has a closed-string gravitational sector, is also

chiral and therefore potentially anomalous. It was not known how to analyze such anomalies

until Alvarez-Gaumé and Witten (1984) derived general formulas for gauge, gravitational,

and mixed anomalies in an arbitrary spacetime dimension. Using their results, they dis-

covered that the gravitational anomalies, which would imply nonconservation of the stress

tensor, cancel in Type IIB superstring theory. In their calculation this cancellation appears

quite miraculous, though the UV finiteness of the Type IIB loop amplitudes implies that it

had to work. Thus, Type IIB is a consistent chiral superstring theory. On the other hand,

it did not look promising for describing the real world, since it does not contain any Yang–

Mills gauge fields. (Many years later, nonperturbative Type IIB solutions that do contain

Yang–Mills fields were discovered.) At that time, the last hope for constructing a realistic

model seemed to reside with the Type I superstring theories, which are chiral and do contain

Yang–Mills fields.

After a couple years of failed attempts, Green and I finally managed to compute the one-

loop hexagon diagrams in Type I superstring theory. We found that both the cylinder and

the Möbius-strip world-sheet diagrams contribute to the gauge anomaly and realized that

there might be a gauge group for which the two contributions cancel. Green and Schwarz

(1985) showed that SO(32) is the unique choice for which the cancellation occurs. Since this
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computation only demonstrated the cancellation of the pure gauge part of the anomaly, we

decided to explore the low-energy effective field theory to see whether the gravitational and

mixed anomalies also cancel. Using the results of Alvarez-Gaumé and Witten (1984), Green

and Schwarz (1984b) verified that all gauge, gravitational, and mixed anomalies do in fact

cancel for the gauge group SO(32).

The effective field theory analysis showed that E8 × E8 is a second (and the only other)

gauge group for which the anomalies could cancel for a theory with N = 1 supersymmetry

in ten dimensions. In both cases, it is crucial for the result that the coupling to supergravity

is included. The SO(32) case could be accommodated by Type I superstring theory, but we

didn’t know a superstring theory with gauge group E8×E8. We were aware of the article by

Goddard and Olive (1983) that pointed out (among other things) that there are exactly two

even self-dual Euclidean lattices in 16 dimensions, and these are associated with precisely

these two gauge groups. However, we did not figure out how to exploit this fact before the

problem was solved by Gross, Harvey, Martinec, and Rohm (1985).

8 Epilogue

Following these discoveries there was a sudden surge of interest in superstring theory. After

more than a decade, string theory had emerged from the doldrums. In my view, some of

the new converts made a phase transition from being too pessimistic about string theory to

being too optimistic about the near-term prospects for finding a realistic model. However,

after a few years, almost all practitioners had a much more sober assessment of the challenges

that remain. Superstring theory (including M-theory, which is part of the same theoretical

framework) has remained a very active subject ever since 1984. Even though the construc-

tion of a complete and realistic model of elementary particles still appears to be a distant

dream, the study of string theory has been enormously productive. For example, insights

derived from these studies have had a profound impact on fundamental mathematics and

are beginning to inspire new approaches to understanding topics in other areas of physics.

For many years string theory was considered to be a radical alternative to quantum

field theory. However, in recent times – long after the period covered by this lecture –

dualities relating string theory and quantum field theory were discovered. In view of these

dualities, my current opinion is that string theory is best regarded as the logical completion

of quantum field theory, and therefore it is not radical at all. There is still much that remains

to be understood, but I am convinced that we are on the right track and making very good

progress.

This work was supported in part by the U.S. Dept. of Energy under Grant No. DE-

FG03-92-ER40701.
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Abstract

These are my personal impressions of the environment in which string theory was born,
and what the important developments affecting my work were during the hadronic string
era, 1968-1974. I discuss my motivations and concerns at the time, particularly in my work
on loop amplitudes and on closed strings.

