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Abstract 
 
	  
The	  reading	  (Fraser	  (2008),	  “The	  fate	  of	  ‘particles’	  in	  quantum	  field	  theories	  with	  
interactions”)	  makes	  the	  case	  for	  a	  ‘no	  go’	  result	  that	  rules	  out	  interpreting	  QFT	  as	  a	  theory	  
which	  directly	  describes	  quanta.	  An	  interacting	  system	  cannot	  be	  given	  a	  quanta	  
interpretation	  in	  the	  same	  manner	  that	  the	  Fock	  representation	  for	  a	  free	  system	  
underwrites	  a	  quanta	  interpretation.	  (Note	  that	  whether	  these	  “quanta”	  possess	  all	  of	  the	  
requisite	  properties	  of	  particles—e.g.,	  localizability—is	  a	  further	  question.	  Jim	  Weatherall	  
will	  address	  this	  question	  in	  his	  presentation.)	  I	  will	  offer	  an	  opinionated	  survey	  of	  the	  
roles	  remaining	  for	  quanta	  in	  the	  interpretation	  of	  QFT,	  given	  this	  ‘no	  go’	  result.	  The	  survey	  
will	  situate	  the	  options	  within	  the	  context	  of	  current	  discussions	  among	  philosophers	  and	  
physicists	  about	  how	  to	  characterize	  approximation,	  idealization,	  and	  emergence	  in	  
physics.	  
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Most philosophical discussion of the particle concept that is

afforded by quantum field theory has focused on free systems.

This paper is devoted to a systematic investigation of whether

the particle concept for free systems can be extended to

interacting systems. The possible methods of accomplishing

this are considered and all are found unsatisfactory. Therefore,

an interacting system cannot be interpreted in terms of

particles. As a consequence, quantum field theory does not

support the inclusion of particles in our ontology. In contrast to

much of the recent discussion on the particle concept derived

from quantum field theory, this argument does not rely on the

assumption that a particulate entity be localizable.

& 2008 Elsevier Ltd. All rights reserved.

When citing this paper, please use the full journal title Studies in History and Philosophy of

Modern Physics

1. Introduction

Quantum field theory (QFT) is the basis of the branch of physics known as ‘particle physics.’
However, the philosophical question of whether quantum field theories genuinely describe particles
is not straightforward to answer. Since QFTs are formulated in terms of fields (i.e., mathematical
expressions that associate quantities with points of spacetime), the issue is whether the formalism
can be interpreted in terms of a particle notion. What is at stake is whether QFT, one of our current
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best physical theories, supports the inclusion of particles in our ontology. This paper advances an
argument that, because systems which interact cannot be given a particle interpretation, QFT does
not describe particles.

Even proponents of a particle interpretation of QFT acknowledge that the particle concept
inherent in a QFT would differ from the classical particle concept in many ways. To distinguish the
QFT concept from the classical one, the former has been dubbed the ‘quanta’ concept (e.g., Teller,
1995, p. 29). Redhead and Teller (1992) argue that one way in which quanta differ from classical
particles is that quanta are not capable of bearing labels.1 That is, they lack a property that is
variously termed ‘haecceity,’ ‘primitive thisness,’ or ‘transcendental individuality.’ However, Teller
argues that the quanta notion should still be considered a particlelike notion because quanta are
aggregable (Teller, 1995, p. 30). There are, for example, states in which we definitely have two quanta
and states in which we definitely have three quanta, and these can be combined to yield a state in
which we definitely have five quanta. Quanta are also particlelike insofar as they possess the same
energies as classical, relativistic, non-interacting particles.

This minimal notion of quanta as entities satisfying a countability condition and a relativistic
energy condition will be employed in the following investigation. These quanta may significantly
differ from classical particles in other respects. For example, the question of whether there is an
appropriate sense in which quanta are localized has been the subject of recent debate (see Fleming,
2001; Halvorson & Clifton, 2002; Malament, 1996). However, for our purposes, this debate can be set
aside. The particlelikeness of the quanta notion will not challenged; instead, the arguments
presented below aim to show that the domain of application of the quanta concept is so strictly
limited that quanta cannot be admitted into our ontology.

The quanta interpretation of QFT is based on special properties of the mathematical
representation for free systems in QFT. Free fields describe the world in the absence of interactions.
But in the real world there are always interactions. This raises a crucial question: Can the quanta
interpretation be extended to interacting systems? The analysis presented here aims to supply a
comprehensive answer to this question. Ultimately, the answer is ‘no;’ an interacting system cannot
be described in terms of quanta. This inquiry is in the same spirit as recent discussions (which are
restricted to free systems) of whether a unique quanta notion is available for accelerating observers
or in more general spacetime settings (i.e., non-stationary spacetimes) (Arageorgis, Earman, &
Ruetsche, 2002, 2003; Clifton & Halvorson, 2001). The present investigation adopts the opposite
approach: the restriction to free systems will be dropped, and the restriction to inertial observers on
flat Minkowski spacetime will be retained. The commonality is that the interpretive conclusions rest
on the employment of unitarily inequivalent representations of the canonical commutation relations.
In this case, the fact that the representations for free and interacting systems are necessarily unitarily
inequivalent is invoked in the first stage of the argument. However, the structure of the argument
diverges from the above-mentioned discussions after this first stage; further work is required to
establish that the unitarily inequivalent representation for the interacting field cannot possess the
relevant formal properties.

