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Learning quantum field theory (QFT) for the first time, after first learning quantum mechan-
ics (QM), one is (or maybe, rather, I was) struck by the change of emphasis: The notion of
the quantum state, which plays such an essential role in QM, from the stationary states of the
Bohr atom, over the Schrödinger equation to the interpretation debates over measurement
and collapse, seems to fade from view when doing QFT. Not that it’s gone - as any physi-
cist will be quick to tell you, QFT is simply a quantum theory, with all the general structure
between QM taken over unchanged. But it’s hardly discussed, when dealing with Feynman
diagrams, path integrals and all the other mainstays of an introductory QFT course.

This was not always so: The QFT of the late 1920s and 1930s developed as a straightforward
extension and generalization of QM, and consequently writing down Schrödinger equations
and calculating the energies of stationary states were the prime concerns of the physicists
working with QFT at the time. But, as is well-known, this early QFT suffered from crippling
defects, most notably the divergence problem, that all calculations appeared to give nonsen-
sical, infinite results, once one went past the first approximation. These difficulties led to a
multitude of attempts at revolutionizing the quantum theory of fields in the 1930s and 1940s.
After the divergence difficulties of QFT (or at least of quantum electrodynamics) were solved
through the renormalization techniques developed in the late 1940s, these more radical at-
tempts were generally viewed as having gone way too far: Demanding a total overhaul of the
foundations of the theory, when in fact small, conservative modifications were all that was
needed in order to construct a workable QFT.

But, as I will argue in this paper, the form taken by the new, covariant and renormalized QFT
can be understood a lot better, if one considers its origins not just in QM, but also in the
failed attempts at a new quantum theory of fields of the 1930s and 1940s. In particular, the
marginalization of the notion of the quantum state in the new QFT has its origins in two of
these attempts, Heisenberg’s S matrix theory and Wheeler-Feynman electrodynamics. These
two attempts at a new theory were very different, but they shared one central aspect: They
attempted to solve the difficulties of QFT, by getting rid of the notion of a (quantum) state
altogether. Although this ultimately turned out to be going too far, the techniques and insights
developed in the elaboration of these radical reworkings of QFT were taken over into “regular”
QFT in the late 1940s, and defined the theory in an essential way. In particular, they allowed
the physicists of the time to bracket highly problematic questions concerning the state space
of QFT.
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1 The S Matrix

Let us begin, by discussing the first of these failed attempts at a radically new QFT: Heisen-
berg’s theory of the S matrix, laid out in a series of paper published during World War II. But
let us go back even further, to study the origins of this theory in Heisenberg’s attempts at in-
corporating a smallest, fundamental length into quantum theory. The fact that Heisenberg’s S
matrix has its origins in his theory of the fundamental length has often been remarked. In the
following, I will be discussing this development specifically with an eye to the abolishment of
the quantum state.

1.1 Heisenberg and the fundamental length

The development of Heisenberg’s work on a fundamental length is described in [Kragh 1995].
The important point for our purposes is that initially the fundamental length was intended
solely to remove the divergence difficulties of QED, acting as a cutoff scale for the divergent in-
tegrals appearing in higher order calculations in perturbation theory. The fundamental length
was introduced into the theory by modifying the Hamiltonian, first by replacing differentials
by differences (the 1930 lattice world, discussed in detail in [Carazza and Kragh 1995]), later
by smearing out the energy density at a point in space with the help of a regularizing function
(the 1935 ∆ formalism, discussed in [Miller 1994]). These attempts always implied absolute
limits on position measurements (or the measurements of field strengths at a point in space),
but did not alter the general structure of the fundamental dynamical equations and held on
to Hamiltonians and wave functions. These attempts did not go very far, running afoul, e.g.,
of their lack of relativistic invariance, and neither of them was ever published.

In 1936, Heisenberg turned to Fermi’s theory of β decay, which implicitly contained a param-
eter with the units of a length in the form of the dimensionful coupling constant g . Initially,
Heisenberg’s interest in Fermi theory (as laid out in a letter to Pauli on 26 May 1936 [Hermann
et al. 1985]) was not related to the divergence difficulties. Instead, he hoped that the dimen-
sionful coupling constant of Fermi theory would help to explain the occurrence of cosmic ray
showers.

What exactly was there to be explained? The difficulty was that the showers seemed to em-
anate from a single point, implying that all of the secondary particles were created in a single
event. In QED, the creation of a large number of particles (photons and electron-positron
pairs) in a single, localized event was very improbable: The more particles are involved in a
single electromagnetic process, the higher powers of the fine structure constant α = e 2/ħhc
appear in the rate of said process, thus making the probability of a single explosive shower
event incredibly small.

Heisenberg now realized that in Fermi theory the expansion parameter in a perturbative cal-
culation is not simply proportional to the the equivalent of the fine structure constant, g ′ =
g /ħhc , which by itself is still dimensionful, but also to a power of the total momentum k in-
volved in the process.1 Heisenberg argued that for large momenta, the expansion parameter

1Which power depends on the formulation of Fermi theory one is using. Heisenberg was at the time consid-
ering the Uhlenbeck-Konopinski version, which includes an additional factor of neutrino momentum, so that
the third power of the momentum enters the expansion paramenter.
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also gets large and the situation is very different than in QED: many-particle processes be-
come just as probable as one- or two-particle processes.

It thu seems to me as though one could understand the existence of cosmic ray
showers directly from Fermi’s β theory.

Now, at first this seems to be totally unrelated to Heisenberg’s earlier work on the fundamen-
tal length. That he was thinking of a connection already at the time of the quoted letter to
Pauli, can be surmised from the fact that he chose a system of units (by introducing the nec-
essary factors of ħhc ), where the coupling constant g ′ has the units cm3, so that the expansion
parameter is g ′/λ3, where λ is the wavelength of the incoming particle. This implied a read-
ing where the explosive cosmic ray showers occurred when the wavelength of the exploding
particle became greater than a critical length 3

p

g ′, where the expansion coefficient becomes
of order one.

I have, and will be, distinguishing between the terms “fundamental length,” to denote a length
scale below which the usual notions of space no longer apply, and “critical length,” to denote
a length scale below which certain phenomena (e.g., explosions) occur. With the discovery of
the critical length in Fermi theory, it was certainly tempting to connect this with the idea of a
fundamental length. However, the critical length of Fermi theory was as yet unrelated to the
problem the fundamental length had been supposed to solve: The divergence difficulties of
QFT.

Pauli’s reply is not extant, but he appears to have addressed precisely this point: Fermi theory
diverged at higher orders of perturbation theory, just like QED did, so it was not permissible
to explain cosmic ray showers through such higher order calculations. But Heisenberg was
not to be deterred, and in his reply to Pauli on 30 May 1936 insisted on the differences be-
tween Fermi theory and QED: In QED the expansion parameter was small, so perturbation
theory should work, but doesn’t. In Fermi theory, on the other hand, the theory itself already
indicated that perturbation theory should break down for high energies, so the divergence
difficulties were not a defect of the theory as a whole, but only of the perturbative calcula-
tions:

The non-convergence of the self-energy for large momenta in Fermi’s theory is
therefore not an argument against the theory, but - as long as one does not de-
velop new mathematical techniques to treat the domain of high energies - only
an argument for the lack of mathematical understanding of the calculating physi-
cist. I do not claim that I am already sure that all self-energy difficulties will disap-
pear in the future. But I do want to claim that all arguments so far concerning the
infinite energies in the Fermi theory were nonsense and that it is now the most
important task to check, how such a theory behaves qualitatively for high ener-
gies. To check this in quantum electrodynamics, however, would be pointless,
since one knows that for dimensional reasons ( e 2

ħhc
)) there is no qualitative differ-

ence between high and low energies.

The critical length thus did not function as a cutoff scale, as the fundamental length had. In-
stead, Heisenberg argued, for a theory including a critical length in the form of a dimensionful
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coupling constant, which was thereby able to qualitatively explain the cosmic ray explosions,
one could hope that the divergences might simply be an artifact of perturbation theory. But
this was very hard to verify, given that perturbation theory was the only known way to do
calculations in QFT. Pauli and Heisenberg made some attempts at doing their calculations in
discretized space, i.e., on the lattice (now just as a calculational tool, not as a model of physi-
cal space, as in 1930), but their results were inconclusive. Pauli became skeptical of the whole
approach early on and became convinced that one could not construct a theory that was si-
multaneously free of divergences and able to describe explosions (Letter to Heisenberg, 26
October 1936):

[S]o it always seems to be the case that as soon as we have an increase of shower
processes for large k , the eigenvalues of the Hamilton operator will also always
come out infinite [...]

By the end of the year, Heisenberg gave in and gave up, not just on the lattice, but on QFT as
a whole. Already when originally proposing his idea of explosions and a fundamental length
in Fermi theory, he had anticipated (Letter to Pauli, 30 May 1936):

Of course, it is also conceivavle that the formalism of wave quantization will have
to be modified when introducing Fermi’s g , just like one had to modify the earlier
physics when introducing the universal dimensionful constants c and h.

