
The analyticity principle in 20th-century physics:
 from the Kramers dispersion formula to dual
 amplitudes and strings

Abstract

Two formulas of great historical resonance in twentieth century
theoretical physics- the Kramers dispersion formula of 1924, the
immediate precursor of Heisenberg’s matrix mechanics, and the

Veneziano dual amplitude of 1968, the direct ancestor of the 
Nambu-Nielsen bosonic string- are continuously connected by a
conceptual strand of enormous importance. The requirement of

analyticity of quantum-mechanical amplitudes, intimately related
to the demands of causality, as a constraint on fundamental physics,

is perhaps second only to the emergence of the local gauge symmetry 
principle in guiding the development of modern microphysical 
theories from relativistic quantum field theory to string theory. 

In this talk, some of the important signposts along the path connecting
these two seminal formulas will be discussed.
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Two remarkable formulas with seminal 
consequences for twentieth-century 

physics:

•Kramers dispersion formula 
for light scattering from 
bound electrons (direct 
precursor to Heisenberg’s 
matrix mechanics)

•Veneziano formula for high-
energy meson scattering with 
duality symmetry (direct 
precursor to hadronic string 
theory)
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Elastic Light Scattering from Atoms-
the Kramers dispersion formula (1924)

... formulae which contain only the frequencies and amplitudes which are characteristic
for the transitions, while all those symbols which refer to the mathematical theory of

periodic systems (i.e. Bohr orbits) will have disappeared (Kramers and Heisenberg,1924)

Methodological Background- Bohr Correspondence Principle
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High Energy Meson Scattering- 
the Veneziano Model (1968)
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field theory

dual model
In dual models, the entire amplitude is given by either the s-channel or the

t-channel resonance sums, but not both!

Veneziano amplitudeA(s, t) =
�(�↵(s))�(�↵(t))
�(�↵(s)� ↵(t))

, ↵(s) = ↵0 + ↵0s

Methodological Background: the Bootstrap Principle, in principle determining masses and 
scattering amplitudes of hadronic resonances uniquely from analyticity, unitarity and crossing
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The Kramers-Kronig Dispersion relation

Ref: La di↵usion de la lumiere par les atomes, M.H.A. Kramers, Atti Congr.
Intern. Fisici, Como, 2, 545-557 (1927)
On the Theory of Dispersion of X-rays, R. de L. Kronig, Jour. Opt. Soc. Amer-
ica, 12, 547-557 (1926)

Equation of motion for classical charged oscillator in external oscillating

electric field

ẍ + �ẋ + !

2
1x =

eE
m

e

i!t

Radiative decay constant � > 0 - radiation reaction due to retarded (no ad-

vanced) radiation. This is a causality requirement. Solution:

P (t) = ex(t)/E = ⇣(!)e

i!t

with
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Note that the singularities (poles) of ⇣(!) are above the real axis:
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Ladenburg-Kramers generalization for atoms in their normal (ground state):

⇣(!) =

X

k

e2

m

fk

!2
k � !2

+ i�k!

Note that although initially defined only for real ! > 0, we can extend ⇣(!) to

negative (real) !, with

⇣(�!) = ⇣⇤(!)

If we include the continuous spectrum, there is also a cut in the complex !
plane beginning at the ionization frequency. Viewing ⇣ as an analytic function

in the complex frequency plane, we have the following situation-

x x x

continuum cutpoles

x x x

) lower half-plane analyticity
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x x xx x x

.

Lower half-plane analyticity allows the Cauchy representation
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assuming that the large semicircular contour gives a vanishing contribution.

