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Pre-World War 11 roots

Screening of charges: Debye and Hiickel, Ziirich 1922

short ranged 1nteractions between
charges

Classical plasmas: Langmuir (GE) 1925-29

understanding vacuum tubes =>
theory of classical plasmas




Correlation energy of electrons in metals: A o
Wigner, 1934, 1938 |

how to go beyond simple Fermi gas of
electrons to understand binding of real metals?

Specific heat of electron gas and screening:
Bardeen 1936-38

(Owac 421)




Post-World War II routes to the field-theoretic
approach to condensed matter physics

Quantum electron gas
Nuclear matter
Theory of Fermi liquids

BCS theory of superconductivity

Superfluid “He



Quantum electron gas:

D. Bohm (Berkeley, WWII) works on plasmas, synchrotron
radiation; continues at Princeton with D. Pines and E. Gross.

1947 Shelter Island Conference on QED : g¢'1'b‘“" |
Bohm—Pines theory of electron gas < QED vacuum R P
Schwinger’s canonical transformations i' h

1948 Pocono meeting
Bohm realizes from Schwinger that dynamical screening of electrons in
plasmas <> renormalization in quantum electrodynamics.

Bohm-Pines: plasmas oscillations, single particle modes, equations of
motion, random phase approximation (RPA).

Gell-mann--Brueckner 1956 electron gas correlation energy

sum bubble diagrams to
remove Coulomb divergence.

Matsubara 1955!




Theory of nuclear matter

Understand binding and saturation of extended nuclear matter
(neutrons and protons) in terms of nuclear forces.

Early application of Feynman diagrams to many-body problem

Brueckner 1955
Bethe-Goldstone 1955

Theory of Fermi liquids

Landau theory of Fermi liquids, 1957
exact description of strongly interacting system
in terms of quasipartilces -- application to He liquid

Derivation by Luttinger, Nozieres, 1962

Galitskii- Migdal, microscopic calculations, 1957 LevoavwovicL:?iauwss



BCS Theory of Superconductivity, 1956-7

BEC

Bohm-Pines => Bardeen at Princeton 1950.
Pines to Urbana 1952.

nolecules

Strong coupling polaron problem. Lee, Low & Pines, 1953

Quantum field theory connections:
Lee’s intermediate coupling theory in polaron
Tomonaga — 1D strongly coupled electron gas.

Bardeen: “it was becoming clear that [quantum] field theory might be
useful in solving the many-body problem of a Fermi gas with attractive
interactions between the particles."”

Cooper (nuclear and field theory at Columbia) brought field theory 1deas to

Urbana .

Bardeen-Pines effective interaction, 1955 — phonons + Coulomb = attractive

L. Gor’kov 1958: formulation of BCS theory diagramatically

Immediate application to nuclei, A. Bohr, B. Mottelson & D. Pines, 1958;

and neutron stars, Migdal, 1959.



F1c. 1. Energies of first excited
intrinsic states in deformed nuclei,
as a function of the mass number.
The experimental data may be
found in Nuclear Data Cards [ Na-
tional Research Council, Washing-
ton, D. C.] and detailed references
will be contained in reference 1
above. The solid line gives the
energy 6/2 given by Eq. (1), and
represents the average distance
between intrinsic levels in the odd-
A nuclei (see reference 1).

The figure contains all the
available data for nuclei with
150<4 <190 and 228 < 4. In these
regions the nuclei are known to
possess nonspherical equilibrium
shapes, as evidenced especially by
the occurrence of rotational
spectra (see, e.g., reference 2).
One other such region has also been
identified around 4=25; in this
latter region the available data on
odd-4 nuclei is still represented by
Eq. (1), while the intrinsic excita-
tions in the even-even nuclei in
this region do not occur below 4
Mev.

We have not included in the
figure the low lying K=0 states
found in even-even nuclei around
Ra and Th. These states appear to
represent a collective odd-parity
oscillation.

Energies of first excited states:
even-even (BCS paired) vs. odd A (unpaired) nuclei

EXCITATION SPECTRA OF NUCLEI

o even-even nuclei
x odd-A nuclei

Energy gap




Superfluid “He

| (-

quantized vortices

Brueckner and Sawada (U. Penn) 1956 -- diagrammatic
approach

S. Beliaev 1956 -- generalization of electron gas calculations
to formulate Bogolioubov canonical transformation
diagrammatically

E. Gross and L. Pitaevskii1 1961 -- independently introduce
spatially dependent order parameter — earlier treated as a
numerical parameter in the theory. cf. Ginzburg-Landau

Superfluid *He?
Brueckner & Soda 1960, Anderson & Morel 1961,
Balian & Werthamer 1963



Putting it all together — Green’s function formalism

Basic tool 1s propagators or Green’s functions as in QED —
Feynman and Schwinger

Work on many-body problem at zero temperature — how to
generalize to do statistical mechanics at non-zero temperature?