After a brief review of the Fock representation for a free system and the standard argument that it
supports a quanta interpretation, three methods for obtaining a quanta interpretation for an
interacting system will be evaluated. The first method is simply to use the Fock representation for a
free system to represent an interacting system. Since this method proves unsuccessful, it is necessary
to generalize the definition of Fock representation so that it is applicable to interacting systems. In
order to distinguish these definitions, I will reserve the term ‘Fock representation’ for free systems
and refer to the results of attempts to formulate analogous representations for interacting systems as
‘FOK representations.’2 In principle, there are two methods for extending the definition of a Fock
representation which are allied with the two approaches to defining a Hilbert space representation in
QFT: the ‘constructive’ method of applying to an interacting field the same quantization procedure

ARTICLE IN PRESS

1 For a dissenting view on the metaphysics of classical particles, see Huggett (1999).
2 This expression is borrowed from the early history of QFT, when what is here referred to as a ‘Fock representation’ was

sometimes labeled a ‘FOK representation.’
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that generates a Fock representation from a classical free field and the ‘axiomatic’ method of
specifying a Hilbert space representation by stipulating formal conditions. The former method will
be investigated in Section 4 and the latter in Section 5. Following the failure of both methods, a final,
last-ditch attempt to retain a quanta interpretation for interacting systems will be critiqued in
Section 6. The implications of the conclusion that interacting systems cannot be described in terms of
quanta for metaphysics and for the foundations of QFT will be assessed in Section 7.

2. The Fock representation for a free field

Every introductory QFT textbook contains a discussion of how to construct a Fock space
representation of the equal-time canonical commutation relations (ETCCRs) for a free field. The
construction proceeds by effecting a positive–negative Fourier decomposition of a classical free field
and then promoting the coefficients to operators. The details of this construction will be discussed in
Section 4. In this section, the properties of the final product of the construction—a Fock
representation for a free field—will be reviewed. Strictly speaking, the textbook characterization of
a Fock representation is not well-defined. This can be remedied by making a few modifications.
However, for the purposes of this section, the textbook treatment will be used because the argument
that a Fock representation supports a quanta interpretation is most naturally formulated using the
unrigorous presentation. Details of the rigorous version can be found in the footnotes.

A Fock representation for a free bosonic real scalar field with m40 on Minkowski spacetime3

possesses the following formal properties4:

1. Field operators: There exist well-defined annihilation and creation operators aðk; tÞ, ayðk; tÞ where
k2
¼ k2

0 �m2. aðk; tÞ, ayðk; tÞ obey the ETCCRs

½aðk; tÞ; aðk0; tÞ� ¼ 0; ½ayðk; tÞ; ayðk0; tÞ� ¼ 0; ½aðk; tÞ; ayðk0; tÞ� ¼ d3
ðk� k0Þ (1)

At any given time t the quantum field fðx; tÞ can be defined as follows (where o2
k ¼ k2

0 ¼ k2
þm2):

fðx; tÞ ¼
Z

d3k

ð2pÞ3=2
ffiffiffiffiffiffiffiffiffiffi
2ok

p ½ayðk; tÞ eik�x þ aðk; tÞ e�ik�x� (2)

The conjugate momentum field pðx; tÞ is defined using pðx; tÞ ¼ qfðx; tÞ=qt and qaðk; tÞ=qt ¼

qayðk; tÞ=qt ¼ 0:

pðx; tÞ ¼
Z

d3k

ð2pÞ3=2
ffiffiffiffiffiffiffiffiffiffi
2ok

p ½iokayðk; tÞ eik�x � iokaðk; tÞ e�ik�x� (3)

Inverting and solving for aðk; tÞ, ayðk; tÞ gives

aðk; tÞ ¼
Z

d3x

ð2pÞ3=2
ffiffiffiffiffiffiffiffiffiffi
2ok

p eik�x½okfðx; tÞ þ ipðx; tÞ� (4a)

ayðk; tÞ ¼
Z

d3x

ð2pÞ3=2
ffiffiffiffiffiffiffiffiffiffi
2ok

p eik�x½okfðx; tÞ � ipðx; tÞ� (4b)

ARTICLE IN PRESS

3 The free bosonic real scalar field is treated for simplicity; other types of free fields also possess Fock representations. The

restriction to m40 and (flat) Minkowski spacetime ensures that there exists a Fock representation that is unique up to unitary

equivalence and supports a quanta interpretation in the manner described below. For accounts of what happens in other

spacetime settings see Wald (1994, Sections 4.3, 4.4) and Arageorgis et al. (2002).
4 A note on how to make these properties rigorously well-defined. The consequence of allowing the integrals to range over

all of space is that the n-particle states are not normalizable. In addition, the integral in Eq. (2) does not converge (Wald, 1994,

p. 35). To fix the first problem, it is often stipulated that fðx; tÞ is confined to a box or satisfies periodic boundary conditions