And this was the position to which he now again retreated (Letter to Pauli, 7 December 1936):

I am now again totally convinced that the quantization rules are in need of reform
[...]

What were to be the elements of a new theory, which renounced the quantum theory of fields
which had, despite its apparent difficulties, matured in the last decade? This is the theme that
we will now be following up until the formulation of S matrix theory.

One element that certainly remained was the critical length, which was to be related to the
occurrence of explosive cosmic ray showers. This was now wedded to Heisenberg’s earlier
notion of a fundamental length, which provided absolute limits on measurement, a con-
nection which had not been made explicitly, while Heisenberg still hoped to show the non-
perturbative finiteness of Fermi theory. The connection between critical and fundamental
length could in fact be made independently of all formalism through a physical argument by
Bohr. It is first found in writing in a letter to Dirac, dating from 2 July 1936. Since Heisenberg
had presented his work on the critical length in Copenhagen just a week earlier, it is quite
probable that Bohr had communicated similar thoughts to Heisenberg himself:

[T]hese new and most promising considerations of Heisenberg appear to me to
offer a most important clue to the old problem of the limitation of the very ideas of
space and time imposed by the atomistic structure of all measuring instruments.
You may remember that we have often discussed such questions but hitherto it
seemed most difficult to find an unambiguous starting point. It now appears,
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however, that any measurement of such short lengths and intervals where the
conjugated momenta and energy will cause all matter to split into showers will be
excluded in principle.

The same argument later shows up in published work of Heisenberg’s, in which he also explic-
itly acknowledges discussions with Bohr [Heisenberg 1938]. The conclusion was: The critical
length of explosion theory was also a fundamental length, because when trying to measure at
scales smaller than the critical length, the measuring apparatus literally blew up in your face.

With this conceptual foundation, what was the formal basis on which Heisenberg continued
his work? As witnessed by his last quote, his final disillusionment with QFT was directed at a
very specific point of the theory, namely, the quantization, i.e., the transition from the classi-
cal to the quantum field theory. This meant that he believed that the unquantized Fermi field
theory (including, in particular, the non-linear terms with the dimensionful coupling con-
stant) was to be considered a correct basis for a future quantum theory (a hypothesis which
he backed up by some semi-classical calculations on the creation of showers in [Heisenberg
1936]), but that the manner in which such a quantum theory was constructed from it, had to
be rethought. On 18 December 1936 he wrote to Pauli:

The current situation in field theory can be described in the following manner: We
have a korrespondenzmäßige theory, which is about as good and as bad as Bohr’s
theory was at the time. In this approximate (“semi-classical”) theory, the universal
length is already correctly included, if one writes it as the factor multiplying a non-
linear interaction term in the Hamiltonian. What is missing is the step from here
to a consistent theory.

The analogy with the situation before the creation of quantum mechanics at this time be-
comes a recurring theme, and it will not be the last time we encounter it. That nostalgia for
the revolution of their youth drove the protagonists of the creation of quantum mechanics to
look for far too radical solutions to the woes of QFT is a cliché, but certainly has some truth
to it. It even guided their search for solutions in even more specific ways: QM, according to
matrix mechanics, was to be a discrete, algebraic theory. This vision was undermined by the
triumph of Schrödinger’s differential equation. Devising a new quantization procedure for
field theory, now offered the possibility of undoing this historical error. Outlining his vision of
a new quantization procedure, Heisenberg further wrote:

[T]he particles of the future theory will not be smaller than the universal length,
it will not even by possible to talk of a local interaction with a precision greater
than the universal length (for example, I do not see the necessity for having a
differential equation forψ) [...]

To which Pauli remarked in the margins: “Lorentz Group.” Relativity remained the bugbear
of the fundamental length, as it had already been in 1930. In fact, it might well be argued that
relativity already was the bugbear of matrix mechanics: Aside from a few awkward attempts by
Dirac to turn time into a matrix, the union of quantum mechanics and relativity only began in
earnest when the Schrödinger equation opened up the possibility of constructing generalized,
relativistic wave equations.
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1.2 The Beginnings of S Matrix Theory

Heisenberg’s program was now the following: Reformulate QFT in such a manner that the
Lorentz invariance was more clearly apparent; the usual methods, starting from Heisenberg
and Pauli’s initial formulation of 1929 were not explicitly covariant and relativistic invariance
needed to be proven in quite a roundabout manner. Ideally, this reformulation should move
away from the usual Schrödinger equation, which Heisenberg felt would have no place in
the future theory. The reformulation would then be modified by integrating the fundamen-
tal length in such a manner that the equivalence with the regular Schrödinger equation was
lost, thereby establishing a new quantization formalism that no longer relied on continuous
functions and differential equations, but still guaranteed relativistic invariance.

It was already well-known that QFT could be formulated in a (more) covariant fashion by mov-
ing to the interaction picture. This had been established in 1932 in the works of Dirac, Rosen-
feld, Vladimir Fock and Boris Podolsky [Dirac 1932; Rosenfeld 1932; Dirac et al. 1932]. The
interaction picture by itself did not provide full relativistic invariance: This necessitated also
the introduction of Dirac’s many-time formalism, which, however, worked only for a finite
number of electrons and not for hole or electron-positron theory. This defect was only cured
by Tomonaga’s introduction of super-many-times theory in 1943 [Tomonaga 1946]. In 1937,
the central dynamical equation of the most covariant formulation of QFT was the Schrödinger
equation (as given in the letter from Heisenberg to Pauli, 16 January 1937):

i
∂ ϕ

∂ t
=H1ϕ =

�∫

H1d V

�

ϕ (1)

where H1 is the Hamiltonian density in the interaction picture, i.e., just the interaction term,
which is a relativistic invariant. The equation itself, however, is plainly non-covariant, since it
makes explicit reference both to time and to space (in the volume integral).

It should be noted that the interaction picture, as introduced by Dirac, only had a time-
dependent (and no time-independent) Schrödinger equation. This explains Heisenberg’s
starting point - in his entirely non-covariant 1929 formulation with Pauli, they had taken
the time-independent Schrödinger equation as the central equation. In addition, his cen-
tral concern at the time was scattering processes in cosmic rays (the explosions), something
which could be addressed with a time-dependent Schrödinger equation, even if the usual
treatment (see, e.g., the second, 1935, edition of Dirac’s textbook [Dirac 1935]) relied on the
time-independent Schrödinger equation. We see here for the first time, how demands of rel-
ativistic invariance joined with a new experimental focus (from the spectroscopic data of the
first decades of the 20th century to the cosmic ray physics of the 1930s) to move the theory
from the stationary to the dynamical. As to what this meant for determining the energies of
stationary states, we will return to this question soon.

For now, Heisenberg now set himself to rewriting this equation, using the time evolution op-
erator for an infinitesimal evolution d t :

ϕ(t +d t ) = e−i(
∫

H1d V )d tϕ(t ) =
∏

V

e−i H1d V d tϕ(t ) (2)

where in the last step, Heisenberg used the notion of the integral as an infinite (Riemann)
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sum, to factorize the exponential, as well as the fact that the operators H1 at different points
in space commute. This could then be generalized to non-infinitesimal time evolution, by
letting the product go not only over all of space, but over the entire space-time volume Ω
between initial time t0 and final time t1:

ϕ(t1) =
∏

Ω

e−i H1d x d y d z d tϕ(t0) =
∏

Ω

e−i H1dωϕ(t0) (3)

where dω is the space-time volume element. This equation even allowed, as Heisenberg
hinted at in his letter, to take Ω as the volume between two arbitrary space-like surfaces,
thereby achieving a fully covariant formulation. This is doubtlessly a very elegant procedure,
foreshadowing the introduction of space-like surfaces by Tomonaga and Schwinger a decade
later. Pauli was enthused (Letter to Heisenberg, 19 January 1937): “I find your equation [...]
very pretty.”

But, of course, it is still simply a reformulation of the regular Schrödinger equation. Heisen-
berg had high hopes that it might provide the right starting point for the development of a new
quantization procedure, which also took account of the fundamental length. His program
was to modify the time-evolution operator, in order to get a theory which remained relativis-
tically invariant and was divergence-free. These modifications did not involve the fundamen-
tal length directly. As we have seen, Heisenberg believed that the fundamental length would
already appear in the classical (Fermi) field theory and would then appear in the quantum
theory in the correct manner, if one applied the new quantization procedure. The quantiza-
tion procedure and the fundamental length were thus not necessarily connected.

Heisenberg’s first attempt (January 1937) still involved the fundamental length, which would
appear in the modified time evolution operator, mimicking the well-established but “scheußliche”
cut-off procedures. These attempts soon floundered (Postcard to Pauli, 27 January 1937).
Heisenberg’s next attempt (February to April 1937) already no longer directly involved the
fundamental length, and instead consisted in eliminating certain terms in the perturbation
expansion of the time evolution operator, in order to avoid the divergences. Again, Heisen-
berg soon found the approach to be insufficient: It turned out to be impossible to simulta-
neously uphold relativistic invariance and remove the divergences (Letter to Pauli, 26 April
1937).

