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Abstract

In the late 1950’s field-theory techniques began to be introduced into the many-body
problem, eventually becoming the common underpinning for the microscopic
understanding of condensed matter physics. The major threads in this history were
centered in the U.S. and in the Soviet Union. This talk will review the history of these
developments, with particular focus on applications of field theory to quantum statistical
mechanics and transport theory.



CONSERVATION LAWS AND THE QUANTUM THEORY OF
TRANSPORT: THE EARLY DAYS

Gordon Baym
Department of Physics, University of Illinois at Urbana-Champaign,
1110 W. Green St., Urbana, Illinois 61801, USA

This talk reviews, from an historical perspective, a chapter in the development of
quantum transport theory within the framework of self-consistent non-equilibrium
Green'’s functions.

1 INTRODUCTION

Nearly forty years have sped by since Leo Kadanoff and I worked in Copen-
hagen on understanding the role of conservation laws and the description of
transport in quantum many particle systems. To set the stage for this meeting,
I would like to describe here the physics and historical background of our work
in these early days.

First a few biographical notes. As the photographs that graced the dust
jacket of our 1962 book Quantum statistical mechanics' show, Leo and I were
both in our mid-twenties at the time. When the two of us started life in the
1930’s, our parents quite coincidentally lived just about a block apart in In-
wood, a neighborhood in upper Manhattan in New York City, mine on Payson
Avenue (no. 1 on the map) and his on Seaman Avenue (no. 2). Our immedi-
ate neighborhood turned out to be quite a fertile one for theoretical physicists.
Roy Glauber grew up in the same apartment building as the Kadanoffs, and
Shelly Glashow lived just a block or so away. We all went to the same elemen-
tary school (no. 3 on the map), imaginatively named PS52 (PS for “Public
School”), and all were at Harvard in the 1950’s.

The theorists at Harvard in the late fifties were very excited by recent
developments in the many body problem, and particularly by the paper by Paul
Martin and Julian Schwinger® on the formalism for finite temperature many
body theory3. Even though Leo and I were graduate students in physics at the
same time we did not collaborate together until later. Leo worked with Paul
Martin, writing a thesis, Theory of many particle systems: superconductivity,
and with Roy Glauber as well, writing a second thesis, Acceleration of a particle
by a quantized electric field; 1 was a student of Julian Schwinger, and wrote
only one thesis, Field theoretic approach to the properties of the solid state?

Discussing future plans at our graduation in 1960, we found out that we
were both independently headed as postdocs in September to Niels Bohr’s In-
stitute in Copenhagen — then officially the University Institute for Theoretical
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Figure 1: Leo Kadanoff (left) and Gordon Baym (right), circa 1961; from the dust jacket of
Quantum Statistical Mechanics.

Physics. Copenhagen, with far more bicycles than cars on the streets, was
one of the foremost gathering places of physicists from around the world® — a
remarkable experience for two fresh Harvard Ph.D.’s. I stayed for two years,
and Leo for a little over one year.

2 THE PUZZLES

Since the main emphasis at the Institute at the time was nuclear physics and
our focus was on condensed matter problems we had little mentoring from
the senior people, with the important exception of Gerry Brown; primarily we
worked on our own. Leo’s and my collaboration began one day in our first
Spring in Copenhagen, when he raised the question of how to construct in
the Martin-Schwinger Green’s function formalism approzimations to the two
particle propagators that preserved the simple conservation laws. For example,
the operator number conservation law,

Ip(rt)

o +V-j(rt) =0, (1)

implies that correlation functions of the density and current with an arbitrary
operator, O(r't"), should obey

%<T (p(r)O('t))) + V (T (j(rt)O(r"t'))
= ([p(rt), O("))))o(t —1"). (2)
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where T denotes time-ordering of the operators.

Leo’s interest in the problem arose from the question of how to write the
BCS theory of superconductivity in a way that would yield correctly the Ander-
son mode — the longitudinal collective oscillation of a neutral superconductor®
(now famous in high energy physics as the Higgs boson). As originally for-
mulated the BCS theory did not give two-particle correlation functions that
obeyed the number conservation condition (2). Equivalently, the problem was
how to build local gauge invariance into the theory. The more general issue
was how to construct, within the Green’s function formalism, consistent quan-
tum theories of transport. This problem was nagging me too, because, as Paul
Martin pointed out at my doctoral defense, I had essentially gotten it wrong
in my thesis. In trying to calculate sound wave damping in a metal via simple
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Green’s function approximations, I was missing a factor of 4/5 compared with
a calculation via the Boltzmann equation. Paul immediately realized that the
lack of this factor indicated a conceptual error in the underlying physics. It is
very hard to get a factor of five from simple mistakes — in this case it comes
from [ Ps(cos®)?, which arises from correctly including the scattering back-
into-the-beam term in the transport equation. Leo’s and my problems were
closely related.