(see, e.g., Roman, 1969, p. 50), but this is not necessary. Both problems can be resolved by ‘smearing’ the fields in their spatial

variables. See the definition of a FOK2 representation in Section 5.
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2. No-particle state: There exists a unique (up to phase factor) ‘no-particle state’ j0i such that

aðk; tÞj0i ¼ 0 for all k (5)

3. Number operators: Number operators NðkÞ can be defined for any t:

NðkÞ ¼ ayðk; tÞaðk; tÞ

NðkÞ½ayðk; tÞnj0i� ¼ n½ayðk; tÞnj0i� (6)

where n ¼ f0;1;2; . . .g.5 In addition, for any t, the total number operator N ¼
R

d3kNðkÞ ¼R
d3kayðk; tÞaðk; tÞ is well-defined.6

4. Fock space: The one-particle Hilbert space H has as a basis the set of vectors generated from j0i
by single applications of ayðk; tÞ (for any k satisfying k2

¼ k2
0 �m2). The Fock space F for fðx; tÞ is

obtained by taking the direct sum of the n-fold symmetric tensor product of H: FðHÞ ¼
�1n¼0ð�

nHÞ (Wald, 1994, p. 192). j0i is cyclic with respect to the ayðk; tÞ’s.

Before turning to the quanta interpretation, note that this set of formal properties prescribes a
physically appropriate representation for a free system. aðk; tÞ, ayðk; tÞ, NðkÞ, and N are relativistically
covariant, as is required of physically significant quantities in a relativistic theory like QFT. Also, this set
of formal properties uniquely characterizes a Fock representation. As a consequence of the failure of the
Stone–von Neumann theorem for an infinite number of degrees of freedom,7 there are uncountably
many unitarily inequivalent8 representations of the ETCCRs.9 It has been proven that (when suitably
rigorized), these properties pick out an irreducible representation of the ETCCRs that is unique up to
unitary equivalence (Gårding & Wightman, 1954, pp. 624–625; Wightman & Schweber, 1955, pp.
819–822). More precisely, if fm is the free field on Minkowski spacetime satisfying the Klein–Gordon
equation with mass m, then the representation of the ETCCRs for fmðx; tÞ, pmðx; tÞ that possesses
properties (1)–(4) is unique (up to unitary equivalence). However, it should also be noted that the Fock
representation of the ETCCR’s for the field fm0 ðx; tÞ, m0am, is unitarily inequivalent to the Fock
representation of the ETCCRs for fmðx; tÞ (Reed & Simon, 1975, pp. 233–235). Therefore, there is such a
thing as the Fock representation for a free field that satisfies a specified Klein–Gordon equation; there are
a multitude of unitarily inequivalent Fock representations when the field equation is left unspecified.

ARTICLE IN PRESS

5 When normalized, the n-particle state becomes ayðk; tÞnj0i=
ffiffiffiffiffi
n!
p

.
6 That is, when the number operators are properly defined using a test function space T, as in Section 5, N ¼

P1
j¼1 ayðf jÞaðf jÞ

converges in the sense of strong convergence on the domain of N where ff jg is an orthonormal basis of T and N exists only if N

exists and is the same for every choice of orthonormal basis ff jg (Dell’Antonio, Doplicher, & Ruelle (1966) pp. 225–226).
7 See Ruetsche (2002) for an exposition.
8 Two representations of the ETCCRs ðH1; fO

i
1gÞ and ðH2; fO

i
2gÞ (where fOi

ng is the collection of operators appearing in the

ETCCRs) are unitarily equivalent if and only if there exists some unitary mapping U from Hilbert space H1 to Hilbert space H2

that such that for each operator Oj
1 2 fO

i
1g there exists an operator Oj

2 ¼ UOj
1U�1

2 fOi
2g (Wald, 1994, p. 19). The practical

importance of unitary equivalence is that—assuming fOi
1g and fOi

2g include all physically significant operators—if two

representations are unitarily equivalent then they will be physically equivalent in the sense that both produce the same

expectation values for all physically significant operators. See Ruetsche (2002) for further discussion.
9 A representation of the Weyl form of the ETCCRs is given by the pair of families of unitary operators Uðf ; tÞ, Vðg; tÞ ðf ; g 2TÞ in

the usual way, where Uðf ; tÞ ¼ eifðf ;tÞ , Vðg; tÞ ¼ eipðg;tÞ and Uðf ; tÞ and Uðg; tÞ satisfy the usual conditions (Wightman, 1967b, p. 189)