Thus
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In terms of real (dispersion) and imaginary (absorption) parts, ⇣(!) ⌘ ⇠(!) +

i⌘(!) :
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⇡
P

Z
d!0
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Kramers (19)
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Causality ) Half-plane analyticity, a more general argument

z

Form a wave packet of incoming waves:

 in(z, t) =

Z
d!g(!)ei!( z

c�t)

The scattering amplitude f(!) then gives the outgoing spherical scattered wave

as

 scat(r, t) =

Z
d!f(!)g(!)ei!( r

c�t)
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Now choose g(!) so the incoming packet arrives at the scattering center at

t = 0:

 in(0, t) = 0, t < 0, with g(!) =

Z +1

0

dt

2⇡
 in(0, t)ei!t

g(!) certainly exists for real !, a-fortiori for Im(!) > 0, where the integral has

an additional real exponential convergence. In fact this implies analyticity of

g(!) in the entire upper-half-plane.

(Note: upper and lower have switched as the modern convention is for our

waves to have the time dependence / e�i!t
).

But causality requires that there be no scattered wave ahead of the incident

one! Thus

 scat(r, t) = 0, t� r

c
< 0

so by the same argument, f(!)g(!) is upper-half-plane analytic. This implies

f(!) cannot have singularities in the upper-half-plane.
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Heisenberg: The Birth of S-Matrix Theory (1942-43) Heisenberg, Sept. 1942
Z. f. Physik 120(1943),513,673:
“The observable quantities in the theory of elementary particles”

The divergence di�culties of quantized field theories led Heisenberg to adopt,
as in the great “Umdeutung” work of 1925, an empiricist attitude:

In this situation it seems reasonable to pose the question “what concepts of
the present theory can also survive in a future one?”, and this question is ap-
proximately synonymous with another, namely “which quantities of the present
theory are observable”. For the future theory should also first and foremost
contain relations between “observable quantities”. Of course, the question as to
which quantities are really observable can only be fully settled once the future
theory is in hand. But even before the final theory is attained, the study of
di�culties in the earlier one can provide clear indications that certain concepts
will have to be abandoned in the future, whereas others are hardly touched by
these di�culties. . .

Wednesday, May 15, 13



In this work Heisenberg introduces the concept of a unitary matrix S con-
necting arbitrary incoming and outgoing multi-particle states.

S

incoming state

scattering
2->3 inelastic
("Emission")

3->2

2->4 processes

3->3 3->4

4->2 4->3 4->4

2->2 elastic

outgoing
state

(Heisenberg (12a))

The implications of unitarity of S are carefully discussed in this work. In
particular,

1. The possibility of writing any unitary matrix S = ei⌘, where ⌘ is Hermitian
suggests abandoning the Hermitian Hamiltonian operator H in favor of ⌘
as specifying the basic physical content of the theory.

2. From the unitarity condition S†S = 1, and writing S = 1 + R, where R
represents the nontrivial scattering in the theory, Heisenberg derives the
nonlinear relation

R†R = �(R + R†)

Here we clearly encounter the fact. . . , that the connections
between the scattering coe�cients contain linear and quadratic
parts...

Wednesday, May 15, 13



In October 1943, Heisenberg presented his results on S-matrix theory in
an “informal” colloquium in Leiden. At the colloquium (M. Dresden, “H.A.
Kramers, Between Tradition and Revolution”, p.454):

Kramers made the penetrating remark that to have any hope that
the S matrix would be determined by general physical principles (and
not by particular forces and potentials), it was essential to consider
the S matrix as an analytic function of the complex momentum
variables.

The importance of this idea was explicitly acknowledged by Heisenberg in a
letter to Kramers a few weeks later:

Since my return I have thought extensively about your idea to
consider the ⌘-matrix as an analytic function. I am more and more
thrilled by your proposal, because I believe that in this way one can
really obtain a complete theory of elementary particles..
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Kramers (Address “Fundamental Di�culties of a theory of particles”, given
at the Symposium on Elementary Particles, Utrecht 14/4/1944):

Heisenberg’s recent investigations concerning the possibility of a
relativistic description of the interaction that is not based on the
use of a Hamiltonian.. Heisenberg considers only free particles and
introduces a formalism (‘scattering matrix’) by means of which the
result of a short interaction between these particles can be described.
..It is interesting that the scattering matrix is also able in principle
to answer the question, in which stationary states the particles con-
sidered can be bound together.These are related to the existence and
the position of zeros and poles of the eigenvalues of the scattering
matrix, considered as a complex function of its arguments.
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The collaboration with Wouthuysen shows that in 1943 (at the time of
Heisenberg’s visit) Kramers clearly understood:

(A) The existence of bound states in a theory is visible in the analytic con-

tinuation of the scattering amplitudes of the theory. In a sense, knowledge of
the ionized states implies knowledge of the bound ones. This is just complete-
ness: 1 =

P
n |n >< n| +

R
dE|E >< E|.