(@) (b) (c)

Figure 3: (a) The one loop approximation, (b) the self-energy corrections on the lines that
are included, and (c) scattering into-the-beam corrections.

To see how approximations can fail obey to the conservation laws consider
going beyond the lowest order evaluation of the density-density and current-
density correlation functions in the Hartree-Fock approximation, i.e., as a single
loop of Green’s functions. The lowest order calculation, Fig. 3a, in which the
lines are Hartree-Fock Green’s functions, obeys the conservation laws. The
trouble starts when one tries to improve the Green’s functions beyond lowest
order, including better self-energies, as shown in Fig. 3b, but not vertex correc-
tions. In the one loop approximation, the density-density correlation function,
in imaginary time, is given (in the notation of Ref. 1) by

p/
(T (plrtptr ') =575 [k [ S5 6260 )
Xel(p—p ) (F=7") g —i(zy—2,0) (t—t") (3)
The current-density correlation function is similarly

- &y p+p’
(e 1S €
K T (=) =il =2, ) (=) ()

Trying to see if the correlation functions obey the number conservation law,
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Eq. (1), we find, using Dyson’s equation for the Green’s functions,

p2
Gil(pvz) =z - %—’_E(pvz)v (5)
that
%@ (p(rt)p(' ) +V (T (F(rt)p(r't) )

S N e L LT T Ve PO e o)
= 1 (271')3 (27_(_)3 Y2X2% D,z P, 2v p ,ZV
)i F=F) (=) =iz =2, =) ()

The right side, which involves the difference of the self-energies, does not vanish
in general beyond the Hartree-Fock approximation. Even with a constant
particle lifetime, 7, corresponding to scattering by random impurities, the
correlation functions fail to obey the conservation laws. For a constant lifetime
the spectral function of G is

1/7
(w—p?/2m)? +1/47%’

Alp,w) = (7)
with the corresponding self-energy given by 3(z) = +i/27 (where the + sign
is for the complex frequency z in the upper half plane, and the - sign for z in
the lower half plane). In order to include the conservation laws correctly it is
necessary to include the scatterings between the two lines, as shown in Fig. 3c;
these correspond to including the scattering back-into-the-beam terms in the
Boltzmann equation.

The subtle feature of the problem of the correlation functions obeying
the conservation laws was that it was not sufficient merely to include particle
number and momentum conservation at the individual vertices in a diagram-
matic expansion. Simple approximations to the correlation functions need not
obey the conservations laws, even though particle number and momentum are
conserved at the individual vertices.

The second piece of the puzzle of constructing a quantum theory of trans-
port phenomena was that it required summation of an infinite set of diagrams.
Let me illustrate the point by means of the simple example of the electrical
conductivity of a metal. Consider first the trivial example of classical carriers
of charge e moving at velocity ¥ in the presence of an electrical field E(t) and
a friction force described by a scattering time 7. Newton’s equation reads

- U
Y cE@) —mZ
mdt eE(t) mT, (8)



for an electric field of frequency w, the velocity is,

dw)= £ E@ )

m —iw+ 1/7°

Since the electrical current produced is 5 = nev = O’E, one finds the complex
conductivity,

ne T
= , 10
o(w) m 1 —iwr (10)
whose real part,
ne? T

Re(o) = (11)

m 14 w?r?’

determines the dissipation. In the collisionless regime, wr > 1, Re(o) oc 771,

i.e., proportional to the scattering rate, or scattering matrix elements, Mpz/,
squared. This result follows directly from perturbation theory. On the other
hand, in the collision-dominated regime, wr < 1, the dissipation Re(o) x 7,
is inwversely proportional to the matrix elements squared, a very difficult result
to derive by summing diagrams in perturbation theory.