Uðf ; tÞUðg; tÞ ¼ Uðf þ g; tÞ

Vðf ; tÞVðg; tÞ ¼ Vðf þ g; tÞ

Uðf ; tÞVðg; tÞ ¼ eiðf ;gÞVðg; tÞUðf ; tÞ

and Uðaf ; tÞ, Vðag; tÞ are continuous in the real number a. The Weyl form of the ETCCRs is more convenient than the standard form

½fðf ; tÞ;fðg; tÞ� ¼ ½pðf ; tÞ;pðg; tÞ� ¼ 0; ½fðf ; tÞ;pðg; tÞ� ¼ iðf ; gÞ

because, unlike fðf ; tÞ and pðf ; tÞ, the exponentiated operators Uðf ; tÞ and Vðf ; tÞ are bounded, so they are automatically defined on

the same domain. Of course, ‘unsmearing’ this form of the ETCCRs yields the familiar relations

½fðx; tÞ;fðx0 ; tÞ� ¼ 0; ½pðx; tÞ;pðx0 ; tÞ� ¼ 0; ½fðx; tÞ;pðx0 ; tÞ� ¼ id3
ðx� x0Þ

It may turn out that the ETCCRs do not hold for physically realistic interactions because the arguments of the field operators must be

smeared in time as well as space (see Streater & Wightman, 2000, p. 168). However, this potential complication will be overlooked

here. Note that this is not a universal feature of interacting theories; there are rigorous Hilbert space models for non-trivial
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The existence of a well-defined operator N with a spectrum consisting of the non-negative
integers is not in itself sufficient for a quanta interpretation. Quantum theories contain discrete
properties. How, then, do we know that N is counting entities rather than, say, energy levels? An
argument needs to be made that N counts quanta, i.e., j0i is a state in which there are no quanta,
ayðk; tÞj0i is a state in which there is one quantum, etc. A Fock representation supports a quanta
interpretation because the eigenvectors of N, the total number operator, possess properties that are
appropriate for states containing definite numbers of particles. These properties arise from all of the
continuous and discrete symmetries of the field equation, but, for the purposes of the ensuing
discussion, we will restrict our attention to time translations and energy. In the Fock representation,
the Hamiltonian operator H is (for any t)10

H ¼

Z
d3kokayðk; tÞaðk; tÞ ¼

Z
d3kokNðkÞ (7)

This expression for H can be used to establish that the eigenvectors of N have the correct energies
for states in which the indicated number of quanta is present.

1. j0i, the no-particle state: It can easily be verified that Hj0i ¼ 0. Since the spectrum of H does not
contain any negative eigenvalues,11 this means that j0i is the ground state of H. Moreover, we
can infer from the uniqueness of the no-particle state (property 2) that j0i is the unique ground
state of H. Since the state in which there are no particles would presumably have the lowest
energy, if j0i cannot be interpreted as the no-particle state, then there is no other candidate in a
Fock representation.
Furthermore, j0i is invariant under time translations: eiHtj0i ¼ j0i. More generally, j0i is the
unique state which carries the trivial, one-dimensional representation of all symmetry
groups12 (Roman, 1969, p. 79). Consequently, j0i is the physical vacuum state. As Streater and
Wightman (2000, p. 21) remark, since j0i is invariant under the unitary operators that give a
representation of the Poincaré group and we are operating in Minkowski spacetime, j0i ‘‘looks
the same to all observers’’ (i.e., observers in inertial motion). Nothing—i.e., the absence
of particles—is something that we would expect to look the same to all inertial observers.
Thus, it is reasonable to interpret j0i as a state in which there are no particles because it is the
unique state with the desired properties: it is the lowest energy state and looks the same to all
inertial observers.

2. ayðk; tÞj0i (where k2
¼ k2

0 �m2), the one-particle states: The one-particle states furnish the

definitive argument for the quanta interpretation. States of the form ayðk; tÞj0i are also

eigenstates of H: H½ayðk; tÞj0i� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þm2

p
½ayðk; tÞj0i�. Special relativity dictates that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þm2

p
is the correct energy for a single non-interacting particle with momentum k and mass m. This
correspondence between the energy eigenvalues associated with these quantum states and the
relativistic energies of single classical particles provides a justification for interpreting

ayðk; tÞj0i as a state containing a single quantum of momentum k and mass m.13

3. ayðk; tÞnj0i ðnX2Þ, the n-particle states: All of the other eigenvectors of NðkÞ also have the correct
relativistic energies for states in which there are particular numbers of non-interacting

ARTICLE IN PRESS

(footnote continued)

interactions in which the ETCCRs do hold (e.g., for a Lagrangian with a scalar f4 interaction term in two spacetime dimensions)

(Glimm & Jaffe, 1970).
10 After normal ordering; i.e., moving all the ayðk; tÞ’s to the left of the aðk; tÞ’s without using the ETCCRs in (1).
11 Because ayðkÞ ¼ 0 when k0o0. For details, see the explication of the positive–negative frequency decomposition of cðxÞ

in Section 4.
12 The Poincaré group and, when applicable, a symmetry group associated with charge and any discrete symmetry groups.
13 This correspondence to relativistic energies holds for sharp values of k. However, to make the characterization of the