1 Introduction

It is not unusual in theoretical physics for conceptual frameworks to ride roller-coasters, but
few have had as extreme highs and lows as in the history of string theory from its beginnings
in 1968 to the present. In fact, string theory was so dead in the mid to late ’70’s that
it is a common assumption of many articles in the popular press, and of many younger
string theorists, that the field originated in the ’80’s, completely ignoring the period we are
celebrating here, which is primarily 1968-74.

So it was pleasantly surprising to be invited to reminisce about the early days of string
theory. Research results from that era have been extensively presented and reviewed, so I
will try to give my impression of the atmosphere at the time, and what questions we were
trying to settle, rather than review the actual results.

2 The Placenta

In the mid ’60’s, the framework for understanding fundamental physics was very different
from what it is now. We still talk about the four fundamental interactions, but we know that
the weak and electromagnetic interactions are part of a unified gauge field theory, that strong
interactions are also described by a gauge field theory which might quite possibly unify with
the others at higher energy, and that even general relativity is a form of gauge field theory.

1Invited Contribution to “The Birth of String Theory” Commemorative Volume
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In the 1960’s things were very different. Not only were the four interactions considered
to be of completely different natures, but for the most part the physicists who worked on
them were divided into groups by the interactions on which they worked. Of course, every
budding particle theorist learned QFT and how wonderfully successful it was in treating
QED. But one also learned how these perturbative methods could not be used for strong
interactions because the coupling constant was too large, and that for the weak interactions
one could only work at the Born approximation, because all existing field theories for the
weak interactions were non-renormalizable. So particle theorists were divided into separate
groups: one working on strong interactions, one on weak interaction phenomenology, and
one doing high order, esoteric QED calculations. Each group had very different techniques
and styles.

Even more removed from the world of a strong interaction physicist was the fourth
interaction, gravity, which was studied, if at all, by general relativists2. When, as a very näıve
graduate student who knew nothing of the fields of physics research (I had just received my
ScB in Applied Mathematics), I was asked by my future advisor what I might be interested
in, I replied “unified field theory”. Nonetheless, it was never suggested that I take a course
in general relativity!

So the context into which string theory was born was not so much theoretical fundamental
physics or even particle theory, but rather strong interaction theory/phenomenology. The
principal recent successes in that field had been in searching for patterns and fitting simple
models3 to scattering data. Scattering cross-sections were dominated by resonance peaks
and the high energy asymptotic behavior described by Regge trajectories. A huge number
of particles and resonances had been found and were listed in the particle data tables [38].
The organization of these particles into (flavor) SU(3) multiplets was the most impressive
thing understood about the strong interactions.

The quasi-stable hadrons and the resonances fell beautifully into patterns which could be
understood by treating baryons as if they consisted of three quarks and mesons of a quark
and an antiquark. Even though this very successfully described the dominant experimental
observations, theorists were very reluctant to think of the quarks as real constituents of
hadrons.

Fits to the data were done by treating the scattering amplitude as a sum of resonance pro-
duction and decay, together with an additional contribution due to the exchange of the same

2How separated general relativity and particle physics were in the ’60’s is discussed by David Kaiser [20].
He argues that funding cuts in particle theory in the late ’60’s and ’70’s played a large role in the subsequent
bringing together of particle theorists and general relativists.