The standard derivation of the conductivity in terms of scattering ma-
trix elements is via the Boltzmann equation, which for electrons scattering on
impurities reads,

fy

E + 1_);5- V;fﬁ— eE . Vﬁfﬁ

3,/
:‘/ éprQ”'Mﬁﬁ"25<eﬁ—eﬁf>[fﬁ<l— 7) = [ (= fp)l (12)

Linearizing the distribution function in the form fz = fg—i— \ fz(?) -1, one readily
finds from Eq. (12) that

N — Ttr
—eB—— 13
v € 1-— WTtr ’ ( )
and
2
g="1C T (14)

_—r
m 1 — 1w,

as in Eq. (10). Here the transport scattering time is given by

Lo LV Mg 25y — (1 = cos 655) (15)
o~ Ty M ol = 1) (1 = cos O5F").



The cosfpp’ term is a result of the scattering back into the beam, described
by the final fz/(1 — fz) collision term on right side of Eq. (12).

The conductivity is given more generally in terms of the current-current
correlation function, (57)(z) (e.g., the Fourier transform of the retarded com-
mutator) by

o) = = (i +in + =), (16)

To derive the low frequency limit from a diagrammatic expansion of the cor-
relation function in terms of Green’s functions, one must sum an infinite set
of diagrams, and to find the correct transport coefficients, include the scat-
tering back-into-the-beam terms corresponding to Fig. 3c. The Boltzmann
equation carries out such a summation brilliantly. The failure of approximate
correlation functions to include the conservation laws meant that one could
not correctly describe low frequency long wavelength transport phenomena,
so well accounted for by the Boltzmann equation. The challenges facing us
in building theories of quantum transport were thus to learn how to include
the conservation laws in approximations to the correlation functions, and how,
from Green’s functions, to recover and generalize the basic structure of the
Boltzmann equation.

3 SELF-CONSISTENT APPROXIMATIONS

Furiously scribbling all evening after Leo posed his question, I began to see how
to include the conservation laws in two point correlations functions in terms of
self-consistent approximations. The starting point was to include in imaginary
time, from 0 to —i0, an external potential coupled, e.g., to the density:

Hot (1) = / Erp(rt)U (rt). (17)
The single particle Green’s function then takes the form,

tr [e_ﬂ(H—pN)T (e—ifdtHextw(1)¢T(2))}
tr [e*ﬁ(H*MN)T (e—ifdtHext)}

G(12;U) = —i (18)

where T defines the time ordering along the imaginary time path, and the time
integrals are from 0 to —i3. The next step was to choose an approximation
for the two particle Green’s function G3(U) in [0, —if], e.g., the Hartree-Fock
approximation illustrated in Fig. 4a. From this G2 we constructed the single
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Figure 4: The procedure for deriving conserving approximations for the two particle cor-
relation functions. Illustrated here for the Hartree-Fock approximation, in (a) one chooses
an initial approximation to the two particle Green’s function, in (b) constructs the single
particle self-energy from it, and in (c) constructs the conserving two particlel correlation
function by differentiating the self-consistent one particle Green’s function.

particle self-energy 3, as shown in Fig. 4b in Hartree-Fock. The single particle
Green’s function, G(U), obeys Dyson’s equation (5) self-consistently. The key
step now was to generate the two particle correlation function as a variational
derivative of G(U), via

0G(1,1;U) B , ,
0@ |y, +£[G(12,1'2%) — G(11)G(22)]|,,_,
=+L(12,12%). (19)

Figure 4c shows the resulting correlation function generated from the initial
Hartree-Fock approximation, the random phase approximation with a sum of
particle-hole ladders across the bubbles. For any starting approximation to
G4, the two particle correlation function generated as a variational derivative
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obeys the differential conservation laws.”