Fock representation for a free field rigorous, the momentum argument of ayðk; tÞ must be smeared: ayð~f ; tÞ ¼
R

ayðk; tÞ~f ðkÞdk

where ~f is the Fourier transform of f 2T (see footnote 4). For this formulation, an argument could made thatR ~f ðkÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þm2

p
dk is the correct relativistic energy for a single particle with unsharp momentum distributed according to ~f ðkÞ.
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particles. In general, H½ayðk; tÞnj0i� ¼ nok½a
yðk; tÞnj0i� (where ok ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þm2

p
), so ayðk; tÞnj0i is

an eigenstate of H with the correct relativistic energy for a state in which there are n non-

interacting particles, each with momentum k. This analysis generalizes to eigenvectors of the
total number operator N in a straightforward way:

H½ayðk1; tÞ
n1 ayðk2; tÞ

n2 � � � ayðkl; tÞ
nl j0i�

¼ ðn1ok1
þ n2ok2

þ � � � þ nlokl
Þ½ayðk1; tÞ

n1 ayðk2; tÞ
n2 � � � ayðkl; tÞ

nl j0i� (8)

therefore, ayðk1; tÞ
n1 ayðk2; tÞ

n2 � � � ayðkl; tÞ
nl j0i has the correct relativistic energy for a state in

which there are n1 non-interacting particles with momentum k1, n2 non-interacting particles

with momentum k2, etc.

Thus the energy eigenvalues provide a physical justification for interpreting any n-particle
eigenvector of N as a state in which there are n non-interacting quanta.

There is a formal analogy between the Fock representation for a free field and an infinite array of
quantum mechanical simple harmonic oscillators (SHOs) (e.g., a quantum mass on a spring). This
analogy does not do any philosophical work in this paper, but it is useful background because
philosophers often couch their discussions of QFT in terms of this analogy. Associated with a single
SHO are the ‘ladder operators’ (or ‘lowering’ and ‘raising’ operators):

a ¼ x

ffiffiffiffiffiffiffiffiffi
mo

2

r
þ ip

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2mo

r
where o2 is the frequency of the SHO (9a)

ay ¼ x

ffiffiffiffiffiffiffiffiffi
mo

2

r
� ip

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2mo

r
(9b)

Note the formal similarity between (9a, 9b) and aðx; tÞ, ayðx; tÞ (the Fourier transforms of (4a, 4b)).
Written in terms of a, ay, the Hamiltonian for a SHO is

H ¼ 1
2oða

yaþ aayÞ (10)

Prior to normal ordering and when the system is placed in a box, the Hamiltonian for a free quantum
field is an infinite sum of SHO Hamiltonians of different frequencies:

H ¼
X

k

ok

2
½ayðk; tÞaðk; tÞ þ aðk; tÞayðk; tÞ� (11)

In this manner, the Fock representation for a free system can sustain a quanta interpretation. But is
it also the case that an interacting system possesses a Hilbert space representation that admits a
quanta interpretation? In the next section, the possibility of using the Fock representation for a free
system to represent an interacting system will be ruled out. This leaves the alternative strategy of
attempting to generalize the definition of a Fock representation for a free system so that it can also be
applied to an interacting system. Two approaches fall into this category: focusing on the motivation
behind the relationship between fðx; tÞ, pðx; tÞ and aðk; tÞ, ayðk; tÞ expressed in identities (2), (3) and
focusing on the four formal properties of the free Fock representation listed above. The motivation for
expressing fðx; tÞ in terms of aðk; tÞ, ayðk; tÞ in (2) is that this is the output of the quantization
procedure that generates operator expressions for the free quantum fields from the free classical
fields. The relevant step in the quantization procedure is the positive–negative frequency
decomposition of the classical field. One approach to extending the definition of Fock representation
to interacting fields is to apply the same quantization procedure to an interacting field (i.e., to
decompose the classical interacting field into positive and negative frequency parts). To avoid
confusing the representation that results with the Fock representation for a free field, the former will
be labeled a ‘FOK1 representation.’ This approach will be investigated in Section 4; as we shall see, it
is not feasible.

The second approach to extending the definition of Fock representation to interacting systems is
to focus attention on the formal properties of a Fock representation listed above, without regard for
their origins. Instead of defining a representation by quantizing a classical field, a unique (up to

ARTICLE IN PRESS
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unitary equivalence) representation of the ETCCRs is picked out by stipulating formal properties. As
noted, the four formal properties listed above do pick out a unique (up to unitary equivalence)
representation of the ETCCRs for a given set of canonical free fields ðfF ;pF Þ. If the same set of
properties could be used to pick out a unique representation of the ETCCRs for a given set of
canonical interacting fields ðfI;pIÞ, then the representation singled out in this way could be
considered the ‘Fock’ representation for this interacting field. Work by Wightman and his
collaborators provides a starting point for extending the definition of Fock representation to
interacting fields in this way. Such a representation will be dubbed a ‘FOK2 representation.’ The
question of whether a FOK2 representation can sustain a quanta interpretation for an interacting
system will be the subject of Section 5. Once again, the conclusion will be that a FOK2 representation
fails to yield a quanta interpretation for an interacting field.