3 I am using “model” and “theory” with a distinction that is perhaps not generally accepted. To me, a
theory is a comprehensive approach to explaining part of physics in a way which will at least have features
which are fundamentally correct, while a model tries, with less ambition, to fit aspects of the data, but
cannot be taken as the fundamental truth, even as an approximation of the truth. Thus QED, QCD, and
general relativity are theories, even though the last clearly needs modification to include quantum mechanics,
while the interference model, DHS duality[12], and my thesis are models. The Dual Resonance Model might
be taken to have evolved into a theory when we started calculating unitary corrections in the form of loop
graphs.
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particles in the form of Regge poles to describe the high energy behavior. This sum was called
the interference model. But the experimentalists kept finding more and more resonances,
and they were joined by phase-shift analysts. It soon appeared the sequence of resonances
continued indefinitely to higher masses and spins, in what clearly looked like linearly rising
Regge trajectories. In fact, my Ph. D. thesis[40] was a very näıve non-relativistic model using
PCAC, which rather successfully explained the experimental[38] π-nucleon decay widths of
a tower of five ∆ resonances with spins ranging from 3/2 to 19/2. Unfortunately the top
two of these resonances have subsequently dissolved[54]. This infinite sequence of resonances
suggested the idea of duality [12], that the amplitude could be described either in terms of
a sum of resonances or in terms of a series of Regge poles. The possibility that a scattering
amplitude A(s, t) could be given as an sum of resonant poles in s or alternatively as a sum
of Regge poles in t caused great excitement, but also skepticism that such a function could
exist.

3 Conception and the Embryonic Period

Thus it seemed miraculous when Veneziano [51] discovered that Euler had given us just such
a function in 1772, to describe the ππ → πω scattering amplitude. This paper arrived at
the Lawrence Radiation Lab in Berkeley in the summer of 1968 while I was away on a short
vacation, and I returned to find the place in a whirlwind of interest. Everyone had stopped
what they were doing, and were asking if this idea could be extended to a more accessible
interaction, such as ππ → ππ. I suggested the very minor modification necessary to remove
the tachyon,

Γ(−α(s))Γ(−α(t))

Γ(−α(s) − α(t))
−→

Γ(1 − α(s))Γ(1 − α(t))

Γ(1 − α(s) − α(t))
,

and Joel Yellin and I investigated whether this could be taken as a realistic description [48]
for ππ scattering. It had a lot of good qualitative features, including resonance dominance,
regge behavior, and full duality. We were forced to have exchange degeneracy between the
I = 0 and I = 1 trajectories, which was well fit by the data. We noticed the problem that
such an amplitude can wind up with ghosts, with a negative decay width for the ǫ′, the 0+

partner of the f , but also that this problem disappeared if the ρ trajectory intercept exceeded
0.496, very close to the value of 0.48 which we got from fitting the low energy phase shifts. A
much more serious problem was that we predicted a ρ′ degenerate with the f , which seemed
to be ruled out by experimental data. That the simplest function did not produce a totally
acceptable model was discouraging, especially to Yellin, although we realized that there was
no compelling reason not to add subsidiary terms to the simple ratio of gamma functions,
except that to do so removed all predictive power! This convinced Yellin that he didn’t
want to coauthor the fuller version[41] of our paper. But Lovelace[28], who independently
discovered the same amplitude, managed to do a favorable comparison to experiment.

There were a number of papers attempting to do phenomenology with dual models,
mostly describing two-body scattering processes. In general the results had, as did our

3



paper, nice qualitative features but unsatisfactory fitting of the data. At the same time, the
formal model was becoming much more serious, as great progress was made in extending the
narrow resonance approximation amplitude, first to the 5 point function [5] and then the
n-particle [6, 9, 8, 15] amplitudes. A very elegant formulation of these amplitudes was given
by Koba and Nielsen[26, 34, 27], in which the external particles correspond to charges given
by their momentum, entering on the boundary of a unit circle, and the amplitude is given
by an integral, over relative positions of the particles, of the two-dimensional electrostatic
energy. Here the conformal invariance was seen to play a crucial role, and in particular the
Möbius invariance explained the cyclic symmetry. From the n-point amplitude for ground
state particles one could factor in multiparticle channels to extract the scattering amplitudes
for all the particles which occurred in intermediate states, determining all amplitudes in what
could be considered the equivalent of the tree approximation in a Lagrangian field theory.
We took the attitude that the particles of the theory should be all and only those which arose
from n-point scattering amplitudes of the ground state particles, as intermediate states in
the n-point tree function. The amplitude for an arbitrary particle X connected to p ground
states could be found by factoring the p + q ground state amplitude [4], and amplitudes
involving more arbitrary states could come from factoring that. Thus one could determine,
in the tree approximation, the arbitrary n-particle amplitude. In a sense, this was a form
of bootstrap, as the set of particles generated as intermediate states were added to form a
consistent set, with the same particles as intermediate states as were considered external
states.