Leo and I immediately wrote up our first and only journal paper together,
Conservation laws and correlation functions® In preparing for this talk, I
scoured through old notes in Urbana, and came upon the original typewrit-
ten draft of the paper, which contains both Leo’s and my handwriting, titled,
Conservation laws and the quantum theory of transport. Recognizing his piv-
otal role in the development we listed Paul Martin as a prospective author,
but he modestly declined to be on the masthead. His name is crossed out in
the draft, and he is finally acknowledged for discussions that established the
form of the conservation laws obeyed by the two particle correlation functions.
We recognize in the draft that the self-consistent approximations for the two
particle correlation functions yield linearized Boltzmann equations. After dis-
cussing the self-consistent T-matrix approximation for the self-energy of the
single particle Green’s function G, we note that, “In the long wavelength limit
the L equation leads to a generalization of the linearized Boltzmann equation
in which the scattering cross section is proportional to |T'|?. This generalization
reduces in turn to an ordinary Boltzmann equation in the low density limit.
Thus our procedure enables us to derive the linearized Boltzmann equation
from an equation which defines G(U) from a sum of ladder diagrams.” Simi-
larly, we mention deriving a Boltzmann equation from the shielded potential
approximation, and finally, we promise that “the derivation of the generalized
Boltzmann equations will be given in future publications.” The published pa-
per strangely contains no mention of the Boltzmann equation. We did return,
however, to Boltzmann equations in our book.

At Gerry Brown’s instigation, we gave a series of lectures on the quantum
many body problem in Copenhagen, and then to Ivar Waller’s group in Uppsala
in the Spring of 1961, and in following Fall to Wiestaw Czyz’s group in Krakow
and at the Institute for Nuclear Studies at Hoza 69 in Warsaw. These lectures
became the basis for our book. Writing the book was great fun; either we would
sit together and write from scratch — actually Leo paced up and down non-stop,
while I sat putting pen to paper — or often Leo would come in, in the morning,
with the draft of a new chapter, which we would then revise. The whole book-
writing took, it seemed, less than a month. I recall the conversation with Leo
about the order of authors names on the book. Since on our first paper, my
name, being earlier in the alphabet than his, came first, he suggested that it
would be fair if we alternated our names on subsequent publications; thus the
book became Kadanoff-Baym.
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Figure 5: The succession of contours in deriving generalized Boltzmann equations, from (a)
the usual contour in imaginary time, shifted to —oo in (b), and distorted to (c), the real
time round-trip.

3.1 Generalized Boltzmann equations

A good part of the book is devoted to deriving generalized Boltzmann equations
from self-consistent approximations for the Green’s functions, a procedure for
which Leo deserves full credit. The method begins with the Green’s function in
the presence of an external potential, Eq. (18) on [0, —if], Fig. 5a, as we studied
in Ref. 7. The contour of integration is then shifted back to [—oo0, —co — (],
as shown in Fig. 5b, and then distorted to the “round-trip” contour from —oo
to 400 and back again to —oo to —oo — 3. The Green’s function is given on
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the round-trip contour by,

tr [e—ﬂ(H—uN)T (e‘ifdtHextwu)wT@))}
Gty == tr [e*ﬁ(HfuN)T (e_iﬂgdtHext)} 2

where now T defines the time ordering along the round-trip path, as shown in
Fig. 5c, imaginary time path, and the time integrals are along the path. The
external potential need not be the same on the two sectors of the contour along
the real axis. The Green’s function on the path obeys,

2
<l% + v_ - U(m‘)) G(rt,r't') — fz(rt, FOG(FE, ') = 6(r — ')3(t — t').
(21)

To derive the generalized non-linear Boltzmann equation, we write the
distribution function in the Wigner form,

g<@wRTv=3/dnﬁe“”+“%¢wlﬂwu» (22)

wherer =r;—r], t =t1—t, and R = (r1+7})/2, T = (t1+t})/2. A new feature
here was to treat the energy of the particles, w, as a variable independent of
their momentum p, thus allowing one to go beyond situations with well-defined
quasiparticles. Expansion of the single particle Green’s function equations on
the path for disturbances slowly varying in both space and time, yields the
generalized Boltzmann equation, on which we are focussing at this meeting,
0 0
% + ai(U+ ReY) + L YrgS —VR(U+ ReX)-V,g°
ORe g 0X< OReg 8E<
Oow Ot gt Ow

+VpReg-VrES —VgrReg-V,X<
=-37gS +¥7g<. (23)

Here
dw (g7 + ¢°)(pwRT
sipokt) = [ 42107 £g)porT
T Z—w
1

T 2 —p2/2m - U(RT) — S(pzRT)’ (24)

Understanding how to derive general Boltzmann equations from the many
body formalism put the development of quantum transport theory on a firm
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foundation. As we wrote, “Our rather elaborate Green’s function arguments
... provide a means of describing transport phenomena in a self-contained way,
starting from a dynamical approximation, i.e., an approximation for Go(U) in
terms of G(U). These calculations require no extra assumptions. The exis-
tence of local thermodynamic equilibrium is derived from the Green’s function
approximations. The various quantities that appear in the conservation laws
are determined by the approximation. The theory provides at the same time
a description of what transport processes occur ...and a determination of the
numerical gantitites that appear in the transport equations.”® Finally, we could
derive the sound velocity of a gas from the Schrodinger equation.