Diagrammatics for partition function: Matsubara, A New Approach
to Quantum-Statistical Mechanics, 1955

“the grand partition function, which is a trace of the density matrix
expressed in terms of field operators, can be evaluated in a way
almost parallel with the evaluation of the vacuum expectation
values of the S-matrix in quantum field theory, ... .”

Introduction of imaginary time: t C [0,-18 | where = 1/KT.



Statistical mechanics in terms of imaginary time:

| Rudolf Peierls, Werner
Heisenberg; (rear) G. Gentile,
~ George Placzek, Giancarlio Wick,
- Felix Bloch, Victor Weisskopf, F.
& . Sauter: Leipzig, 1931

H/T

Statistical density matrix € —>

time-evolution operator e HE/E ot = —ifl/ T

No deep underlying physics!

F. Bloch, Habilitationsschrift:
Zur Theorie des Austauschproblems und der Remanenzerscheinung der

Ferromagnetika, Zs. Phys. 74 (1932): 295-335.



Matsubara focusses on calculating partition function 7 = Tre PH

of interacting system, H=H, + H,,
cf. that of non-interacting system

exp (—BH) =exp(—pH,) -5 (B)
Expands in terms of perturbation H,

$@ =33~ du e [+ [dtr @) ) B0

n=0 0

=S} (—1)"/n! |- | P[H, (6) -+ H, () oyl

P = time ordering from 0O to 3

Diagrammatic expansion of partition function




JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN Vol. 12, No. 6, JUNE, 1957

Statistical-Mechanical Theory of Irreversible Processes. I.

General Theory and Simple Applications to Magnetic
and Conduction Problems

By Ryogo KUBO
Department of Physics, University of Tokyo
Received March 2, 1957

Understanding boundary conditions in imaginary time.

Derivation of Onsager relations in terms of thermal
correlation functions

Kubo relations for transport coefficients, viscosity and
conductivity 1n terms of correlation functions



A few papers from U.S. East Coast on development of
quantum field theory for the many-body problems, c. 1960

P.C. Martin & J. Schwinger, Theory of many-particle systems,
Phys. Rev. 115, 1342 (1959)

J.M. Luttinger and J.C. Ward, Ground-state energy of a many-fermion
system. 11, Phys. Rev. 118, 1417 (1960)

J. Schwinger, Brownian motion of a quantum oscillator
J. Math. Phys. 2, 407 (1961) -- the round trip contour

GB and L.P. Kadanoff, Conservation laws and correlation functions,
Phys. Rev. 124, 287 (1961)

GB, Self- consistent approximations in many body systems,
Phys. Rev. 127, 1391 (1962)

L.P. Kadanoff and GB, Quantum statistical mechanics (1962)



PHYSICAL REVIEW VOLUME 115, NUMBER 6 SEPTEMBER 15, 1959

Theory of Many-Particle Systems. I*}

Paur C. MARTIN AND JULIAN SCHWINGER
Lyman Laboratory of Physics, Harvard Universily, Cambridge, M assachusetls
(Received March 20, 1959)

' The many-body problem has been studied with the aid of
yerturbation theory by many authors. This paper will not draw
n any results of these works but has various points of contact
vith them. We mention thé work ol 1. Matsubara, LTogr.

heoret. Phys. (Kyoto) 14, 351 (1955) ; K. M. Watson Ph)s Rev.
103, 489 (1956}; W. Riesenfeld and K. M. Watson, Phys. Rev.

eXpliCit boundary G< N, -ir(rl; r,t,) — ___L__e—w Tr[e-— i)‘e_ tNA— 1'111’(1/2')
conditions on single XY(r, t+r)i (') ]
particle Green’s fcns =4 AGs (rt47; Y1),

implementation 1n terms

of Fourier sums over discrete (it ) veven (B.E.)
. EXpl—1 .
“Matsubara frequencies” AT, 0dd (D)




Green’s function look-up sheet

Greater and lesser correlation functions:

(B(1)91(2)),
(¥'(2)¥(1))

00 y £ y
Green’s function in complex frequency planc: REfRIE / 62{_@ A(p,w)
—0 & 2 — W

Retarded and advanced Green’s functions for real frequency

* dw A(p,w) . * dw Alp,w
/ i tin—w |CGoewpwr) = lim / Q_ﬂ'%
o — 00 i

Gret(p,wi) = lim — :
rens o 2T Wy + 1) — W n—0+

n—0+
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... and in Moscow at the time, quite independently

L.D. Landau, N.N. Bogoliubov, A. A. Abrikosov, L.P. Gorkov, L.E.
Dzyaloshinskii, A.B. Migdal, L. Pitaevskii, D.N. Zubarev, L. Keldysh

N.N. Bogoliubov & S.V. Tyablikov, Retarded and advanced Green
functions in statistical physics, Sov. Phys Doklady, 4, 589 (1959).