The details of these failed attempts need not concern us here. More important for us, are the
general considerations which Heisenberg connected with these attempts (16 January 1937):

[W]hat I like about the discussed proposal is that one gives up the notion of a
“wave function at a certain position” and only introduces the notion of “a particle
with a certain momentum.”

This is a bit confusing: Heisenberg appears to be referring to the fact that the wave func-
tion ϕ is defined in occupation number space, rather than in (many-particle) configuration
space. This was the usual procedure in QFT and made for much more tractable mathemat-
ics. However, the equivalence between the two formalisms was well-known and Pauli was
consequently not so much confused, but rather, in typical Pauli fashion, enraged (19 January
1937):
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I do not at all agree with the physical viewpoint that the notion “particle with a
certain momentum” is physically better than the notion “wave function at a cer-
tain position”. For the problem of the former notion is that one demands the mo-
mentum of the particle at a certain, precise time t (while momentum measure-
ments can never be performed in an arbitrarily short time). Only in the force-free
case, where the momenta are time-independent, is this not a problem; as soon as
one has interaction terms, one has the same difficulties for ϕ(Nk , M k , t ) [i.e., the
wave function in occupation number space] as forϕ(x , t )n [i.e., the wave function
in n-particle configuration space].

As is often the case in the Heisenberg-Pauli correspondence, it is not entirely clear if Heisen-
berg had just been imprecise in his wording, or whether he only really thought things through
after Pauli’s harsh response to his half-baked musings. In any case, he responded on 21 Jan-
uary 1937:

I am, by the way, in total agreement with you that one can only speak of a precisely
specified momentum for free particles, where the measurement can take as long
as one wants. My considerations concerning

∏

ω e−i H1dω [given the notation of
his earlier letter, this should of course have been

∏

Ω e−i H1dω] actually had their
starting point in the desire to replace this “differential” operator by an integral
one, from which one can then only deduce cross sections for the transitions of
free particles. But I have not been able to come up with a sensible generalization.

Since this is basically already the program for the S matrix, it is time to briefly take stock and
consider again how Heisenberg arrived at this point. A combination of the demand for rel-
ativistic invariance (which was the central challenge for a theory of the fundamental length)
and an interest in scattering processes, rather than spectroscopy, had led him to a formula-
tion of QFT with the time evolution operator at its center. The next step was now supposed
to be the move from the “differential” time evolution operator to an integral scattering oper-
ator. Such an operator would contain all that was necessary to describe a scattering event. It
could of course be calculated in the regular QFT, based on differential equations, but would
lead to divergent results. Heisenberg was now looking for a generalization, i.e., a modified
calculational procedure, which could not be reduced back to differential equations, which
Heisenberg felt were in conflict with a fundamental length. In particular, we see that the in-
stantaneous state, in the form of a Schrödinger wave function, would be eliminated from such
a theory, which would only speak about free asymptotic states.

Heisenberg did not further pursue this approach at the time. In fact, he entirely abandoned
his attempts at a reformulation of QFT, after the first few had proven unsuccessful. In spring
1937, Heisenberg was increasingly on the defensive concerning the fundamental length and
the theory of explosions. New experimental results implied that for low energies the supposed
explosions could in fact be understood as electromagnetic cascades [Cassidy 1981]. Also, first
hints were showing up that the high energy showers could be understood as resulting from
the existence of “heavy electrons” and were also electromagnetic in nature (i.e., only involved
photons, electrons, and positrons) [Galison 1983]. This invalidated Heisenberg’s approach
in a twofold manner: Nuclear forces (i.e., Fermi’s theory of β decay) did not seem to be in-
volved in shower production at all, and the showers were no longer viewed as single explosive
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events. It also became increasingly doubtful, whether the theory of β decay was to involve a
dimensionful coupling constant at all, when the apparent confirmation Yukawa’s meson the-
ory implied that β decay was not actually a four-fermion interaction, but rather mediated by
a heavy boson.

How did these developments affect Heisenberg’s research program? The fundamental length
and its manifestation in the form of cosmic ray explosions (which now, however, had to be
taken as a lot less common than originally envisioned) remained cornerstones of Heisenberg’s
vision for a new theory. This is not true for the other tenet of Heisenberg’s work in early 1937,
that the correct semi-classical field theory was already known and one only needed to cook
up a new and improved quantization procedure. As already mentioned, the fundamental na-
ture of Fermi’s theory of four-fermion interactions was increasingly called into doubt. At the
same time, the meson theories which were supposed to replace it, also ran into ever greater
difficulties. After an initial optimism, it became increasingly clear that they were unable to
reconcile nuclear and cosmic ray phenomenology. This conundrum was only resolved after
the war, with the conceptual separation between the original cosmic ray meson (the muon)
and the carrier of the nuclear force (the Yukawa meson or pion).

When Heisenberg thus returned to attempts at constructing a new relativistic quantum field
theory in the isolation of wartime, it was no longer with the aim of merely modifying the
quantization procedure. Instead, the idea was now to construct a new theory from scratch.
This brought his old idea of an integral scattering operator back on the table.

The motivations (elimination of states and differential equations in order to account for the
fundamental length, central role of scattering processes in order to describe explosions) were
still valid. And at the same time, his former difficulties were now moot: He had found him-
self unable to find a suitable generalization of the procedure which led from a correct semi-
classical field theory to such an operator, a generalization which would eliminate the diver-
gences which appeared in the usual quantization procedure. There was now no trustworthy
semi-classical field theory to start from. Instead, Heisenberg now proposed to take the inte-
gral scattering operator (now S matrix) itself as the starting point of the theory.

This was a radical move away from the central ideas of quantum theory, which since Bohr’s
correspondence principle had always relied on relating classical and quantum theories in
some way or another. It was to bring with it major difficulties, which we will discuss in detail.
Above all, it needed a new philosophical underpinning. Here again, Heisenberg turned to the
glory days of the creation of quantum mechanics. The positivist program of constructing a
theory including only observable quantities, which he had laid out in the introduction to his
1925 “Umdeutung” paper, was in fact logically distinct from the idea of transferring mathe-
matical structures from a corresponding classical theory. Heisenberg could thus divorce these
ideas from the theory of quantum mechanics, to which they had originally led, and re-present
them as the basis for his new S matrix theory, which was consequently published in a series
of papers titled Über die beobachtbaren Größen’ in der Theorie der Elementarteilchen” (“Con-
cerning the observable quantities in the theory of elementary particles”). It is to these papers
that we now turn.
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1.3 Heisenberg’s S Matrix Theory

The first thing one needs to note concerning Heisenberg’s S Matrix papers, is that they do not
constitute an actual, full-fledged physical theory. This can be immediately understood from
the abandonment of the correspondence idea. In QM, one could write down the abstract
Schrödinger equation

Hψ= Eψ (4)

as a purely quantum equation, but it was the correspondence with a classical theory that
provided the input on what sort of an operator H really was. One can learn a lot about the
structure of QM without ever invoking a specific Hamiltonian. Heisenberg had something
similar in mind for his S Matrix theory. Only now, the elements of the S matrix should be
observables and have an immediate and clear physical interpretation, so that the general,
structural insights into the new theory should be “at least in principle empirically testable.”
(I, p.514)

No direct physical predictions emerged from Heisenberg’s work on the S Matrix, so this state-
ment should be understood as attempting to reconcile the two almost contradictory aspects
of this work: On the one hand, it is a mere formal scheme, on the other hand, it is supposed
to be an expression of positivist empiricism, making reference only to observable quantities.

For the time being, Heisenberg had to leave open the question of how the scheme of S Matrix
theory was to be filled with physical content. The more immediate question was what actually
were to be the observable quantities on which the theory was based. Or rather, which quan-
tities weren’t observable. Heisenberg had learned his lesson from the debates following the
Umdeutung. In 1926, he had presented his work in Berlin and had a discussion with Einstein,
which had impressed him so much that he repeated it verbatim in his 1969 autobiography
[Heisenberg 1969]. Einstein had said to him:

[I]t may be heuristically useful, to remind oneself, what one is really observing.
But from a fundamental standpoint it is entirely wrong, to want to build a theory
only on observable quantities. For in reality it is exactly the other way around. It
is only the theory that decides, what one can observe.

This sentiment, which is missing in the Umdeutung, is echoed in the introduction to Heisen-
berg’s first S Matrix paper:

[A]lso the future theory should of course primarily contain relations between “ob-
servable quantities.” Of course only the final theory will determine, which quan-
tities are really observable.