3.2 Round-trip Green’s functions

A crucial ingredient in the derivation of Boltzmann equations was the use of
Green’s functions defined on the round-trip contour along the real axis. The
method was invented by Schwinger, and presented in his lectures on Brownian
motion at the Brandeis summer school in 1960, where I became familiar with it.
Although the lectures were unpublished, Schwinger did write up the ideas in his
paper Brownian motion of a quantum oscillator!® As was always characteristic
of Schwinger, not a diagram appears in the paper. Feynman put it well in
his Talk at the First Schwinger Festspiel at the banquet for Schwinger on his
sixtieth birthday in 1978, reminiscing about their conversation at the 1948
Pocono conference: “He [Schwinger] would say, well I got a creation and then
another annihilation of the same photon and then the potential goes ...I’d
draw a picture that looks like this. He didn’t understand my pictures and I
didn’t understand his operators, but the terms corresponded and by looking
at the equations we could tell ... that we had both come to the same mountain

»11

The round-trip technique was also employed in the context of quantum
electrodynamics in 1961-62 by Kalyana T. Mahanthappa, a fellow Schwinger
graduate student at Harvard, and Pradip Bakshi, a slightly later student of
Schwinger’s!?13 Actually, Robert Mills (of Yang-Mills), while at the University
of Birmingham in 1962, wrote but did not publish, a lovely set of notes on
round-trip Green’s function techniques!* which formed the basis for his later
book.'® He refers in these notes to Schwinger’s 1961 paper, and remarks that,
“The present work, some of which has, I believe, been duplicated independently
by Baym and Kadanoff, following the methods of Martin and Schwinger, makes
use of the thermodynamic Wick’s theorem of Matsubara and Thouless, and
others, with the integration contour in the complex time plane distorted to
include the real axis.” The method was then used by Leonid Keldysh in the

12



Soviet Union, described first in his 1964 paper!® Our book was translated into
Russian in the same year'” but Keldysh did not refer to it, writing rather, “Our
diagram technique wlll be close to Mills’ technique for equilibrium systems,”
citing Mills’ notes. Schwinger influence was widely felt.
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Figure 6: ® and the corresponding self-energies ¥ for (a) the self-consistent Hartree-Fock
approximation, (b) the self-consistent T-matrix approximation, (c) the shielded potential
approximation.

3.3 ®-derivable approrimations

Leo left Copenhagen in late 1961 to accept an Assistant Professorship at the
University of Illinois in Urbana, then one of the few centers of activity in many
body physics. I was offered the same irresistible position at Illinois shortly after
Leo arrived, but stayed in Copenhagen until September 1962 and then spent
a year at Berkeley before going to the midwest. The problem that intrigued
me in Copenhagen was how to delineate the structure of approximations to
multiparticle Green’s functions that would include the conservation laws.!® The
key turned out to be to start with a functional ®[G] of the fully self-consistent
Green’s function, G, from which one generates the self-energy self-consistently
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as a variational derivative of ® with respect to G:
P[G] = tr LoG. (25)

The Green’s function, G, then self-consistently obeys Dyson’s equation
with the self-energy, X, given by Eq. (25). The procedure is illustrated in
Fig. 6, which shows ® and the corresponding self-energies for the self-consistent
Hartree-Fock, T-matrix, and shielded potential approximations. All correla-
tions derived as variational derivatives then obey the conservation laws. The
method made clear the relations between the conservation laws at the ver-
tices and the macroscopic conservation laws. An extra bonus of this procedure
was that various methods of calculating the thermodynamics from the self-
consistent G, e.g., coupling constant integration, all lead to the same result for

the partition function,'

InZ = £[®[G] — tr G + tr log(—Q)]. (26)