4 Birth of String Theory

Of course a set of tree amplitudes is not a unitary theory. In perturbative field theory,
the Feynman rules are guaranteed to implement unitarity by specifying loop graphs whose
discontinuities give the required sum over intermediate states, because these all come from
a Hermitian lagrangian. The possibility of advancing dual models to a unitary theory be-
came possible once we had the tree amplitudes for arbitrary single particle states, as one
could sew together the loop graphs to give a perturbative (in the number of loops) theory
satisfying unitarity. In perturbative quantum field theory, loop graphs give the appropriate
contributions to the optical theorem, satisfying the unitarity of the S-matrix. Bardakçı,
Halpern and I (BHS)[3] defined the one loop graph by the requirement of two-particle uni-
tarity. An earlier attempt (KSV)[25] defined the planar loop graph by extending duality
to the internal legs, which gave most of the factors in the loop integrand. But to get the
full expression, the one-loop amplitude for n ground-state particles σ should be required to
have the correct two particle discontinuity, a sum over all possible two-particle intermediate
states. Starting with the tree amplitude for n σ’s plus X(p) plus X(−p), and summing over
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all possible states X and momentum p, as shown by the stitch
marks here, one is summing not only over X but also over all
particles in the left arm, because those are all included in the tree
graph.

Of course we called this process “sewing”, which led to
an amusing battle with Sy Pasternack, the editor of Physi-
cal Review, on a subsequent paper[17]. Pasternack thought he
needed to uphold a certain formality, and was responsible for
“pomeronchukon” rather than “pomeron”. He wrote us a very
witty letter[35] arguing that “sewing” would lead inevitably to
“weaving”, “braiding”, “darning”, “knitting” and “sew-on”. We
objected, however, that the actual thread lines were shown in the figures. Redrawing figures
in those days was a major undertaking. That won the argument.

I should point out that at the time, our description of the intermediate states and the
amplitudes was quite clumsy, using the rather messy techniques of the Bardakçı-Mandelstam
factorization [4]. While we were working on deriving the loop graph, Nambu [31], and Fubini,
Gordon and Veneziano [13] were developing the elegant operator formalism, in which the
states of the system are described by harmonic oscillator excitation operators aµ †

n , n = 1...∞
acting on a ground state |0〉. Here n corresponds to nodes on a string and we have a Lorentz
index µ. The amplitudes can then be written as a matrix element with vertex functions
for each external particle, and propagators integrated

∫ 1

0
du over an internal variable u ∼

e−τ , where τ acts like a time describing how long an intermediate state propagates. Thus
resonance poles in a tree, or two particle intermediate states in a loop, come from the τ → ∞,
u → 0 limit for the corresponding propagator. This formalism made the calculations much
easier. It enabled the authors of KSV to discover independently from us the extra factors
that get two particle unitarity correct, except for spurious states. The new formalism was so
superior[2] that few people were encouraged to read our paper, and I am still grumpy about
that.

The operator formalism made clearer two problems that had already been vaguely seen.
In this formalism, the amplitudes appear to lose the Möbius invariance, but the amplitudes
do not, due to the existence of Ward identities. That is, there are spurious states, combi-
nations of excitations which decouple from all n ground state amplitudes, and therefore by
our philosophy should not be included among the states. Secondly, the time-like creation
operators create ghosts, particles with negative widths, which clearly should not be there.
The set of these ghosts produced by the lowest node operator, a0 †

1 , were precisely those that
could be exorcised by those Ward identities known at the time. Much of our effort in BHS
involved excluding these spurious states from the loop. Of course the higher time-like modes
a0 †

n , n > 1 also produce ghost states, but these were also exorcised by the Ward identities
found later by Virasoro[53].