Now, there was no “final theory.” This is where the fundamental length comes in:

The existence of a “smallest length”, i.e., of a universal constant of the dimensions
of a length and of the order of 10−13 cm, makes problematic all of those statements
of quantum theory, which deal with the precise determination of a position or of
a point in time, i.e., with spatio-temporal processes in general.
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Here is, in a nutshell, the argument for the abolishment of continuous fields and state func-
tions, and the differential equations that govern their behavior. But what were the observable
quantities, which the new theory would be based on, to be? Heisenberg named two. One of
them was clearly the (cosmic ray) scattering cross sections, which were derived from the ele-
ments of the S Matrix and which were to describe, in particular, the occurrence of explosions.
The other, and these could not be done away with, were the central observable quantities of
the old theory, the energies of the stationary states.

Now, there seems to be somewhat of a contradiction here: On the one hand, the elevation of
the scattering operator to the central entity of the new theory, with the concomitant abolish-
ment of anything but asymptotic, free states. On the other hand, the wish to keep the central
observable and calculable quantity of QM (and the QFT of the time), the energy of station-
ary states, which was, however, obviously closely tied to the notion of state, which was being
abandoned. Heisenberg had felt this difficulty already in 1937 - at the time, he was still dis-
cussing the (differential) time evolution operator; but already here the discrepancy becomes
apparent. On 14 February 1937, he had written to Pauli:

Of course one still has to find a connection [...] to the magnitude of the rest mass
and to the question of the stationary states. I have not been able to obtain such a
connection so far; I only have a few tentative attempts, but I do not know, whether
they will work out.

He voiced similar concerns in the first S Matrix paper, five years later:

The two [...] kinds of observable quantities at first sight seem to be without inner
connection, and one gets the impression that, for spatially enclosed systems with
discrete eigenvalues on the one hand, and for non-enclosed collision and scatter-
ing processes with continuous energy spectrum on the other, one needs to treat
entirely different quantities as “observable” .

But Heisenberg brushed away these concerns in 1943, and made a very vague claim concern-
ing the equivalence of the two types of observables. Two years later Christian Møller disproved
what he took to be Heisenberg’s claim: that “the discrete energy values in the closed station-
ary states are at least partly determined by the S-matrix.” He showed that this was not the
case.

The proof was simple: Start from a scattering potential that allows both scattering and bound
states (the classical example of course being a Coulomb potential). In QM this corresponds
to a Hamiltonian with both continuous (scattering) and discrete (bound state) eigenvalues.
Now, assume we have solved the scattering problem completely, i.e., determined all the eigen-
functions belonging to the continuous eigenvalues. This is of course a lot more information
than is contained in the S-Matrix, which is only concerned with the asymptotic behavior of
these eigenfunctions. Still, all this allows us to do is determine the eigenspace corresponding
to the discrete eigenvalues of the Hamiltonian: It is the subspace of the total Hilbert space
that is orthogonal to all the eigenfunctions belonging to continuous eigenvalues. But we can
say nothing about which is the correct eigenbasis in this subspace, nor do we know anything
about the corresponding eigenvalues. In other words, we have only partially diagonalized the
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Hamiltonian, and in order to know the bound state energies we need to fully diagonalize, i.e.,
explicitly solve the bound state problem.

This argument is so simple that it is hard to believe that the statement being disproved is really
what Heisenberg was claiming. And indeed, looking more closely at Heisenberg’s claims of
1943, his claim does look somewhat different:

[It] is to be taken as observable the behavior of the in- and outgoing waves at infin-
ity; i.e., in particular the phase difference between the in- and outgoing spherical
wave belonging to a certain angular dependence (i.e., to a certain angular mo-
mentum of the system). If the system is now enclosed by a spherical shell at a
great distance, the energy values of the system become discrete. These energy
values, however, only depend on the phase difference between the in- and out-
going wave. If one considers the energy values of the thus modified system to be
observable, this is the same as taking the phase difference to be observable [...]

Heisenberg was thus not, as Møller read him, talking about the case where the QM Hamil-
tonian has both continuous and discrete eigenvalues at the same time. Rather, his starting
point is an unenclosed system with continuous eigenvalues - he does not at all touch upon,
whether there is a discrete part of the spectrum corresponding to bound states as well. In-
stead, he goes from this system to an enclosed system, in which the entire energy spectrum
is discrete, and then argues that knowing the S-Matrix of the unenclosed system is equivalent
to knowing the discrete energy spectrum of the enclosed system.

His argument, therefore, only applied, say, to the problem of a particle in an infinitely high
potential well, but not to the more physical cases discussed by Møller, where the setup allows
both for scattering and for bound states, such as a hydrogen atom. The general problem of
bound state energies in a theory which did not deal in states was thus not addressed, even
though Heisenberg’s wording is very suggestive and certainly initially fooled Møller:

A priori this seems possible, since the asymptotic form of the wave function in
great distances which determines the collision cross sections, depends chiefly on
the form of the potential function in small distances, which again is essential for
the position of the discrete energy levels. (p.18)

Maybe Heisenberg even had himself fooled, since he entirely left out the question of bound
state energies in his first paper, focusing only on developing the S Matrix formalism as a rela-
tivistically invariant description of scattering processes. He continued in the same vein in the
second paper: Here he constructed an S Matrix which would lead to explosions, while at the
same time being entirely finite. This S Matrix was of course not derivable from a Hamiltonian
operator, and could thus not be regarded as the result of the quantization of any classical field
theory. It described a “nicht korrespondenzmäßig deutbare Wechselwirkung,” which was any-
way not supposed to be a realistic model of nuclear interactions, for which Heisenberg would
have had to go beyond cosmic ray scattering phenomenology and talk about nuclear bound
state phenomenology (the deuteron was the classical test case for theories of nuclear interac-
tion). But it furnished a proof of principle that the requirements he had set for a future theory
already in 1936 could be met by an S Matrix theory.
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Despite the war, Heisenberg’s papers reached physicists all across the world, even his old pal
Pauli in Princeton. Unable to communicate with Heisenberg directly, he instead voiced his
usual criticism in a letter to Paul Dirac (21 December 1943), pointing out the two main diffi-
culties of the S Matrix program:

Heisenberg did not try to give any theoretical formalism which determines his
matrix. Even if such a formalism can be found, other problems would still exist to
which the S-matrix is not adapted, as for instance properties of stationary states
of compound systems. (For instance the stationary-states of the deuteron as a
consequence of the interaction of the protons and the neutrons with the meson-
field.)

At about the same time, however, unbeknownst to Pauli, the second problem was being ad-
dressed in Europe by Heisenberg and Hans Kramers.

1.4 The Analytic S Matrix

Discovery of Analyticity to be filled in with help of the Heisenberg Papers.

2 Wheeler-Feynman Electrodynamics

As we have seen, Heisenberg’s S Matrix program emerged first from attempts to modify the
quantization procedure and then from attempts to construct an autonomous quantum the-
ory, independent of a classical field theory. It can thus be placed in a school of thought that
viewed the difficulties of QFT as stemming from the quantum theory proper. All through the
1930s and 40s there was another popular viewpoint, which viewed the divergence difficulties
as an inheritance from classical theory. The proposed solution was thus a modification of
the classical theory. Such attempts tended to focus less on the theory of nuclear interactions
and more on electrodynamics, where the classical field theory and its difficulties were well-
established. The most radical of these attempts tried to get rid of the electromagnetic field
entirely.

2.1 Absorber Theory

This idea came to Richard Feynman, according to his own recollections, as an undergraduate
student at MIT (1935-39), after studying QED in the standard textbooks of the time by Dirac
and Heitler.2 Interestingly, these two textbooks are good representatives of the two schools of
thought introduced above. Heitler clearly argued for the quantum nature of the divergence
difficulties (p. 183 of the second edition), while Dirac explicitly stated:

The limitations in the applicability of quantum electrodynamics [...] correspond
precisely to those of classical electrodynamics. The amendments required in clas-

2The following narrative is heavily indebted to [Mehra 1994].
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sical theory in order to make it applicable accurately to the elementary charged
particles are thus not provided by the passage to the quantum theory...

While Feynman initially tended towards Dirac’s view on this matter, it appears to have been
Heitler’s detailed elaboration of the origin of the divergences that directly influenced his search
for a solution. Heitler identified two sources for the central divergent quantity, the self-energy
of the electron. There is first the electrostatic self-energy, which is due to the self-force, “the
force which the field produced by the charge exerts on the charge itself” (p. 29 of the sec-
ond edition). And then there is the transverse self-energy, which is due to virtual photons
in the intermediate states of higher-order perturbation calculations. It is divergent because
“the number of intermediate states is infinite” (p. 184 of the second edition), i.e., because the
electromagnetic field has an infinite number of degrees of freedom.3

As Feynman now recalls, the immediate solution to both of these problems seemed to be the
abolishment of the electromagnetic field. This would eliminate the infinite number of degrees
of freedom. The theory could then be recast as a theory of action-at-a-distance between elec-
trons, where the action would have to be taken as retarded and not as instantaneous. This
would allow the self-consistent elimination of the interaction of an electron with itself, which
was not possible if the interaction was described through a universal field.

