
A history of entanglement

Jos Uffink

Philosophy Department, University of Minnesota,
jbuffink@umn.edu

May 17, 2013



Basic mathematics for entanglement of pure states

I Let a compound system consists of two subsystems, with
Hilbert space H1 and H2, respectively.

I A state of the compound system is characterized is a unit
vector in the tensor product space H1 ⊗H2,

|Ψ〉 =
∑
ij

cij |ψi 〉|φj〉

For arbitrary orthonormal bases {|ψi 〉} in H1 and {|φj〉} in
H2,

I Except for the very special case that cij = aibj , |Ψ〉 is not
factorizable: there are no states |ψ〉 ∈ H1, |φ〉 ∈ H2 such
that

|Ψ〉 = |ψ〉|φ〉

I In that case, the state |Ψ〉 is an entangled state.



I This formula, |Ψ〉 = |ψ〉|φ〉 invites a simple interpretation: the
state of te compound system is such that each of the
components are in states |ψ〉 and |φ〉 respectively. For
entangled states |Ψ〉 that simple interpretation is blocked.

I For any given o.n. basis {|ψi 〉} in H1, one can always write

|Ψ〉 =
∑
i

ci |ψi 〉|φi 〉

but the {|φj〉} in H2 will not generally be an orthonormal
basis.

I Thanks to Schmidt’s biorthogonal decomposition theorem one
can always find two special orthonormal bases (depending on
|Ψ〉, such that |Ψ〉 takes a simpler form:

|Ψ〉 =
∑
i

ci |ψi 〉|φi 〉

I But: the choice of such bases is not unique iff from some
i , i ′ : |ci | = |ci ′ |.

I In general there is no corresponding ”triorthogonal
decomposition” for systems with three or more components
(but if there is one, it is always unique). (Elby & Bub, 1994).



why is the question of orthonormal bases relevant?

Only orthonormal bases are associated with values of physical
quantities (observables). (eigenstate eigenvalue link)
It matters to what we want to associate to the unobserved particle:
”the value of an observable of that particle?” or”just some
quantum state? ”



”



Schrödinger 1935/6

I the term ”entanglement” (Verschränkung) was coined by
Scḧrodinger in 1935.

I within a year, he wrote three papers on the topic:
“Die gegenwartige Situation in der Quantenmechanik”
Die Naturwissenschaften 23 (1935) 807–812, 823–828,
844–849.
“Discussion of probability relations between separated
systems . Proc. Cambr. Phil Soc. 31 (1935) 555-563.
“Probability relations between separated systems.” Proc.
Cambr. Phil Soc. 31 (1936) 446–452.



”When two systems of which we know the states by their
respective representatives, enter into temporary physical
interaction due to known forces between them, and when after
a time of mutual influence the systems separate again, then
they can no longer be described the same way as before, viz.,
by endowing each of them with a representative state of its
own. I would not call that one but the characteristic trait of
quantum mechanics, the one that enforces its entire departure
from classical lines of thought. By the interaction the two
representatives (or ψ-functions) have become entangled.”



Entanglement before Schrödinger : EPR

I Schrödinger, of course, responded to the EPR paper of 1935.

I EPR exhibited a special entangled state with multiple
biorthonormal expansions:

|Ψ〉 =

∫
dpe ipa | − p〉|p〉 =

∫
dq |q − a〉|q〉

I EPR used to example to argue that the theory was incomplete.

I Einstein said that the EPR paper was “smothered in the
formalism (Gelehrsahmkeit).



Prehistory of entanglement II

I How did previous authors look at entangled states?

I Born “Zur Quantenmechanik der Stossvorgänge” (1926)

If one wishes to calculate quantum mechanically the
interaction of two systems, then, as is well known, one
cannot, as in classical mechanics pick out a state of the
one system and determine how this is influenced by a
state of the other system, since all states of both systems
are coupled in a complicated way. This is true also [. . . ]
in a collision [. . . ]. Yet, there is no escape from the
conclusion that before, as well as after the collision a
definite state must be specifiable for the atom and
likewise [. . . ] for the electron. The problem is to
formulate mathematically this asymptotic behavior of the
interacting particles. I did not succeed in doing this with
the matrix form of quantum mechanics but did with the
Schrödinger formulation.



Born proceeds by assuming that, initially, the two systems are in a
product state

|Ψ〉i = |ψ〉|φ〉

where the incident particle state |φ〉 is a a momentum eigenstate
(i.e. a plane wave incident form the z-direction upon the target
atom in energy eigenstate |ψ〉.
After the interaction, he gives the result in the form

|Ψ〉f =
∑
i

ci |ψi 〉|φi 〉

where the states |φi 〉 refer to momentum eigenstates scattered in
different directions, and the target atom states |ψi 〉 are energy
eigenstates that have been (de)excited by the interaction.