One unpleasant feature of the planar loop amplitude we constructed from two-particle
unitarity was the presence of additional factors

∏
r(1−wr)−D, where w =

∏
uj is the product

of the u factors of all the internal propagators, and D is the dimension of space-time, which
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at that point we simply wrote as 4. The discontinuities we were building into the loops come
from several intermediate state ui’s going to zero, so only the w → 0 endpoint contributes,
but the natural integration range for w was from 0 to 1. Of course at w = 1 this factor
has extremely bad behavior. Eliminating the one set of spurious states known about at the
time eliminated just one power of (1 − w)−1, which didn’t help much. Later, Virasoro [53]
discovered that if the Reggeon intercept α(0) = 1, there was an infinite set of generators of
spurious states, and eliminating those gets rid of all the ghosts (for D ≤ 26), and one full set
of

∏
r(1 − wr)−1. Still, there is a very serious divergence as w → 1, which will turn out to

be connected to the Pomeron/closed string. Before that was realized, there was speculation
about whether this divergence was removable, and whether the two particle discontinuity
had the expected two-Reggeon cut asymptotic form[47] as s → ∞.

It should be mentioned that this effort to raise dual models to the same level of legitimacy
as perturbative QFT was a departure which made many uncomfortable. Strong interaction
theorists had been divided into field theorists and S-matrix folk, and dual models were
generally considered the domain of S-matrix types, but here they were adopting the moral
values of a field theorist, even if the context was different. The phenomenologically inclined
thought it would be better to simply assign imaginary parts to the regge trajectories in the
dual amplitudes to go beyond a narrow resonance fit. As there had been no real data-fitting
successes, many had great skepticism about the value of dual model research. One such
skeptic asked me why I would work on something so unlikely to be the real physical truth.
I recall saying that even though the probability that dual models would be part of the real
answer was small, perhaps 10%, at least there was a chance of working towards the truth,
while fitting elastic scattering data to Regge poles, to me, seemed not to have any chance of
leading to fundamental physical understanding.

I mention this because in 1987, in Aspen where string theory was the superhot theory
of everything, I asked some of the younger researchers what their estimate was, of the
probability that string theory would be part of the the true theory of physics, and was
rather astounded to hear answers upwards of 50%.

Anyway, let’s get back to the construction of loop graphs for a complete, unitary dual
resonance theory. This was a very active field. Neveu and Scherk [32] used their superior
French mathematical education to express the planar loop in terms of elegant Jacobi θ func-
tions, enabling them to extract the divergent behavior. The operator formalism [14, 13, 50]
made tractable the calculation of nonplanar loops [24, 16, 21] and multiloop amplitudes[22].
Abelian integrals were used by Lovelace[29, 1, 30], who suggested that experimentalists de-
prived of funding for higher energy machines could “still construct duality diagrams in tinfoil
and measure induced charges” as their contribution to understanding particle physics.

Closed Strings

My second post-doc appointment was at the University of Maryland, which had a pleasant
and active high-energy theory group, but no one doing dual models. I felt quite isolated, and
while I was able to write some technical papers[42, 44], I missed the stimulating environment
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I had had in Berkeley. In particular, the first of these papers was a rather misguided attempt
to get rid of the spurious states given by the Ward identity with L1, before I became aware
that Virasoro had found, for the “unrealistic choice of α(0) = 1”, that there was an infinite
set of such Ward identities, enough to get rid of all the ghosts produced by a0 †

n . Fortunately
I was free to visit Berkeley and Aspen during the summers. During my Berkeley stay in
1970 I spent a day at SLAC, where in a discussion with Nussinov and Schwimmer, they
asked me a very interesting question. At the time, the n-point Veneziano formula was best
described by the Koba-Nielsen picture of external charges (or currents) on the circumference
of a disk. The integrand could be interpreted as the electrostatic energy of the charges or
as the heat generated by the currents, inside the disk. There was also much interest in
this being an approximation of very complex Feynman diagrams called fishnets within the
disk. The question Nussinov asked is what would happen if the external particles, instead of
residing on the circumference of a disk, where on the surface of a sphere. Nussinov answered
his own question with “I bet one would get the Virasoro formula”. This is because, with the
particles integrated over the surface, there is no cyclic order constraint, and any collection
of particles are free to approach each other and produce a singularity in P 2, where P µ is the
sum of their momenta. This is what happens in the Virasoro formula[52].