Although this was probably not the young Feynman’s immediate priority, it is clear that al-
ready this general proposal problematizes the notion of an instantaneous state: For a retarded
action-at-a-distance it is not sufficient to know the initial conditions and let them evolve.
Rather, one needs to know a lot about the past evolution of the system. Such a setup thus,
already classically, does not offer itself to a Hamiltonian treatment, which would provide the
basis for the transition to the corresponding quantum theory.

When Feynman went to Princeton as a graduate student in 1939, his new advisor, John Wheeler,
pointed him to a much more immediate problem in this approach. If one eliminated the
action of an electron on itself, one not only got rid of the troublesome infinite electrostatic
self-energy, but also of radiative reaction, i.e., the recoil experienced by an electron emitting
electromagnetic radiation.

Together, Wheeler and Feynman thus modified Feynman’s original proposal. They could show
that if one replaced the retarded action-at-a-distance by a combination of retarded and ad-
vanced interactions (in field theory this would correspond to taking the average of the ad-
vanced and retarded electromagnetic potentials) one could include the radiative reaction:
The radiative reaction emerged as the reaction of the emitting electron to the advanced back-
reaction of all the other electrons in the universe, if one assumed that there were sufficiently
many of these to ensure that all emitted radiation would eventually be absorbed (hence,
Wheeler-Feynman electrodynamics is also known as absorber theory).

There remained the central difficulty of the mathematical formulation: Even more than in
a theory of retarded interactions, a theory of advanced and retarded interactions could not
be formulated as a Hamiltonian theory of the time evolution of instantaneous states. But

3Feynman recalled that, at the time, he mistakenly believed that the infinite number of degrees of freedom
only showed up in the infinite zero-point energy. Both [Schweber 1994, p.379-380] and [Mehra 1994, p.89] read
this as Feynman being mistaken on the whole difficulty of the infinite degrees of freedom, not taking into ac-
count that in the literature of the day the infinite degrees of freedom were made responsible not just for the
zero-point but also for the transverse self-energy.
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Wheeler happened upon a paper by the Dutch physicist Adriaan Fokker in which this diffi-
culty was solved.

In 1929, Fokker had in fact constructed a formulation of the electrodynamics of point par-
ticles as a combination of advanced and retarded actions-at-a-distance. He had not been
concerned with the question of the radiation reaction, but he had arrived at the same combi-
nation of advanced and retarded actions-at-a-distance merely through the demand of a rel-
ativistically invariant action functional [Fokker 1929b]. The formulation using the principle
of least action avoided the difficulties of the Hamiltonian formalism: The entire world-lines
(space-time trajectories) could be obtained from the minimization of the action functional
instead of constructing them from inifinitesimal time evolution. In Feynman’s notation, the
Fokker action reads (for a set of electrons, labeled by an index a , with coordinates xa , proper
times τa , charges ea , and masses ma ):

S =−
∑

a

ma c

∞
∫

−∞

Æ

−ẋµa ẋaµdτa +
∑

a<b

ea eb

c

∞
∫

−∞

∞
∫

−∞

δ
�

�

xµa −xµb
�2
�

ẋ νa ẋb ,νdτa dτb (5)

When supplemented with the absorber initial conditions, this action provided an elegant re-
formulation of classical electron theory without involving the notion of a field. But this was
of course only the starting point for the actual program: The construction of a new quan-
tum electrodynamics. While Wheeler was constantly announcing that the quantization of
the absorber theory was almost ready, while not communicating any of the details, Feynman
pondered the question by himself, taking the Fokker action as his starting point.

Already Fokker had republished his work in German [Fokker 1929a] shortly after the publica-
tion of the original Heisenberg-Pauli QED, now presenting it as an alternative starting point
for the construction of a quantum theory of electrodynamics. The full extent of the divergence
difficulties had not yet been realized at the time, so Fokker’s main argument for the superior-
ity of his least action formulation was its manifest relativistic invariance. But Fokker did not
pursue the quantization of his theory any further. An obvious reason is that, while Heisenberg
and Pauli could rely on the established quantization procedures of QM, it was unclear how to
construct a quantum theory from a classical theory which was only formulated using a least
action principle. The emphasis here is on only. A general classical theory can of course also
be written using the principle of least action, with an action functional of the form

A =

t1
∫

t0

L(q , q̇ )d t (6)

with the Lagrangian L some function of the dynamical variables q and their time derivatives
q̇ . From the Lagrangian one can then construct the Hamiltonian (leaving aside questions of
gauge invariance, which forms an entirely unrelated difficulty) in the usual manner, which
forms the starting point for canonical quantizations. But the Fokker action differs from this
usual form in two decisive aspects. The first is that the integrations are over the proper times
of all of the involved particles instead of over some universal time coordinate. The second is
that the integrations are carried out from−∞ to∞, instead of from an initial time t0 to a final
time t1.
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It is this latter difficulty which is related to the central focus of this paper: For an action formu-
lated in terms of a Lagrangian, the time integration range can be taken infinitesimally small.
The action is then minimized in each infinitesimal step and thus the contact is made with
the Hamiltonian formulation of differential time evolution of instantaneous states. This is
not possible for the Fokker action: Since the interaction is retarded (and advanced), one al-
ways needs to take into account the entire trajectories. This is another way of stating that the
notion of state is lost in such an action-at-a-distance theory.

Over a decade later, Feynman was faced with the same difficulty. But, different from Fokker,
he could draw on the work of Paul Dirac, who had made some first steps towards the quan-
tization of a classical theory formulated using the least action principle. It is to this work of
Dirac’s that we now turn.

2.2 Dirac’s Lagrangian Quantum Theory

The relation between quantum theory and relativity is a leitmotif in the work of Paul Dirac.
Early on, he attempted to reconcile matrix mechanics and relativity by elevating time to the
status of q number. In 1928, he presented the relativistic generalization of the Schrödinger
equation, certainly his best-known contribution to this problem context. In 1933, he pre-
sented another step towards a more relativistic quantum theory, his paper “The Lagrangian
in Quantum Mechanics.” Parts of this paper are then taken up in the second edition of Dirac’s
textbook. This seems to be Feynman’s source: In his thesis, only Dirac’s book is cited, the
reference to the 1933 article (which was published in the Physikalische Zeitschrift der Sowje-
tunion) only appears as a “see also” in the 1948 article based on the thesis. We thus will only
concern ourselves with the material reprinted in 1935 and not with the (even) more specula-
tive parts of the paper, which concern the generalized transformation function and were also
very influential, especially for the development of quantum field theory in Japan.

The starting point of this work is Dirac’s dissatisfaction with the usual Hamiltonian formalism,
but for a reason unrelated to Feynman’s difficulty: Its lack of manifest covariance. Indeed,
the Hamiltonian of a system is not a relativistic invariant, it is rather the time component
of a four vector. Dirac was thus looking for a formulation of QM which was closer to the
classical Lagrangian formalism, since the Lagrangian function is a relativistic invariant. This
was, however, far from straightforward, as he outlined in the introduction to the 1933 paper:

A little consideration shows, however, that one cannot expect to be able to take
over the classical Lagrangian equations in any very direct way. These equations
involve partial derivatives of the Lagrangian with respect to the coordinates and
velocities and no meaning can be given to such derivatives in quantum mechan-
ics. The only differentiation process that can be carried out with respect to the
dynamical variables of quantum mechanics is that of forming Poisson brackets
and this process leads to the Hamiltonian theory.
We must therefore seek our quantum Lagrangian theory in an indirect way.

This indirect way relied on another role played by the Lagrangian in classical mechanics, be-
sides its appearance in the Euler-Lagrange equations of motion, which result from the extrem-
ization of the action. The Lagrangian also appears in the expression for Hamilton’s principal
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function S, that is the action functionalA (Equation 6) evaluated on the actual, physical path.
Since this path is obtained by extremizing the action functional, the principal function is the
extremum value of the action functional. In the classical theory, this principal function, taken
as a function of the beginning and end points of the trajectory, qT and qt , respectively, can
now be viewed as the generator of a canonical transformation that connects the canonical
variables at times T with those at time t , i.e.

p t = −
∂ S

∂ qt

pT =
∂ S

∂ qT
(7)

Instead of introducing the Lagrangian into quantum mechanics via the equations of motion,
as it was done for the Hamiltonian (be those equations of motion the Heisenberg picture
equations of motion, which include the commutator of the Hamiltonian with a given observ-
able, or the Schrödinger equation), Dirac could now introduce the Lagrangian through the
relation between classical canonical transformations and quantum unitary transformations.