Example: low energy electron-proton scattering amplitude

f(E) / �(1� i

p
me2

~
p

2E
)

which has simple poles at

1� i

p
me2

~
p

2E
= 1� n , n = 1, 2, 3, ...

i.e. when

E = � me4

2~2n2

What Kramers knew (and Heisenberg didn’t) in 1943
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In addition, Kramers almost surely understood
(B) the connection between unitarity and cut singularities (imaginary parts
for real energy) of amplitudes. Heisenberg almost has this! Instead of writing
S = 1 + R, let’s separate the nontrivial scattering matrix as S = 1 + iT , where
now

S†S = 1) T †T = i(T † � T )

Take the matrix element of the T -matrix unitarity condition between a specific
initial state i and final state f :

X

n

T ⇤
nfTni = i(T ⇤

if � Tfi)

For forward scattering, f = i,

2Im(Tii) =
X

n

|Tni|2

This is the famous “optical theorem”. Intuitively, it simply says that parti-
cles scattered out of the forward direction (absorption, in optical terms) appear
in the other directions (ie the states n).
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From the optical theorem

2Im(Tii) =
X

n

|Tni|2

we learn immediately two critical facts:

1. If we analytically continue the forward scattering amplitude Tii to a (real)
energy where there are no available physical states n, Im(Tii) = 0. So we
are dealing with analytic functions which, at least somewhere on the real
axis, are real: they are “real-analytic functions”. The Schwarz reflection
principle then says that the value of such functions in the lower half-plane
is the complex conjugate of the value in the upper half-plane. Hence, for
such amplitudes, upper half-plane analyticity ) lower half-plane analyt-

icity ) analyticity everywhere except for cuts and (possibly) bound-state

poles on the real axis.

2. The discontinuity Im(Tii) of Tii across cuts switches on once physical states
n appear with the energy and momentum of the incoming state i. In other
words, unitarity requires the existence of cuts of the scattering amplitude
on the real axis. The principle of maximal analyticity states that these
are the only cut singularities of the scattering amplitude. Never proved, it
played during the 1960s a central - indeed indispensable- role in S-matrix
theory.
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Let |p > be a particle (atom, proton,..) of four-momentum p, o↵ which we

scatter a photon of four-momentum q = (!,!q̂). If the scattering is in the

forward direction, the final state atom and photon have the same momenta p, q
after, and the scattering amplitude is a function T (p, q) of p and q only.

p

p

q

q

w/2

-w/2

z/2

-z/2

causally connected

causally independent
(microcausality condition)

T(p,q)

atom, proton,..
photon

The methods of quantum field theory developed in the early 50’s allow us

to write T (p, q) in terms of the Fourier transform of a retarded commutator of

the four-vector electromagnetic charge-current operator jµ(x), as follows:

T (p, q) /
Z

d

4
ze

iq·z
✓(z

0
) < p|[jµ(

z

2

), j

µ
(�z

2

)]|p >

Quantum Field Theory and Dispersion Relations

(Ref: M. Gell-Mann, M.L. Goldberger and W. Thirring, PR 95 (1954) 1612.)
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The only interesting dependence of the forward scattering amplitude T (p, q)
is on the photon frequency !, so we normally denote it simply f(!):

f(!) /
Z

d4zeiq·z✓(z0
) < p|[jµ(

z

2

), jµ
(�z

2

)]|p >

/
Z +1

0
dz0

Z
d~zei!(z0�q̂·~z) < p|[jµ(

z

2

), jµ
(�z

2

)]|p >

Now write ! = !R + i!I and note that because the commutator is only nonzero

when z0 � q̂ · ~z > 0 (forward light-cone), existence of the integral for !I = 0

implies even better convergence for !I > 0, i.e. in the upper-half-plane. Well

known theorems of complex analysis imply full upper-half-plane analyticity of

f(!). Repeating the Kramers arguments, we again have

Ref(!) =

2

⇡
P

Z
d!0

!0Imf(!0)