In the early 1960’s we could only apply the transport theory to a limited
number of essentially exactly soluble problems, e.g., systems near local thermo-
dynamic equilibrium, and the Landau theory of the normal Fermi liquid. The
present explosion in computing power now offers the possibility of solving self-
consistent approximations numerically, as in the GW method in solids based on
the shielded-potential approximation2%:2! Extensions of the approach to sys-
tems with condensates,??~24 and to relativistic systems, including electrody-
namic and quark-gluon plasmas, both in equilibrium and non-equilibrium,2>—27
open new windows to deal with systems of current experimental interest such
as Bose condensed atomic clouds and ultrarelativistic heavy-ion collisions. As
we see from the entirety of papers at this conference, we are standing on the
threshold of a much deeper understanding of transport and equilibrium phe-
nomena in a wide variety of interacting systems.
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582  Out of the Crystal Maze

The highly mathematical renormalization group techniques later developed by Leo
Kadanoff, Ben Widom, Kenneth Wilson, and others would eventually provide new
physical insights into the partition function and correlation functions near critical
points, and into the nature of critical scattering.*'®

In the 1950s the technology of high- and low-temperature series expansions con-
tinued to be developed, particularly in England, and was applied to the Heisenberg
as well as the Ising model.’"® At low temperatures, the series expansion technique
resembled the earlier spin-wave approximations for the Heinsenberg model. The
expansions of Domb, Rushbrooke, and co-workers were distinguished from other
approximation methods in that the procedure was systematic and based on exact
power series expansions of the free energy. Although at first sight the series expan-
sions were a numerical method offering no physical insight, the combinatorial
problem in calculating coefficients in the series did entail physical considerations
suggestive of the processes entailed in critical behavior. The series expansions per-
mitted estimation with considerable accuracy of the behavior of thermodynamic
functions close to the critical point. Furthermore, they applied to three as well as
two dimensions, and to the Heisenberg and other models as well as to the Ising case.
Beginning in 1961, the technology would be supplemented by bringing to bear the
tool of Padé approximants, which provided a means for continuing the series results
to the critical point.

One of the most important developments in statistical mechanics in the postwar
period was the introduction of field-theory techniques, modeled initially on quan-
tum electrodynamics. We have earlier traced their development in the context of
the electron gas and have noted their use in the problems of superconductivity and
liquid helium. Eventually, the field theory approach would become a common
underpinning for nearly all the various areas of the many-body problem. By 1961,
Pines could appropriately say that “the recent developments in the many-body
problem . . . have tended to change it from a quiet corner of theoretical physics to
a major crossroad.”?

The application of field theory to statistical mechanics had analogies with earlier
cluster expansions and with the use of coupled integral equations for classical »-
particle distribution functions. In the 1940s the classical coupled integral equations
for the distribution functions had been developed by Born and Green, Kirkwood,
and Bogoliubov.*”

The use of diagrams in the finite temperature quantum many-body problem may
be traced in large measure to the pioneering work of Takeo Matsubara at the
Research Institute for Fundamental Physics in Kyoto in 1955.52 Matsubara
approached the calculation of the partition function of many-body systems with
interactions by introducing “explicitly the quantized field of particles and uti-
liz[ing] the various technigues of operator calculus in quantum field theory as far
as possible in evaluating the quantum-statistical average of the field quantities.” As
he stated in his abstract,

the grand partition function, which is a trace of the density matrix expressed in
terms of field operators, can be evaluated in a way almost parallel with the evalu-
ation of the vacuum expectation values of the S-matrix in quantum ficld theory,
provided that appropriate modifications in notation and definition are made.
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Some physicists developed perturbation theories for the many-body problem at
finite temperatures, and time-dependent Green’s functions (generalization of those
introduced by Matsubara) were variously defined, the differential equations they
satisfy derived, and theorems about them proved. Crucial to making thermal
Green’s functions into a practical calculational tool was the discovery by Ryogo
Kubo of the boundary conditions that they obey. The boundary conditions, a form
of periodicity in imaginary time, exploited the similarity, first recognized by Felix
Bloch in his 1932 Habilitationsschrifi (Chapter 2), of the thermal density matrix
and the Heisenberg time-development operator for imaginary times.”” Primarily,
interest lay in understanding normal properties of metals, superconductivity, and
superfluidity. Field-theory methods and language were eventually brought to bear
on critical phenomena, and by the early 1970s, Wilson could rightly state that “the
efforts of many years to apply Feynman diagram methods to critical phenomena
finally succeeded.”**