D.N. Zubarev D. N., Double-time Green functions in statistical physics,
Soviet Physics Uspekhi 3(3), 32 (1960).

L.V. Keldysh, Diagram technique for nonequilibrium processes, ZhETF
47,1515 (1964) [Sov. Phys. JETP 20, 1018 (1965)].

BOOKS:

A.A. Abpuxkocos, JI.II I'opekoB & U.E JI3sutomuHckui, Kearmososie
nojesvle meopemuueckue Mmemoovl 8 cmamucmudeckou gusuk, 1961
(English edition, A. A. Abrikosov, 1. E. Dzyaloshinskii, and L. P. Gor'kov,
Methods of Quantum Field Theory in Statistical Physics 1963).

Also ZhETF 36, 900 (1959) [(Sov Phys. JETP 9, 636 (1959)].

V.L. Bonch-Bruevich & S.V. Tyablikov, The Green Function Method in
Statistical Mechanics (1962).



Preserving the conservation laws, gauge invariance, Ward identities

How does one guarantee that approximations to correlation functions (e.g.,
2 particle Green’s functions) maintain gauge invariance and satisfy particle
number, momentum, and energy conservation?

operator particle-conservation law

Time-ordered (T) correlation functions should obey

) o _ = .
(f)_t<T (p(rt)O(r't))) + V - (T'(5(rt)O(r't)))

= ([p(rt), O(r't)]))o(t — t').

(@ 1s arbitrary operator) But even many reasonable approximations do
not!!! Not enough to conserve particle number, momentum, and energy
at the vertices 1n diagrams.
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OCTOBER 15, 1961

Conservation Laws and Correlation Functions

GorpoN Bavyu Axp Leo P. KApaNory
Institute for Theoretical Physics, Unsversily of Copenhagen, Copenhagen, Denmark
(Received May 15, 1961)

In describing transport phenomena, it is vital to build the
conservation laws of number, energy, momentum, and angular
momentum into the structure of the approximation used to
determine the thermodynamic many-particle Green'’s functions.
A method for generating conserving approximations has been
developed. This method is based on a consideration, at finite
temperature, of the equations of motion obeyed by the one-
particle propagator G, defined in the presence of a nonlocal
external scalar field U, Approximations for G(U) are obtained
by replacing the Gi(U) which appears in these equations by
varioug functionals of G(U7). If the approximation for Gy(U)
satigfies certain simple symmetry conditions, then the G(U) thus
defined obeys all the congervation laws, Furthermore, the two-
particle correlation function, generated as (3G/8U)yp==L, in
terms of which all linear transport can be described, will obey all
the conservation laws as well as several essential sum rules, such
as the longitudinal f-sum rule.

Several examples of conserving approximations are described.

The Hartree approximation, Go(U)=G(U)G(U), generates the
random-phase approximation for L. The Hartree-Fock approxi-
mation for G(U) leads to a natural generalization of the random-
phase approximation in which hole-particle ladder diagrams are
summed. Another conserving approximation for G(U') is obtained
by expanding the self-energy to first order in the many-particle
scattering matrix 7'(U7). This T is obtained by summing ladder
diagrams in which the sides of the ladder are composed of G(U)'s.
The resulting L equation, which involves coefficients proportional
to | T'|3, is analogous to the linearized version of the usual Boltz-
mann equation. Finally, in order to obtain a description of
collisions in a plasma, the self-energy is expanded to first order
in a dynamically shielded potential, V,(U). This potential is
obtained by summing bubbles composed of two G(U)'s. The
resulting L equation is similar in structure to a Boltzmann
equation in which the collision cross section is proportional to
|Vl

'




PHYSICAL REVIEW VOLUME 127, NUMBER 4 AUGUST 15, 1962

Self-Consistent Approximations in Many—Body Systems

GorpON Baym*
Institute for Theoretical Physics, University of Copenhagen, Copenhagen, Denmark

(Received March 26, 1962)

This paper investigates the criteria for maintenance of the macroscopic conservation laws of number,
momentum, and energy by approximate two-particle correlation functions in many-body systems. The
methods of generating such approximations are the same as in a previous paper. However, the derivations
of the conservation laws given here clarify both why the approximation method works and the connection
between the macroscopic conservation laws and those at the vertices.

Conserving nonequilibrium approximations are based on self-consistent approximations to the one-
particle Green’s function. The same condition that ensures that the nonequilibrium theory be conserving
also ensures that the equilibrium approximation has the following properties. The several common methods
for determining the partition function from the one-particle Green’s function all lead to the same result.
When applied to a zero-temperature normal fermion system, the approximation procedure maintains the
Hugenholtz-Van Hove theorem. Consequently, the self-consistent version of Brueckner’s nuclear matter
theory obeys this theorem.