To motivate the search for an extension of the definition of Fock representation to interacting
fields, the next section advances an argument based on Haag’s theorem that a Fock representation for
a free field cannot sustain a quanta interpretation for an interacting field.

3. Method #1: using the Fock representation for a free field

The simplest strategy for obtaining a quanta interpretation for an interacting field would be to use
the Fock representation for a free system to represent a given interacting system, and then to try to
extract a quanta interpretation. That is, the hope is that the Hilbert space spanned by n-particle
states for the free field contains states that can be interpreted as containing n quanta in the presence
of the interaction. As we shall see, this simple strategy fails because there is no state in the Fock
representation for a free field that can be interpreted as containing zero quanta.

The background to this argument is the existence of different approaches to QFT with interactions.
‘Canonical QFT’ is the version of the theory that is found in most introductory QFT textbooks. It was
developed by Feynman, Dyson, and their colleagues. Mathematical physicists concerned with the
lack of mathematical rigor in canonical QFT adopted an axiomatic approach to the theory. Prominent
contributors to this tradition include Wightman and Haag.

Haag’s theorem pinpoints the source of the problem with the strategy of obtaining a quanta
interpretation for an interacting system from the Fock representation for some free system. The
consensus among axiomatic quantum field theorists is that Haag’s theorem entails that a Fock
representation for a free field cannot be used to represent an interacting field (e.g., Bogolubov,
Logunov, & Todorov, 1975, p. 560; Bratteli & Robinson, 1996, p. 218; Haag, 1992, p. 55, also Heathcote,
1989, p. 91; Lopuszanski, 1965, p. 747; Wightman, 1967a, p. 250; 1967b, p. 193; 1989, p. 610).14

Translated into mathematical terms, the assumption that a given interacting field can be represented
using the Fock representation for a free field amounts to the assumption that the Fock representation
F of the ETCCRs for the canonical free fields ðfF ðxÞ;pF ðxÞÞ is unitarily equivalent to the Hilbert space
representation HI of the ETCCRs for the interacting fields ðfIðxÞ;pIðxÞÞ at all times:

For all t there exists a unitary transformation UðtÞ :F!HI such that

fIðx; tÞ ¼ UðtÞfF ðx; tÞU
�1
ðtÞ; pIðx; tÞ ¼ UðtÞpIðx; tÞU

�1
ðtÞ (12)

This assumption underlies the interaction picture representation employed in canonical QFT. The
interaction picture is undermined by Haag’s theorem. In short, the theorem states that if all
the assumptions of the interaction picture are accepted, then ðfIðx; tÞ;pIðx; tÞÞ—the fields that were
intended to describe the interaction—actually describe a free system. As Streater and Wightman
(2000, p. 166) put it, ‘‘the interaction picture exists only if there is no interaction’’. (For an in-depth
analysis of Haag’s theorem see Earman & Fraser, 2006.)
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14 For example, Wightman writes that ‘‘[a] necessary condition that a[n interacting] theory make physical sense is

therefore that one use a strange representation of the commutation relations’’ (1967a, p. 250). A ‘strange representation’ is any

representation of the ETCCRs for a free field that is unitarily equivalent to the Fock representation (Bogolubov et al., 1975,

p. 560).
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The version of Haag’s theorem proven in Hall and Wightman (1957) establishes that, given certain
physically reasonable assumptions, UðtÞ does not exist at any time. That is, any irreducible Hilbert
space representation of the ETCCRs for genuinely interacting fields ðfIðxÞ;pIðxÞÞ is unitarily in

equivalent to a Fock representation for any free fields at all times. The physically reasonable premises
of the theorem are as follows:

(i) No states of negative energy exist.
(ii) Poincaré transformations on F and HI are represented by unitary operators Pi ði ¼ F; IÞ,

respectively, which follows from Wigner’s theorem concerning the representation of
symmetries (Streater & Wightman, 2000, pp. 7–8).

(iii) ðfiðxÞ;piðxÞÞ are covariant under Poincaré transformations Pi, which is a prerequisite from
relativity theory for ðfiðxÞ;piðxÞÞ to be independent of inertial reference frame.

(iv) There exist unique normalizable vacuum states jFii such that PijFii ¼ 0, which follows
from Wigner’s classification of representations of the Poincaré group (Streater & Wightman,
2000, pp. 21–22).

The final assumption is also underwritten by the quanta interpretation for a free field: the no-particle
state j0Fi in a Fock representation coincides with the vacuum state jFFi; the invariance of j0Fi under
Poincaré transformations means that this state looks the same to all inertial observers.