This relation was an important issue in the early days of matrix mechanics [Lacki 2004]. It
was made obsolete by the establishment of transformation theory and modern quantum me-
chanics. Some questions were, however, left open, including the one at stake here: Given a
classical canonical transformation what is the corresponding unitary transformation in quan-
tum mechanics? Dirac attempted to give an answer to this question in 1933. His argument
is, however, quite opaque. There is one thing that he unambiguously shows: Just as for clas-
sical canonical transformations, unitary transformations in quantum mechanics can also be
expressed by a generating function (which is a function of the old and the new canonical co-
ordinates, as was the case above). This is done in the following form: Let the scalar product
between an eigenstate of the old canonical coordinates q with the eigenvalue q ′ and an eigen-
state of the new canonical coordinates Q with the eigenvalue Q ′ is given by:




q ′
�

�Q ′
�

= e i F (q ′,Q ′)/ħh (8)

where F is some generating function. Dirac could then show that the matrix elements of the
old and new canonical momenta (and imposing some restrictions concerning the ordering
of operators, also the momentum operators) obeyed the classical transformation equations,
which are of the form given above
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q ′
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(9)

The decisive question is now: What is the relation between the classical and the quantum
generating function? From Dirac’s elaborations, both in the 1933 paper and the 1935 book, it
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appears that Dirac did not really consider this question. He introduces the generating func-
tion in the quantum theory as a distinct mathematical object, without giving any relation be-
tween the quantum and classical generating functions. They are merely treated as analogous.
4

Applying this to the case of the classical time evolution canonical transformation discussed
above, this implied that also in the quantum case, there would be a generating function re-
lated to unitary time evolution, which is (and this certainly adds to the confusion) also de-
noted by S and is given by

¬

q ′t
�

�q ′T
¶

= e iS(q ′t ,q ′T )/ħh (10)

where |q ′T 〉 and |q ′t 〉 are eigenkets of the canonical coordinate operators (in the Heisenberg
representation) at the initial and final times. S can then be considered the quantum analogue
of the classical principal function. Since the precise nature of this analogy is not defined, the
only upshot of Dirac’s study was that a quantum theory modeled more closely on the classical
Lagrangian formulation would be based on the (transformation) matrix elements

¬

q ′t
�

�q ′T
¶

,
rather than on a quantum state evolving in time. Such a formulation could thus be a better
starting point for a relativistic generalization of QM.

Dirac’s program (which he himself did not pursue much further) was thus very similar to that
of Heisenberg in early 1937: Rewrite quantum theory in a more explicitly covariant manner,
in order to have a better starting point for obtaining the correct relativistic theory. And, in-
deed, they ended up at very similar formulations: Dirac’s transformation matrix elements are
simply the matrix elements of the Schrödinger (or interaction) picture time evolution opera-
tor, expressed in the Heisenberg picture. So, just like Heisenberg in 1937, Dirac’s attempts at
re-writing quantum theory in a more relativistic fashion, had led him to an approach in which
the procedural took precedence over the study of stationary states.

What Dirac did not supply was any novel way of calculating these transformation matrix el-
ements. The question of what the quantum generating function would be was left entirely
open. It was Feynman who was to fill this gap, at the same time taking the step that Heisen-
berg had also taken, namely to move from a theory which still made explicit reference to ar-
bitrary initial and final states of a process, to a theory in which only free, asymptotic states
appeared and the notion of the differential evolution of an instantaneous state was gone. And
in both cases, it was the attempt to solve the divergence difficulties of QFT which motivated
this next step: For Heisenberg it had been the fundamental length, for Feynman it was action-
at-a-distance electrodynamics.

4Indeed no general relation between quantum and classical generating functions was established by Feyn-
man, who only deals with infinitesimal time translations. If equation 68 on page 113 of Dirac’s book were in-
tended to imply the general numerical equality of quantum and classical generating functions, it would be plain
wrong - it would not even hold for finite time evolutions. But Dirac clearly identifies the S in this equation
as merely denoting the quantum generating function. I therefore believe that Wüthrich’s argument that Dirac
here anticipated Feynman’s work [Wüthrich 2010, p.53] is fallacious. Julian Schwinger’s take on the whole ques-
tion was the following: “Now, we know, and Dirac surely knew, that to within a constant factor the “correspon-
dence” for infinitesimal d t is an equality when we deal with a system of nonrelativistic particles possessing a
coordinate-dependent potential energy V . [...] Why, then, did Dirac not make a more precise, if less general,
statement? Because he was interested only in a general question: What, in quantum mechanics, corresponds to
the classical principle of stationary action ?” [Schwinger 1989]
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2.3 Feynman’s Path Integrals

Feynman’s realization that there is a very close relation (indeed proportionality) between the
classical and quantum generating functions for the special case of infinitesimal time evolu-
tion occurred in the Spring of 1941. The amusing anecdote of how he hit upon this fact, with
the help of German physicist Herbert Jehle, is recounted by himself in his Nobel lecture. Us-
ing this fact, and iterating the infinitesimal time evolutions to obtain an expression for finite
time evolutions, he arrived at his famous path integral formulation of (non-relativistic) quan-
tum mechanics. The details of this discovery need not concern us here, they are discussed,
e.g., in [Wüthrich 2010]. What Feynman ended up with was an expression for arbitrary ma-
trix elements between an initial stateψ at time t0 and a final state χ at time t1. As a simplest
case, this gives an expression for Dirac’s transformation matrix elements, generalized to an
arbitrary initial and final state:
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where

ε=
t1− t0

k
(12)

is the infinitesimal time interval introduced through the iteration of the infinitesimal time
evolution and A is a normalization factor. In the limit where ε is taken to zero, the familiar
path integral arises, but Feynman eschewed the highly problematic notion of functional inte-
gration, both in his thesis and his first paper on path integrals in 1948. Still the limit of contin-
uous time was conceptually important, because in this limit the sum in the exponential would
be replaced by an integral (and the difference quotient in the argument of the Lagrangian by
a time derivative), giving, and this was Feynman’s second great insight, the classical action
functional of equation 6.

This realization allowed Feynman to go beyond a mere reformulation (albeit a very elegant
and hugely influential one) of regular non-relativistic QM to the quantization of theories
which had no Hamiltonian, only an action. This had been, after all, his goal: To quantize
the absorber theory starting from the Fokker action.

Here now, in discussing in general the quantization of a classical theory with only an action,
Feynman really began to wrestle with the difficulty of the absence of states. For after all, the
matrix elements when calculated in the action method for physical systems with a regular
Lagrangian, still explicitly depend on the initial and final quantum mechanical states at some
finite times t0 and t1. Feynman’s solution was to assume that the non-Lagrangian nature of
the system only existed for a finite time:

This difficulty may be circumvented by altering our mechanical problem. We may
assume that at a certain very large positive time T2, and at a large negative time
T1, all of the interactions (e.g., the charges) have gone to zero and the particles are
just a set of free particles (or at least their motion is describable by a Lagrangian).
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We may then put wave functions, χ andψ, for these times, when the particles are
free, into [the equation for the matrix elements]. (We might then suppose that the
motion in the actual problem may be a limit of the motion as these times T1 and
T2 move out to infinity).

Feynman thus, just like Heisenberg, arrived at the point where the theory could only speak
about transitions between asymptotic free states, while the evolution of the state in some
intermediate area of interaction was inaccessible to the theory. This establishment of this
view may be viewed as stemming from philosophical preferences. Indeed, Feynman himself
in his Nobel lecture stated that at this time he developed a preference for an “overall space-
time point of view,” where one always only considered the full evolution of systems, and a
“disrespect for the Hamiltonian method of describing physics,” where “things are discussed
as a function of time in very great detail.” Schweber [Schweber 1994, p. 393] also claims that
Feynman’s recasting of QM was “clearly influenced by the S-matrix viewpoint Wheeler had
expounded to him.”

What is this “S-Matrix viewpoint” of Wheeler’s? For one, Wheeler was the first one to use
the S-Matrix -years before Heisenberg, in 1937, though Heisenberg claims he developed the
idea independently [Rechenberg 1989], which is plausible, given that he had already arrived
at the idea of an integral scattering operator in 1937. In any case, for Wheeler the S matrix
was merely a calculational tool in non-relativistic nuclear physics and not the central quan-
tity of the current or a future theory. Rather, Schweber is referring to a view of Wheeler’s “that
all quantum-mechanical descriptions of physical phenomena could be construed as scatter-
ing processes” [Schweber 1994, p. 379]. Wheeler jokingly referred to these ideas of his as
“everything as scattering,” and they most certainly influenced Feynman’s diagrammatic ap-
proach to perturbation theory. But these developments were still far off in 1942, and Wheeler
himself placed his work on Wheeler-Feynman electrodynamics in the context of a different,
albeit similarly ambitious, program of “everything as electrons.” [Wheeler 1989] Also, the idea
of “everything as scattering” is clearly distinct both from Heisenberg’s philosophical starting
point of reducing everything to observables (which played no apparent role for Feynman) and
from Feynman’s own space-time point of view. So, while such general philosophical consid-
erations certainly played a role for all the involved actors, they do not explain the surprising
convergence of the programs of Heisenberg and Feynman.