How far had physicists come by the 1960s in understanding phase transitions?
The question concerns underlying scientific objectives—how different researchers
would define an “adequate understanding’ of phase transitions and critical phe-
nomena. Ernst Mach might have considered it sufficient for an elaborate numerical
calculation based on the canonical ensemble to yield the experimental curves for
thermodynamic functions in the critical region. Ehrenfest might have insisted
rather that physical insight into the nature of the process is of central importance.
Philosophical attitudes, rarely articulated in the published articles, were muted by
the positivism dominating physics in the United States and Western Europe since
the Second World War. The inclinations of leading physicists of an earlier genera-
tion—Bohr, Einstein, Planck, Schrodinger—had been intensely philosphical;
Bloch and Peierls, by contrast, expressed a sentiment characteristic of the younger
generation when they complained of Bohr’s preoccupation with fundamental
issues as a distraction from the challenging task of physics to calculate answers.’*
By the end of the Second World War, the antiphilosophical bias had hardened
among physicists.>*

The appeal of a theory of phase transitions was that it could potentially encom-
pass the most diverse physical systems. To the extent that the primary objective of
such a theory was to provide a simple and lucid description of the physical and
mathematical origin and nature of the discontinuities and singularities of otherwise
smooth functions describing macroscopic matter, the Weiss field and early kinetic
theory models, such as that of van der Waals, had been major steps. But adequate
mathematical description required exact calculations so complex as to constitute a
subject of study in their own right; the primary objective might appear, at least tem-
porarily, forgotten. Increasingly after the war the focus was on the exact nature of
the singularities and the precise “critical exponents.”

The discrepancy between the logarithmic singularity of the Onsager solution and
all previous results had highlighted the issue. Once identified as crucial, the question
could and did engender a variety of approaches and a fairly well-defined general
research program to calculate and measure those exponents. The laborious series
expansions were a natural and fruitful part of such a research program. The ther-
modynamic theories reflected the natural requirement that phase transitions and
critical phenomena had somehow to fit into general thermodynamics, and the
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description in terms of correlation functions, so closely related to scattering exper-
iments, fluctuations, and the theory of steady-state irreversible phenomena, linked
critical phenomena to other portions of physics. Through subsequent progress by
renormalization group techniques, coupled with extensive computer simulation,
the theory of critical phenomena came to fruition,

8.3 Conclusion

A number of common themes and elements unify the subfields of collective phe-
nomena. Among them are the concepts of long-range order, changes of symmetry
in phase transitions, collective modes, low-lying excitations above the ground state,
Bose-Einstein condensation, pairing, broken symmetry, order parameters, and
macroscopic quantum phenomena. Although certain of these unities were recog-
nized well before the Second World War, even though often phrased in different
language, recognition alone did not weld the subfields together. And although indi-
viduals did occasionally cross over among subfields in their work (e.g., Landau on
helium, superconductivity, and phase transitions; Fritz London on superconduc-
tivity and helium), the communities of researchers working on different problems
of collective phenomena did not generally see themselves as working under a com-
mon umbrella. Only very gradually, in the 1950s and 1960s, did these subcom-
munities and subfields coalesce around the unifying strands.

As an illustration of the intellectual unification of the subfields, consider the
development of the concept of a spatially varying order parameter to describe the
broken-symmetry states of superconductivity and superfluidity. The notion of an
order parameter distinguishing a condensed state can be traced back to the local
magnetization in the Weiss theory of ferromagnetism (Chapters 2 and 6). Bloch, in
his Habilitationsschrifi on ferromagnetic domain walls, then generalized the notion
to spatially varying situations and showed how to calculate the energy in terms of
the order parameter.”” The idea was soon picked up by Landau in his 1935 theory
of phase transitions,’” and was eventually introduced into superconductivity in the
1950 Ginzburg-Landau theory.”® With Gor’kov’s 1957 formulation of the BCS
theory of superconductivity in terms of diagrammatic field theory and his subse-
quent derivation of the Ginzburg-Landau theory from BCS, the role of a spatially
varying order parameter characterizing the superconducting state became estab-
lished.>!