!02 � !2

(Comment and confession: subtractions needed!)
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The 2!2 Scattering Amplitude in Relativistic Field Theory

) the scattering amplitude can be written A(s, t).

A deep consequence of relativity and locality is the crossing symmetry of scat-
tering amplitudes, which says that incoming/outgoing particles can be replaced
by outgoing/incoming antiparticles with the four-momenta reversed. In other
words, the amplitudes for the processes

A(p1) + B(p2) ! C(p3) + D(p4)
A(p1) + C̄(�p3) ! B̄(�p2) + D(p4)

are identical- corresponding to an interchange of the s and t variables. Of
course, for physical scattering s > 0, t < 0, so the t-channel amplitude A(s <
0, t > 0, u) for the crossed process A+C̄ ! B̄+D requires analytic continuation
from the physically accessible region A(s > 0, t < 0, u) for the s-channel process
A + B ! C + D. Once again, analyticity is central!
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The Mandelstam Diagram: Physical Regions for 2-2 scattering

s-channel

t-channelu-channel
s=0

t=0 u=0

physical scattering at fixed negative t, variable s

For scattering of equal mass m particles (e.g. pion-pion scattering), unitarity

requires that imaginary parts of A(s, t) appear at the lowest value of total

energy-momentum squared for any new set of states that can be produced by

the incoming (two) particles. Thus, there is a two-particle cut that begins at

s = (2m)

2
= 4m2

, a three-particle cut beginning at s = 9m2
, etc. These cuts,

starting at positive values of s, are called right-hand cuts. For fixed t, the u-

channel cuts starting at u = 4m2
imply also left-hand cuts in the s variable

running to the left.
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Regge Behavior

For equal mass elastic scattering, s = 4(k2
+ m2

), t = 2k2
(cos (✓)� 1) and a

partial wave expansion for the scattering amplitude reads

A(s, t) /
X

l

fl(s)Pl(cos (✓)) =

X

l

fl(s)Pl(cos (✓))

! t↵n(s), fixed s, t!1

where the partial wave amplitude fl(s) has poles when analytically continued

to complex l at l = ↵n(s) (the so-called “Regge poles”). By crossing, this

means that the behavior of A(s, t) at fixed t, large s is determined by the

exchange of resonances of squared-mass t and spin ↵n(t). The dependence of

↵n(t) was found empirically in the 1960’s to be astonishingly simple:

↵n(t) ' ↵0 + ↵0t
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Finite Energy Sum Rules and Duality

C

R

x x x

large s behavior on contour C
determined by t-channel
Regge exchanges

integral over R determined
by s-channel resonances

Equating the integral along the real axis cut (approximately given by a sum

of s-channel resonances) to the contribution of the circular contour at large s

(approximately given by a sum of exchanged t-channel Regge poles) one arrives

at the concept of Global Duality:

the average of s-channel resonances ' sum of t-channel exchanges

The much stronger concept of Local (or “Exact”) Duality soon followed:

the scattering amplitude can be written exactly as either a sum of s-channel

resonances created by the incoming particles, or as a sum of t-channel resonances

exchanged between the incoming particles

A(s, t) =

X

n

gn(t)

s�M2
n

= A0
(s, t) =

X

n

g0
n(s)

t�M 02
n
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A Toy Model with exact duality: the Veneziano Model (1968)

A model in which the scattering amplitude can be expressed exactly as either

a sum over direct (s) channel resonances or exchanged (t) channel resonances
was found by Veneziano. He proposed