The common origin of their arrival at a theory that only connects free, asymptotic states is
rather the belief that the failure of QED should be understood from the misguided ambition
of giving a detailed picture of infinitesimal time development. Their reading of why such a
picture is impossible is very different (fundamental length v. action-at-a-distance), but the
conclusions are strikingly similar. It is indeed probable that Feynman was driven to the adop-
tion of his viewpoint by the difficulties of QED, rather than by some overarching philosophi-
cal program. Schweber himself cites another interview with Feynman that Schweber himself
conducted (p. 396):

The reason in my philosophy not to descend to the Schrödinger equation and to
do as much physics as I could without doing that, is that I really believed at that
time, in 1941-42, that this back action, this Wheeler-Feynman thing was really a
forward step. That’s why I was doing everything. I wanted to get the quantum me-
chanics of that, and that was in the form of a path integral; it had no Hamiltonian.
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And also in his thesis, we see Feynman wrestling with these issues, as in the following long
quote, where he argues that one should at least keep the notion of an asymptotic, free state in
order to interpret the theory:

It is not unreasonable that it should be impossible to find a quantity like a wave
function, which has the property of describing the state of the system at one mo-
ment, and from which the state at other moments may be derived. In the more
complicated mechanical systems [of action-at-a-distance] the state of motion of
a system at a particular time is not enough to determine in a simple manner the
way the system will change in time. It is also necessary to know the behavior of
the system at other times; information which a wave function is not designed to
furnish. An interesting, and at present unresolved, question is whether there ex-
ists a quantity analogous to a wave function for these more general systems, and
which reduces to the ordinary wave function in the case that the action is the inte-
gral of a Lagrangian. That such exists is, of course, not at all necessary. Quantum
mechanics can be worked entirely without a wave function, by speaking of ma-
trices and expectation values only. In practice, however, the wave function is a
great convenience, and dominates most of our thought in quantum mechanics.
For this reason we shall find it especially convenient, in interpreting the physical
meaning of the theory, to assume our mechanical system is such that, no matter
how complex between the time T1 and T2, outside of this range the action is the
integral of a Lagrangian. In this way, we may speak of the state of a system at time
T1 and T2, at least, and represent it by a wave function.

We can thus see, how the two war year programs of eliminating the notion of state from quan-
tum mechanics can both be viewed as directly resulting from the perceived inability of a quan-
tum field theory to address questions of incremental time evolution. We have already seen
that Heisenberg’s program of using his S matrix as the basis for a new QFT failed: It remained,
for the time being, an empty theoretical structure. How did Feynman’s least action formal-
ism fare as the foundation of a new QED? What became of the attempt at using it to quantize
Wheeler-Feynman electrodynamics? It is to this question that we now turn.

2.4 The Quantization of Action at a Distance Theories

The short answer is: Feynman did not quantize Wheeler-Feynman electrodynamics in his
thesis. The first major difficulty was in fact not the action at a distance, but rather the rel-
ativistic kinematics of the particles. This was also the problem Wheeler was struggling with
[Mehra 1994, 130]. Feynman would return to these questions only after the war, when his
struggle with the Dirac equation began, which is recounted in great detail in [Wüthrich 2010].
We will also return to this point. For his thesis, Feynman restricted himself to non-relativistic
theories.

Apart from the difficulties of relativistic kinematics, there was a further major, and more gen-
eral, problem in Feynman’s approach to quantizing non-Lagrangian theories. He was, in fact,
very unsatisfied with circumventing the problem of the lack of a state described by a wave
function by talking only of free, asymptotic states. In the section following the long quotation
above, he went on to write (p.49):
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The physical interpretation which is given in the above section, although the only
consistent one available, is rather unsatisfactory. This is because the interpre-
tation requires the concept of states representable by a wave function, while we
have pointed out that such a representation is in general impossible. We are there-
fore forced to alter our mechanical problem so that the action has a simple form
at large future and past times, so that we may speak of a wave function at these
times, at least. [...] We have not defined precisely what is to be done when the
action does not become simple at times far from the present.
One possibility that suggests itself is to devise some sort of limiting process so
that the interpretation of the last section could be used, and the limit taken as
T1 → −∞ and T2 → +∞. The author has made several attempts in this direction
but they all appear artificial, having mathematical, rather than physical, content.

Feynman thus attempted to construct a formulation of the theory in which there was no more
talk of initial and final states at all:

An alternative possibility is to avoid the mention of wave function altogether, and
use, as the fundamental physical concept, the expectation value of a quantity,
rather than a transition probability.

This attempt was plagued by difficulties: Feynman could not devise a general method to get
only real expectation values for physical quantities. This was especially problematic concern-
ing the expectation value of the energy, where a complex expectation value implied the loss of
unitarity (i.e., probabilities did not add up to one). In his Nobel lecture, Feynman stated that
he wrote up his thesis in “in one of the short periods during which I imagined I had laid [the
difficulty] to rest.” But even in his thesis he characterized his approach as “very incomplete
and the results tentative.” And indeed, in the following years he reached the conclusion that
it would not work:

During the war, I didn’t have time to work on these things very extensively, but
wandered about on buses and so forth, with little pieces of paper, and struggled
to work on it and discovered indeed that there was something wrong, something
terribly wrong.

Returning to these questions after the war in earnest, he somewhat grudgingly accepted work-
ing with asymptotic free states, as witnessed, e.g., by the following quote from a later paper
Feynman [1950]:

[W]e can imagine the charges to be turned on after [T1] adiabatically and turned
off slowly before [T2] [...]. Hereafter we shall [...] consider the range of integration
of t to be from −∞ to +∞, imagining, if one needs a definition, that the charges
vary with time and vanish in the direction of either limit.

While it is not necessary for our story to study in detail Feynman’s attempts at eliminating
even the asymptotic states, it is important to understand how this affected his approach to the
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quantization of non-Lagrangian theories. The incompleteness of his quantization program
implied that he could not simply take the action for a non-relativistic theory of action at a
distance and plug it into a path integral. Instead, he took a more conservative approach.

Recall that Wheeler-Feynman electrodynamics is removed from the classical field theory in
two steps, which are related to the two difficulties of QED that Feynman had learned as an
undergrad. First, there is the elimination of the field degrees of freedom and their replace-
ment by a half-retarded, half-advanced direct interaction. The resulting theory of particles
interacting at a distance is equivalent to the field theory - the only modification is that a cer-
tain solution of the field equations has been singled out. The second step is the removal of the
electron’s self-interaction, which makes the resultant theory inequivalent to the field theory.

Instead of now directly quantizing a non-Lagrangian theory, Feynman only attempted to find
a quantum mechanical generalization of the elimination of the field. The resultant quantum
theory would then of course not have a Lagrangian and was supposed to be describable only
in terms of Feynman’s “expectation value” formulation of the path integral for non-Lagrangian
theories. But at the same time, he was able to keep a clear relation to a theory formulated in
the well-established language of Hamiltonian QM. Expressed positively, as Feynman did in
the abstract of his thesis, this meant that “the results serve as a confirmation of the proposed
generalization.” One can of course also read this, as saying that Feynman did not dare venture
too far into unknown territory with the tentative (and soon to be discarded) tools he had at
hand.

The non-relativistic toy model for the elimination of the field was the interaction of two parti-
cles (coordinates y and z , respectively) interacting via a harmonic oscillator (coordinate x ,
mass m , frequency ω), described classically by (the oscillator not yet eliminated) the La-
grangian:

L = L y + L z +
�

m ẋ 2

2
−

mω2x 2

2

�

+γx (13)

where Iy and Iz are arbitrary functionals of y (t ) and z (t ), respectively, describing the inter-
action of the particles with the oscillator. This was a natural starting point, since QED could
be formulated, and this is how Feynman learned it from Fermi’s influential 1932 RMP review,
as a set of particles interacting via a continuum of harmonic oscillators, one for each of the
modes of the electromagnetic field.

In the classical theory, one can now eliminate the oscillator degree of freedom by solving the
Euler-Lagrange equation of motion for the oscillator, and then plugging the chosen solution
(which will be a functional of y (t ) and z (t ) and a function of the boundary conditions im-
posed on the oscillator) into the equations of motion for the particle. The important fact
is that the oscillator equation of motion can be solved independently because the interac-
tion term is linear in x , making the inhomogeneous term in the oscillator equation of motion
merely a function of y and z .

The important question is then, whether the new equations of motion for the particles, which
are no longer of the Euler-Lagrange form, can still be obtained from the minimization of some
new action, which is then of course no longer simply the time integral of a Lagrangian. Feyn-
man could show that this depended on what type of boundary conditions one used to spec-
ify the solution of the harmonic oscillator equation of motion, and what kind of parameters
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would consequently show up in the action-at-a-distance particle equations of motion.