The recognition of an order parameter to describe superfluidity in helium came
through a basically independent route. The idea was implicit in London’s 1938 pic-
ture of helium undergoing Bose—Einstein condensation into a single macroscopic
quantum state,**? and was also probably in the back of Onsager’s mind when he
argued, in 1949, that the vorticity had to be quantized. (He certainly understood its
role in superconductivity by the time of the flux quantization experiments.) As
early as 1951, O. Penrose suggested how the single-particle correlation function of
a Bose fluid would exhibit long-range order in terms of what we now recognize as
the order parameter.”* But an order parameter that was possibly spatially varying
did not enter into any discussion of the microscopic behavior of helium IT until the
work of Pitaevskii and Gross in 1961.%* Aside from quantization of circulation, the
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concept would become useful only when Josephson and Anderson, in the context
of tunneling between superconductors, demonstrated the importance of the phase
of the order parameter.”® The commonality of the order parameters used to
describe the broken symmetry in both superconductivity and helium superfluidity
was recognized by workers in the field by the early 1960s, and was codified in Yang’s
review of “off-diagonal” long-range order.”® By this point, the two phenomena
were seen as similar manifestations of quantum mechanics on a macroscopic scale.

The growing application in the late 1950s of diagrammatic field-theory methods
(Feynman diagrams and Green’s functions) led to a general theoretical framework
for collective phenomena. Although the first diagrammatic techngiues were intro-
duced into problems of collective phenomena in a classical context—the cluster
expansions—the modern techniques had their root in work on quantum electro-
dynamics after the Second World War. As we have seen, these techniques grew
independently in the study of the electron gas and of nuclear matter, were extended
to finite temperature by Matsubara and others,”*” were first applied to neutral Fermi
systems by Migdal and Galitskii,”*® and were then applied to superconductivity by
Gorkov and to hetium by Beliaev and by Hugenholtz and Pines.*®

The war aided this development by providing experimental technologies that
contributed to the development of quantum electrodynamics,** by increasing the
funding for solid-state physics (Chapter 9), and by making it fashionable for those
talented in physics and mathematics to enter solid state and work on applied prob-
lems. By the 1950s, solid-state theory had clearly developed from an area in which
practitioners worked on rather abstract problems of ideal solids (Chapter 2) to one
in which physicists could deal with the physics of solids.

The connection of the many-body problem to field theory helped as well to fer-
tilize high-energy physics. For example, the concept of broken symmetry and the
accompanying Anderson-Higgs mechanism has played a major role in theories of
elementary particles, such as the unified theory of electroweak interactions. Just as
solid-state physics had been a proving ground for quantum mechanics in the late
1920s and early 1930s (Chapter 2), collective phenomena problems would even-
tually serve as a source of ideas as well as a testing ground for quantum field theory.

By the late 1950s, approaches to collective phenomena in different physical con-
texts—the electron gas, superconductivity, helium, and nuclear matter—had con-
verged sufficiently to define a field of ““many-body physics.” An international com-
munity working on various aspects of the problem had formed and begun to meet
regularly at specialized conferences and to train students. The first major sympo-
sium on the many-body problem was held in January 1957, at the Stevens Institute
of Technology, where relationships between theoretical work in these various areas
were examined and put into perspective. The Les Houches summer school of 1958,
entitled “The Many-body Problem” and organized by Nozi¢res, included courses
by Schrieffer on the theory of superconductivity; Huang on the hard-sphere boson
gas and the binary collision approach of Lee and Yang; Brueckner on the applica-
tion of many-body theory to nuclear matter and other problems; Bohm on collec-
tive coordinates; Pines on electrons, plasmons, and phonons; Beliaev on the Bogo-
liubov canonical transformation method; and Hugenholtz on perturbation theory
of many-fermion systems.>*' The second major meeting on the many-body prob-
lem, held at Utrecht in June 1960 and attended by several leading Soviet physicists,
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added phase changes, a problem of continuing interest in the Netherlands, to the
topics covered at the Stevens meeting.**

Until the 1960s, phase transitions remained somewhat apart from the streams
that converged into many-body physics. However, as superconductivity and super-
fluidity became better understood, the attention of many-body physicists began to
turn to applications of their proven methods to problems of critical phenomena.
Important examples were the studies of the critical behavior of superfluid *He by
Patashinskii and Pokrovskii, and by Josephson.*** With the development of renor-
malization group techniques starting in the mid-1960s, this area too came under
the umbrella, and the study of collective phenomena had come together as a single
area of the physics of condensed matter.
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