A(s, t) =
�(�↵(s))�(�↵(t))
�(�↵(s)� ↵(t))

, ↵(s) = ↵0 + ↵0s

This is just Euler’s beta function, which can be rewritten exactly in the form
A(s, t) =

P
n

gn(t)
s�M2

n
, where the resonance squared masses are linearly related to

the spin n of the resonance (“linear Regge trajectories”):

M2
n = �↵0

↵0 +
1
↵0n

gn(t) = � 1
↵0

(↵(t) + 1)(↵(t) + 2)..(↵(t) + n)
n!

But by construction, A(s, t) = A(t, s)!, so we can equally well write the scat-
tering amplitude as a sum of exchanged t-channel resonances

A(s, t) =
X

n

gn(s)
t�M2

n

This is completely foreign to conventional local field theory, in which the com-
plete amplitude involves separate s-channel and t-channel resonances, with no
a-priori connection between them!
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q1
q̄1

q2

q2

q̄3q3

q̄4

q̄4

In string theory, there is only a single (dual) amplitude,

and A(s, t) = A0(s, t).

View mesons as bound states of quarks and antiquarks, but connected by

a one dimensional fluctuating string: in this picture ⇡a
(= q1q̄4)-⇡b

(= q2q̄1)

scattering looks like

A Microphysics for Dual Resonance Models:

String Theory (Nambu,Nielsen 1969-1970)
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Final Status of the Analyticity Principle

Although in some very limited cases the required analyticity for S-matrix disper-
sion theory could be established rigorously on the basis of general field-theoretic
principles, in almost all cases, the use of analyticity was a “seat of the pants”
a↵air, justified by vague philosophical mumblings-

A philosophical objection may be raised against the S matrix approach, that

is, that the principle of analyticity has no physical basis, whereas in field theory

it appears related to the notion of microscopic causality. My personal inclina-

tion here is to resurrect the ancient principle of “lack of su�cient reason”. I

assert that it is natural for an S matrix element to vary smoothly as energies

and angles are changed, and that a natural mathematical definition of physical

smoothness lies in the concept of analyticity. The fundamental principle there-

fore might be one of maximum smoothness: the S matrix has no singularities

except where absolutely necessary to satisfy unitarity. There is no “reason” for

it to have any others.(Geo↵rey Chew, 1961)

The most expansive, and rigorous, formulation of the analyticity principle is
to be found in the Hall-Wightman theorem of axiomatic quantum field theory,
which establishes a very large region of analyticity for the n-point Wightman
functions of the theory, continued to complexified Minkowski space, on the ba-
sis of spectral and microcausality axioms. Unfortunately, this theorem has very
little to say directly about the analyticity properties in momentum variables of
the on-mass-shell limits of these functions relevant to S-matrix theory.
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Summary

• The direct empirical character of the amplitudes described in quantum
dispersion theory (in the early 1920s, the forward scattering amplitudes
of photons on atomic or molecular bound states) encouraged the develop-
ment of matrix mechanics as a dynamical formalism relating only directly
observable quantities. One thereby circumvented the conceptual di�cul-
ties engendered by an attachment to classical phase space and Bohr orbits.
In the end, one is led to a fully consistent microtheory (modern quantum
theory) which goes well beyond its empiricist origins.

• In later developments, after the introduction of the concept of the S-matrix
(Heisenberg), and exploitation of the powerful implications of analyticity
ideas, dispersion theory reprises its role as midwife. Here, the conceptual
di�culties to be circumvented were the ultraviolet infinities initially en-
countered in the development of quantum field theory (Heisenberg, 1940s),
and later (1960s) the resistance of the strong interactions to interpretation
in terms of a conventional renormalizable Lagrangian field theory. In this
case, the exploitation of dispersion theory was to lead to a new symmetry
of amplitudes, duality, and eventually to a new microtheory of elementary
particles: string theory. The ultimate consistency and empirical adequacy
of this theory is as yet unresolved.
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