He concludes:

“If one translates this result into terms of particles, only one
interpretation is possible: ci gives the probability∗ for the
electron, arriving from the z-direction, to be thrown out into
the direction designated by |φi 〉. Schrödinger’s quantum
mechanics therefore gives quite a definite answer to the
question of the effects of the collision; but there is no answer
to the question “what is the state after the collision?” but
only to the question “how probable is a specified outcome of
the collision?” [. . . ].

∗ Addition in proof: more careful consideration shows that the
probability is proportional to |ci |2.

Apparently, Born is well aware of the non-classical nature of
entangled states. But he immediately gives an interpretation in
terms of properties possessed by the components in an entangled
state. Clearly he did not realize that the decomposition of
entangled states could be non-unique.



1935- 1964
I This period shows very little development of the concept of

entanglement.
I With one important exception: Bohm’s (1951) book on QM

contains a chapter on the EPR paradox that replaces the
original EPR state with a singlet.

|Ψ〉 =
1√
2
| ↑〉| ↓〉 − | ↓〉| ↑〉

I which is much simpler, and the starting point of all
subsequent authors.
It also evades some problems of EPR. we consider two
particles that have interacted and are then supposed to
separate to distant locations. We then contemplate making a
momentum measurement on one of them, and predict the
outcome of a momentum measurement on the other to assign
momentum eigenstates to both. But, momentum eigenstates
(plane waves) overlap. What sense would it then have to say
the systems are separated?



1964 -1985 The Bell inequalities

I Bell showed that any local hidden variables theory had to obey
certain experimentally accessible inequalities, which were
violated by the singlet state.

I Bell’s result brought a significant change: it showed that
incompleteness of QM was not the core issue.

I Moreover, the experimental testability of the inequalities
meant that one did not even have to assume the validity of
QM.
Most theoretical effort after Bell’s initial presentation was
directed at cutting away superfluous assumptions.
Bell’s original inequalities assumed that the HV theory was
deterministic. The Clauser-Horne-Shimony-Holt version of his
inequality avoided that assumption.

|〈AB〉+ 〈AB ′〉+ 〈A′B〉 − 〈A′B ′〉| ≤ 2

I They are violated by many entangled states, not only the
singlet. But singlet does give maximal violations.



±1990-present Entanglement as a resource rather than a
problem.

I A broader interest into developing the theoretical
understanding of entanglement for many particles, mixed
states, and higher-dimensional state spaces.

I Bell inequality violations, nonseparability and entanglement
turn out as different issues

I (But Bell inequality violation ⇐⇒ existence of local hidden
variable model.



Generalization to more particles & mixed states

I Greenberger, Horne and Zeilinger (1989) were the first to
discuss a three-particle entangled state.

|GHZ 〉 =
1√
2

(| ↑↑↑〉 − | ↓↓↓〉)

They showed that for such a state one could get a
contradiction with local realism that did not require testing a
statistical correlation inequality.

I Werner (1989) first provided a general definition mixed states:
they are entangled iff

ρ 6=
∑
i

piρ1i ⊗ · · · ρNi

and separable otherwise.



I He studied a class of mixed states (Werner states)

Wp = (1− p)
1

N
11 + p|GHZ 〉〈GHZ |

These are entangled if p > 1/3, and violate Bell inequalities
only if p > 1/

√
2

Hence entanglement 6 =⇒ BI violation.

I This is also true for 2 particles: Seevinck & J.U. obtained
inequality that is satisfied by all separable quantum states (for
orthogonal spin-directions)

〈AB ′ + A′B〉2 + 〈AB − A′B ′〉2 ≤ 1



multipartite entanglement

I Mermin 1990 derived generalizations of the BI for N-particle
states and showed that GHZ states could violate them with
exponentially increasing factors.

|〈M〉LHV | ≤ 2 |〈M〉GHZ | = 2(N+1)/2

I Svetlichny found a similar but inequivalent set of inequalities.

I The many-particle case also brought a distinction in types of
entanglement, e.g.for N = 3:

(123), (12)3, 1(23) 2(13), (1)(2)(3)

The Svetlichny inequalities provided a hierarchy of bound for
such partial entanglement: If a state N-particle is at most
k-particle entanglement:

〈S〉 ≤ 2(k+1)2



Non-separability without entanglement

Popescu-Rohrlich (1994) showed that some non-classical and
non-quantum model for 2 particles with 2-dimensional state
space could violate the Tsirelson bound they achieved
(without violating the non-signaling condition!)

〈CHSH〉 = 4

Apparently, a violation of separability could have been much
weirder than quantum entanglement permits.



I Bennett et al. provide example of an observable for 2 spin-1
particles for which all eigenstates are separable
(non-entangled) but that is nevertheless not a
product-observable.

I Hence, it is impossible to determine a value of this observable
by local measurements. Again: violation of separability
principle without invoking entanglement.
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