Should the fishnets, or electric fields, or currents, fill the ball, or should they be confined
to the surface with the external particles? In my view, the new Virasoro identities were
associated with the local conformal invariance of analytic functions, a much richer group
than conformal transformations in Euclidean spaces of higher dimension. Thus filling the
three dimensional ball was unlikely to work, but putting fishnets on the surface might be
very interesting. So the three of us began to work out electrostatics on the surface of the
sphere.

In the Nielsen approach one needs the electrostatic energy of a configuration of point
charges at arbitrary locations, and then integrate over the charges’ positions. We can solve
Poisson’s equation for each configuration of charges on a 2-sphere, but we cannot define the
electrostatic energy as the integral of (~∇φ)2, because that includes the infinite self-energy of
each charge. Instead we might define E = 1

2

∑
i6=j qiφj(~ri), but to do so one needs to be able

to find the electrostatic potential of a single charge. We cannot have a source of electric flux
without a sink, and we seemed to hit an impasse and let the matter drop. Several weeks
later, after we had all gone our separate ways, while I was (I think) in Aspen, I decided
to look at this again, and I realized that putting an arbitrary sink for all the fields would
do no harm. After all, for two-dimensional electrostatics one takes φ ∝ ln |~r − ~r0| without
worrying about the flux which goes off to infinity, and in two dimensions conformal invariance
makes infinity no different from any other point. As the sphere is conformally equivalent to
the complex plane, the potentials are just logarithms of |(zi, zj , a, b)|, the absolute value of
the cross ratio, including the arbitrary sink point b and a point a at which we can set the
potential to zero. The Möbius invariance, now extended to three complex parameters, again
permits the positions of three charges to be fixed arbitrarily, and the others integrated over
the sphere, or complex plane. We have consistency only for α(0) = 2, but there we have
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a consistent n-point function for closed string4 scattering[43]. I speculated that this was
equivalent to the Pomerons which appeared as a problem in the loop graphs of open strings,
and later, with Clavelli[10], I showed that this is indeed the case.

There was at the time not much interest in closed strings, which have no ends. All
the semi-successes of dual model phenomenology were based on Harari-Rosner diagrams[18,
39] being incorporated by Chan-Paton factors[36], which required string ends on which to
attach quarks. Even I postponed looking at factorization and loop graphs in this model in
favor of a paper[44] showing that nonorientable graphs do not enter theories with SU(n)
flavors incorporated à la Chan-Paton. But the following summer, in Aspen again, with the
factorization having been done by others[55, 11], I addressed the one-loop diagram[45]. The
propagators now have an integral over the length of the tube and the angle of twist to get
to the next particle, and the complex variable w has |w| = − ln T , where T is the combined
times of propagation, but w also has a phase given by the angle of twist in sewing the initial
end of the tube to the final end. The amplitude involves

∫
|w|≤1

d2w
∞∏

r=1

|1 − wr|−2(D−E),

where D is the dimension of space-time and E is the number of factors assumed to myste-
riously disappear if one removes the spurious states. E had already been shown to be 1 in
general D, but we were hoping, as was found true later, that E = 2 in the right D. Still,
D − E is a positive number, and 1 − wr vanishes for w any integral power of e2πi/r, so we
have a terrible divergence at every point of the unit circle for which the angle is 2π times a
rational number.