What would happen if one paid no heed to the lesson of Haag’s theorem and insisted on proceeding
as if the Hilbert space representation for ðfI;pIÞ is unitarily equivalent to the Fock representation for
ðfF ;pF Þ? This is the course taken by canonical quantum field theorists, who continue to employ the
interaction picture. The answer suggested by Haag’s theorem is that HIjFIi ¼ 1 where HI is the total
interaction Hamiltonian. The implied expectation value hFIjHIjFIi ¼ 1 has been confirmed by non-
perturbative calculations for bosonic ðf2n

Þsþ1 ðnX1Þ self-interaction terms in spacetime of dimension
ðsþ 1ÞX2 (Glimm & Jaffe, 1969). As a consequence, this representation cannot sustain a quanta
interpretation for the interacting field. Recall that the justification for regarding n-particle states in a
Fock representation for a free field as states in which a definite number of quanta are present is that
these states possess the appropriate energy eigenvalues (see Section 2). The formal15 meaning of
HIjFIi ¼ 1 is that jFIi is not in the domain of HI . This means that jFIi is not associated with an energy
expectation value, which undercuts the justification for regarding jFIi as a state in which there are no
quanta. However, jFIi is the only state that is invariant under Poincaré transformations; since jFIi is the
only state that looks the same to all inertial observers, it is the only candidate no quanta state.
Therefore, there is no state in the interaction picture that, in the presence of the interaction, can
reasonably be interpreted as a state in which no quanta are present, and the interaction picture does not
support a quanta interpretation for the interacting field. Put in different terms, the Fock representation
for a free field does not furnish a quanta interpretation for an interacting field.

In fact, the true situation is probably even worse than Haag’s theorem indicates. Haag’s theorem
only pertains to the application of HI to the vacuum jFIi. In general, it seems likely that interactions
in four-dimensional spacetime are such that HIjCIi ¼ 1 where jCIi ¼ UðtÞjCFi and jCFi is any state
in F (see Glimm, 1969, p. 104). This means that not only is there no zero quanta state in the
interaction picture representation, but there are also no one, two, three, etc. quanta states.

Before considering proposals for generalizing the definition of Fock representation to interacting
fields, I will respond to an obvious objection to this line of argument. Canonical quantum field
theorists are aware that the interaction picture representation produces infinite expectation values
for energy and they correct this problem by renormalizing the Hamiltonian HI. For example, they
incorporate an infinite counterterm E into the renormalized Hamiltonian Hren

I ðHren
I ¼ HI � EÞ so that

(at least informally) Hren
I jFIi ¼ 0. Then, so the objection goes, there is no longer any obstacle to a

quanta interpretation; jFIi is an eigenstate of Hren
I with the correct energy eigenvalue for a state in

which there are no quanta.
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15 An informal reading of HI jFIi ¼ 1 yields the same conclusion. Informally, the expression HI jFIi ¼ 1 indicates that jFIi

is a state of infinite energy. Therefore, jFIi is not a physically possible state.
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A complete response to this objection would be lengthy and take me far outside the scope of this
paper.16 The brief (but adequate) response is that Hren

I is not a well-defined self-adjoint operator on
the interaction picture representation in virtue of the fact that it contains an infinite term. This
means that time translations are not represented in the usual way by the unitary operators
expð�iHren

I tÞ. I urge that, unless a good reason for abandoning this prima facie plausible assumption
about how to formulate QFT presents itself, the assumption should be retained. Haag’s theorem does
not furnish a good reason for abandoning this assumption because the premise that free and
interacting Hilbert space representations are unitarily equivalent is unjustified. The consequence of
the failure of the Stone–von Neumann theorem in QFT is that there exist uncountably many unitarily
inequivalent representations of the ETCCRs; there exist many possible Hilbert space representations
for an interaction that are unitarily inequivalent to the Fock representation for any free field, and one
of these may admit a well-defined self-adjoint Hamiltonian operator and a unitary operator
representing time translations. Constructive quantum field theorists have taken up the project of
finding such representations. Due to the formidable mathematical challenges involved, they have yet
to find a representation for a physically realistic interaction in four spacetime dimensions. However,
this does not mean that we should settle for the renormalized interaction picture representation.

The two methods for generalizing the definition of the Fock representation for a free field
evaluated in the ensuing two sections are proposals for finding a suitable Hilbert space
representation for an interaction. These methods are instances of the two different approaches to
treating interactions in a mathematically well-defined framework that have been developed by
mathematical physicists. The method considered in the next section follows the constructive
approach of constructing a Hilbert space representation for a particular interacting system. The
method discussed in the following section adopts the axiomatic approach of specifying a Hilbert
space representation by stipulating formal conditions.