If one specified the initial conditions (position and velocity, i.e., the usual Cauchy boundary
conditions) of the oscillator, one ended up with equations of motions for the particles that
could not be derived from an action. If one instead specified the position at some initial and
another final time (Dirichlet boundary conditions), one did end up with a theory that could
be cast into an action. Feynman finally considered imposing conditions on two specific linear
combinations R0 and RT of initial (t = 0) and final (t = T ) positions and velocities (a special
case of Robin boundary conditions):

R0 =
1

2

�

x (0)+x (T )cosωT − ẋ (T )
sinωT

ω

�

RT =
1

2

�

x (T )+x (0)cosωT − ẋ (0)
sinωT

ω

�

(14)

These boundary could be interpreted in the following way:

RT is the mean of the coordinate of the oscillator at time T and what the coordi-
nate would have been at this time if the oscillator had been free and started with
its actual initial conditions. Similarly, R0 is the mean of the initial coordinate and
what that coordinate would have had to be, were the oscillator free, to produce
the actual final conditions at time T .

They also led to an action-at-a-distance particle action, which depended on the parameters
R0 and RT . Of particular interest to Feynman was the special case, where both of these param-
eters are set equal to zero. Given his physical interpretation of the boundary conditions, this
choice of parameters can easily be interpreted as the oscillator being in its classical ground
state (located at the origin, zero velocity), both for initial and final times. The resulting ac-
tion for this parameter choice had the special feature that the initial and final times could
unproblematically be taken to negative and positive infinity, respectively. The action in this
limit

A =

∞
∫

−∞

�

L y + L z

�

d t +
1

2mω

∞
∫

−∞

t
∫

−∞

sinω(t − s )γ(t )γ(s )d s d t (15)

where γ is short for Iy + Iz , was then also time translation invariant and thus allowed for the
definition of a conserved energy, which now of course was a function of the full particle tra-
jectories.

The special significance of this action for Feynman is not immediately apparent upon a cur-
sory reading of his thesis. [Mehra 1994, p. 133] claims that Feynman somehow proved the
uniqueness of this choice of boundary conditions, given the constraints of obtaining a time
translation invariant action. This is, however, certainly an exaggeration (e.g., Feynman con-
sidered neither Neumann boundary conditions, nor more general Robin boundary condi-
tions) and Feynman never makes such a claim. Mehra further identifies the choice of bound-
ary conditions as chosing “a definitely determined solution of the oscillator equation, a sym-
metric one which included one-half advanced and one-half retarded interaction between the
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atoms.” But this physical interpretation is very unclear: If there is only one oscillator, there is
no dispersion relation and consequently neither a group or a phase velocity, which might give
a meaning to the notion of advanced or retarded interactions; and again, Feynman makes no
such claim. What he did remark, off-handedly, was that

In electrodynamics it [the action of equation 15] leads to the half advanced plus
half retarded interaction used in the action at a distance theory.

Indeed, as Feynman showed in his thesis, one can generalize the procedure outlined above to
the case of a large number of oscillators. In particular (and this Feynman did not do explic-
itly in his thesis), one can generalize to the case of electrodynamics, with one oscillator for
each radiation mode of the electromagnetic field. Further generalizing to the case of velocity-
dependent interactions (which Feynman had refrained from doing in his thesis (p. 18) “for
simplicity only”), one can take the interaction of a particle (described by its position vector y
and possessing a charge q ) with the oscillator corresponding to the radiation mode of wave
vector K (frequency c |K|) and polarization vector e to be given by the usual minimal coupling
of electron theory5

Iy =
p

8πqy
�

e · ẏ
�

cos
�

K ·y
�

(16)

After eliminating all the oscillators, with boundary conditions R0 = RT = 0 for each one of
them, the resultant action indeed describes half-advanced, half-retarded electromagnetic in-
teractions, i.e., it is the Fokker action, but with an additional self-energy term. Feynman’s
above comment and the central role that the action of equation 15 clearly indicate that he
was aware of this.

Then why didn’t Feynman include such an analysis in his thesis, making the connection be-
tween his toy model and Wheeler-Feynman electrodynamics more explicit? There is an ad-
ditional difficulty in obtaining half-advanced, half-retarded action at a distance through the
elimination of the electromagnetic mode oscillators: In addition to the Fokker action (plus
self-energy), there are additional boundary terms, which can only be made to vanish by as-
suming that the interaction is adiabatically turned off in the distant past and future. And as
we have seen, Feynman was very hesitant to make such assumptions at the time. This may
well explain why he only hinted in passing at the connection between his toy model and the
Fokker action.

Restricting himself to the one-oscillator toy model, the next question still was: How was the
elimination of the oscillator to be carried over into the quantum theory? The general idea was
clear: Given a path integral involving both the particles and the oscillator, one would perform
the integration only over the coordinates of the oscillator and arrive at a new expression for
the matrix element in question that would now only involve (functional) integration over the
coordinates of the particles. Feynman showed how this could be done in general, effectively
developing techniques for the functional integration of Gaussian integrals. But what now was
the analogue of the classical choice of boundary conditions for the oscillator?

The obvious answer would seem to be setting the initial and final quantum mechanical states
of the oscillator. But this obvious answer was not available to Feynman at the time, since he

5Note that for each such oscillator there is another one with the cosine replaced by a sine in the interaction
term.
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was attempting to eliminate the notion of state altogether. The alternative he presented in his
thesis is quite involved, but basically boils down to simply choosing some boundary condi-
tions for the oscillator coordinate and its time derivative, in full analogy to the classical theory.
The (rather unspectacular) result was then that a given choice of boundary conditions always
led to the same action-at-a-distance theory, no matter whether the oscillator was eliminated
classically or quantum mechanically. This is where Feynman left things when heading off to
Los Alamos.

His work immediately after the war was, as already mentioned, mainly devoted to the Dirac
equation. He returned to the question of arriving at a theory of direct particle interaction by
eliminating intermediate oscillators when writing his review article on the path integral in
1947. As already discussed, he had by this time abandoned his attempts at removing also the
asymptotic states from the theory. Consequently, when presenting the elimination of the os-
cillator degrees of freedom in his review article, he set the boundary conditions for the quan-
tum oscillator one wants to eliminate by specifying the initial and the final wave function of
the oscillator.

Here something interesting happens: The natural quantum generalization of the choice of
boundary conditions Feynman had favored in his thesis (R0 = RT = 0) is of course to take the
quantum mechanical ground state as the initial and final state for the oscillator. It turns out,
now, that this does not lead to the same action as in the classical case, i.e., for electrodynam-
ics to a half-advanced, half-retarded interaction. Instead, in quantum theory, this choice of
boundary conditions leads to the usual full retarded interaction.

It is not entirely clear when Feynman became aware of this: The first extant calculations by
Feynman on this matter date from around the time of the completion of the review article.
But already in 1942, when writing up his thesis, Feynman realized that the technique of elim-
inating the field/oscillators would have applications in QED proper, independent of all con-
siderations of advanced actions at a distance and self energy elimination.

It was in fact, as Feynman had learned in particular from reading Fermi’s introduction to QED,
standard procedure to eliminate some components of the electromagnetic field in the quan-
tum theory, namely those corresponding to the longitudinal and time-like modes of the elec-
tromagnetic four-potential, i.e., those components which did not correspond to propagating
electromagnetic radiation. They could be eliminated without recourse to path integral tech-
niques (which of course were not available at the time), simply by using the gauge freedom
of electrodynamics - their elimination in fact was equivalent to a specific choice of gauge,
nowadays known as the Coulomb gauge, because the resulting Hamiltonian after the elim-
ination now contains an instantaneous interaction at a distance between the electrons, the
well-known Coulomb interaction.

The elimination of the longitudinal and time-like modes meant a huge simplification for cal-
culations in QED, and Feynman hoped that a generalization of this procedure, using his tech-
niques, in which also the transverse, radiation modes of the field were eliminated would lead
to even greater simplifications, in particular he hoped that it might shed light on the question
of self-energy - Wheeler-Feynman electrodynamics is only mentioned in a footnote. Con-
cerning the elimination of the oscillators in QED, he wrote:

[T]he oscillators representing longitudinal waves may be eliminated. The result
is instantaneous electrostatic interaction. The electrostatic elimination is very in-
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structive as it shows up the difficulty of the self-interaction very distinctly. In fact,
it shows up so clearly that there is no ambiguity in deciding what term is incor-
rect and should be omitted. This entire process is not relativistically invariant,
nor is the omitted term. It would seem to be very desirable if the oscillators, rep-
resenting transverse waves, could also be eliminated. This presents an almost
insurmountable problem in the conventional quantum mechanics. [...]
The present formulation permits the solution of the motion of all the oscillators
and their complete elimination from the equations describing the particles. This
is easily done.

Feynman’s attempts at constructing a new quantum theory of electrodynamics had thus led
him instead to a reformulation of QED, one in which states were not eliminated (for the re-
sulting theory was still to be equivalent to the usual formulation with all the oscillators in
place), but in which they were very much marginalized (for there were no more states, except
for asymptotic free ones, after the oscillators were eliminated). Just like Heisenberg’s S matrix,
this reformulation would turn out to be extremely powerful in the context of the re-invention
of QED in the late 1940s, shaping the reformulation of QFT in a decisive manner.

To be continued
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