Fortunately, by the time I was looking at this, I had read the elegant reformulation[32]
of the open-string loop in terms of Jacobi theta functions. This encourages us to look at
τ = (ln w)/(2πi). Of course the integrand is invariant under τ → τ + 1, because w is
unchanged, but it is also invariant under the Jacobi imaginary transformation, τ → −1/τ ,
provided we have the magic dimensions D = 26, E = 2. The world sheet of a loop of
closed strings is a donut, conformally equivalent to a parallelogram with sides 1 and iτ , with
opposite sides identified. While a Hula hoopTM and a Mayflower donut[49] may not look the
same, multiplying the parallelogram by −i/τ maps one into the other. These transformations
generate the modular group, so invariance shows that in integrating w over the unit disk
we are including an infinite number of copies, while we wanted, for unitarity, only one copy
of the region around w ≈ 0. Thus the right thing to do is restrict our integration to the
fundamental region, which is |τ | ≥ 1, −1

2
< Re τ ≤ 1

2
. In terms of w, this is a subset of

|w| < 0.0044, so we stay far away from the horrible divergences.

4For some bizarre reason, I referred to the dual models in terms of what we would now call their world-
sheets, as strip and tube models for what we would now call open and closed strings.
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If closed strings aroused little interest, loops
of them really aroused none. The figure shows
the number of citations to [45] each year as listed
by Spires. Interest in dual models as models of
the strong interactions was fading fast. Firstly,
the evidence for partons, pointlike constituents
of hadrons, found in deep inelastic scattering
starting in 1969, was inconsistent with the soft,
extended object picture of strings. Secondly,
non-abelian gauge theories were proven renor-
malizable (’t Hooft, 1971 [19]), explained neu-

out
sent

paper

1970 1975 1980 1985 1990 1995 2000 2005

Citations by year to ref. [45], as
listed in the Spires Citation Index.

tral currents in a unified electroweak theory, and gave quantum chromodynamics as a theory
of the strong interactions. This greatly improved the appeal of conventional field theory
at the expense of string theory. And within string theory, the inclusion of fermions by
Ramond[37] and Neveu-Schwarz[33] was more exciting than loops of Pomerons.

In the fall on 1971 I started an Assistant Professorship at Rutgers in a new high energy
theory group headed by Lovelace, and including Clavelli as a postdoc. Lovelace had a
very ambitious program for describing arbitrary multiloop diagrams, and Clavelli and I
looked at how the closed string intermediate state in the nonplanar loop interacts with the
ordinary (open-string) states. Then I struggled with understanding renormalization[46], an
effort which would have been totally trivial if I had only realized that

∑
n n = −1/12, but

unfortunately I had taken too many pure math classes to recognize this fact.
The decision on my tenure was coming up, and dual models did not seem the best way

to prove my worth, so I reluctantly got into several other endeavors, and was rather slow to
get back into strings when they arose like a phoenix, or perhaps like a fire storm, in 1984.
But that is after the period we are considering here.

A Comment on Impact

I want to say a few words about how this field was perceived within the physics community.
In recent years there have been numerous attacks from some in the high energy theory
community, and from experimentalists, that strings are, like the Pied Piper, leading the
bright young theorists astray. String theory was not quite so dominant in the 1969-1974 era,
though it did absorb the attention of a very large fraction of the young theorists. It did not
get a similar acceptance by most of the more established people, though I think Europe was
more receptive than America. In particular Phys. Rev. Lett. published very few articles in
this field, but Physics Letters had many of the important papers.

The field did attract quite a bit of attention. In fact, in the early ’70’s I was interviewed
by a sociologist who wanted to do a study of what attracted so many people to working
on dual models. Unfortunately she followed a narrow set of preprepared questions which
seemed totally off the mark. Her focus was on which experimental data encouraged me to
continue working in the field. I don’t think anything came of that study, and I haven’t heard
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of studies done when the field became even more rabid in the mid ’80’s.
But this is still an important question: Is there any real physics in string theory, and

should so many people be working on it. Undoubtedly there will be a shift towards more
applied high energy theory as LHC starts giving us more data to work with. It will be very
interesting to see where the field goes.
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