Generate approximations starting with a functional @ (G)
of the single particle Green’ s function G.

Variation of ® with respect to G gives the self-energy 5(G] = tr B5C

self-consistently for G




Hartree-Fock

Ladders (t-matrix)

Rings (shielded potential, GW)

All conservation laws obeyed by approximate correlation functions,
including Galilean invariance.

All ways of calculating thermodynamics (e.g., from G, or coupling
constant integration) give same results:

Partition function InZ = £[®|G] — tr 2G + tr log(—G)

Leads to non-equilibrium theory with same correlations as in equilibrium




Non-equilibrium Green’s functions on round trip contour

tr [ PUH-RNIT (o= dtex (1)1 (2))

GNP UNCHO I C(12;U) = —i _
tr [e—.B(H—ﬂJV)T (e_z j‘ dtHext)]

in presence of external driver, e.g.

= / drU(r,t)p(r, t)

on contour 1n complex time plane

Equilibrium correlations built in on time interval (0, -1 3)




Non-equilibrium Green’s functions on round trip contour

On the contour

t, on upper contour
t, on lower contour

Matrix Green’s functions Matrix self-energy
G(tu,t,) G(tu,ty) DGy Ty ) 2 B )
G(tg,t,/u) G(tg,tg) Z(tg,t;) Z(tg,tg)
Keldysh approach




or work 1n terms of the correlation functions

g (oRT) = [ drde= 7541 51 (1))

9” (pwRT) = / drdte™ T (Y (1)9T(1))

Using equation of motion for G(11°) on round-trip contour construct
Eqgs. for g~ (and g”) for slowly varying disturbances:

N < 0 ,.< .
d‘i - C),.L(U-FReZ) + £ .Vrgs — Ve (U + ReX) - Vpg°
ot Ow m

ORe g 0¥~  0ORe g 0¥~
ow Ot ot Ow

+V,Reg-VrpY< —VgrReg-V,L*
:_Z>g<+2<g>

Generalized non-equiliubrium Boltzmann (or Kadanoff-Baym) equations



Keldysh remarks on the original motivation of his work:

I agree completely that idea of contour was 1n the air and not only 1n
Harvard. My 1964 paper ... after very brief introduction starts with
the reference "Following the method of Konstantinov and

Perel' [Konstantinov, O. V., and Perel, V. 1., 1960, Zh. Eksp. Teor.
Fiz., 39, 197; [Sov. Phys. JETP, 1961, 12, 142].]... . In this paper
published in 1960 authors used exactly the same evolution contour
which Schwinger uses 1n his paper in the J. Math. Phys.
Unfortunately their perturbation theory 1s very much different from
the standard field theoretical and 1s deprived of universality, elegance
and many other advantages of the Schwinger-Feynman-Dyson
technique. To improve the Konstantinov-Perel’s theory was the
original motivation of my study.




Leonid Keldysh reminiscences about 1962 notes by Bob Mills

There were neither PCs nor Xerox in 1960s. And the preprints were
relatively new information tool. Preprints were printed in some
restricted number and sent to the narrow list of colleges supposed to
be interested in the subject. My name was absolutely unknown to
the Quantum Many Body community. So Mills did not sent his paper
to me or anybody around me. So I was absolutely unaware of its
existence until after submitting my paper to JETP. I came to the
Landau seminar ... After seminar I. Dzyaloshinskii told me
"somewhere I have heard something about Green’s Function
matrices". And later called to me and told about that Mills preprint.
But warned "be careful: pre-print two years old but still nothing
published. Probably something is wrong". There was no possibility
to make any copy to check that warning. However I was not worried
after 1t became clear that preprint 1s only about thermodynamically
equilibrium states and thus did not overlap with my paper. Still that
was the real problem for me: can I refer to the text which 1s neither
published nor sent to me? Finally I decided to interrupt publishing
and 1nsert the reference. I wonder whether did exist that time any
other references to this preprint beside that in my paper.



By early 1960’s had unified quantum field theory of many-body
systems encompassing:

interacting quantum many-body systems in equilibrium and
perturbed out of equilibrium, from condensed matter to nuclear

BCS paired systems and Bose-Einstein condensation and other
macroscopic quantum phenomena. Broken symmetry.

Relativistic quantum field theory at finite temperature
(rediscovered in 70’s by particle theorists!); phase transitions
in the early universe, quark-gluon plasmas, ...

Developed in U.S., Soviet Union, and Japan, albeit with little
cross-fertilization

"the recent developments in the many-body problem ... have
tended to change it from a quiet corner of theoretical physics
to a major crossroad.” Pines ca. 1961
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