4. Method #2: application of the construction that generates a Fock representation

A Fock representation for a free system is generated from the classical free field by a quantization
procedure. One approach to generalizing the definition of a Fock representation to interacting fields
is to apply the same mathematical construction to a classical interacting field. The mathematical
construction of a Fock representation proceeds by Fourier decomposing the free field satisfying
the classical field equation into positive and negative frequency parts and then promoting the
coefficients in the decomposition to operators. The proposal is that a FOK1 representation is the
Hilbert space representation produced when this mathematical construction is applied to an
interacting field. This approach seems to be the most promising one for obtaining a Hilbert
space representation that supports a quanta interpretation: intuitively, an annihilation operator
annihilates a quantum because it is part of a negative frequency solution to the free-field equation
and a creation operator creates a quantum because it is part of a positive frequency solution to the
free-field equation.

For the sake of definiteness and simplicity, consider a free bosonic neutral scalar field with m40,
cðxÞ.17 cðxÞ is a classical field satisfying the classical Klein–Gordon equation

ð&þm2ÞcðxÞ ¼ 0 (13)

The first step in the Fock space construction is to introduce the Fourier decomposition of cðxÞ

cðxÞ ¼
Z

d4kðaþðkÞ eik�x þ a�ð�kÞ e�ik�xÞ (14)

where k is a four-vector,

aþðkÞ ¼ 0 if k0o0
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16 This issue is discussed further in Fraser (2006).
17 The following is largely based on Roman (1969, pp. 48–52, 79–97, 119).
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and

a�ðkÞ ¼ 0 if k040 ðso a�ð�kÞ ¼ 0 if k0o0Þ

Since we are using the convention for the metric tensor gmn that g00 ¼ þ1, g11 ¼ g22 ¼ g33 ¼ �1, eikx

and e�ikx are, respectively, positive and negative frequency plane wave solutions18 of the classical
Klein–Gordon wave equation (Eq. (13)); thus, the first term of Eq. (14) represents the positive
frequency part of cðxÞ and the second term the negative frequency part. cðxÞ satisfies the
Klein–Gordon equation; it follows from plugging cðxÞ into Eq. (13) that aþðkÞ ¼ 0 and a�ð�kÞ ¼ 0
when k2am2. That is, the coefficients are only non-zero when k2

0 � k2
¼ m2, the relativistic

constraint for a single non-interacting particle with rest mass m. This relation also implies that, when
aþðkÞ, a�ðkÞ are non-zero, k is timelike: k2

¼ m240. The fact that k is timelike guarantees that the
positive–negative frequency decomposition is Lorentz covariant (see Schwinger, 1949, for a proof);
aþðkÞ, a�ðkÞ are not dependent on the inertial reference frame in which the decomposition is
carried out. This means that aþðkÞ, a�ðkÞ are candidates for being physical scalar fields. Furthermore,
when aþðkÞ and a�ðkÞ are promoted to operators, the field operators â

þ
ðkÞ and â

�
ðkÞ are relativistically

covariant.
Since ĉðxÞ is Hermitian, â

þ
ðkÞ ¼ ðâ

�
ð�kÞÞy. Setting âðkÞ ¼ â

�
ð�kÞ then gives the four-dimensional

analogue of Eq. (2):

ĉðxÞ ¼
Z

d4kðâyðkÞ eik�x þ âðkÞ e�k�xÞ (15)

In the interacting case, the crucial difference is that, of course, the classical interacting field jðxÞ no
longer obeys the homogeneous Klein–Gordon equation. It might, for example, obey the following
field equation derived from a Lagrangian with a jðxÞ4 self-interaction term:

ð&þm2ÞjðxÞ ¼ �4ljðxÞ3 (16)

The Fourier decomposition for jðxÞ is

jðxÞ ¼
Z

d4kðbþðkÞ eik�x þ b�ð�kÞ e�ik�xÞ (17)

where k is a four-vector,

bþðkÞ ¼ 0 if k0o0

and

b�ðkÞ ¼ 0 if k040

It is possible to carry out this Fourier decomposition; however, plugging jðxÞ into the interacting
field equation does not yield the constraint k2

¼ m2. The consequence is that, unlike the free-field
case, k will, in general,19 not be timelike: k2am2, so there is no guarantee that k240. As a result, the
decomposition in terms of functions bþðkÞ, b�ðkÞ is typically not covariant (Roman, 1969, p. 119).
Furthermore, if bþðkÞ, b�ðkÞ were promoted to field operators, they would also fail to be covariant in
general; the field operators b̂þðkÞ, b̂�ðkÞ would be inertial reference frame dependent, and therefore
not candidates for physical fields.

This is a fatal flaw in the strategy of using the Fourier decomposition of an interacting field to
obtain a FOK1 representation for it. A fortiori, this procedure does not yield a quanta interpretation
for an interacting system.20
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18 Plane wave solutions are not normalizable on infinite four-dimensional Minkowski spacetime (see footnote 4). This

does not affect the point made here. For a version of the Fock space construction that does not make this assumption see

Section 3.2 of Wald (1994).
19 This is a very minor qualification: for very special interacting field equations, it may happen to be the case that k240.
20 Since Fleming (2001) argues for a hyperplane-dependent notion of localized quanta for arbitrary systems, it is possible

that he may also be willing to accept reference frame dependent annihilation and creation field operators for an interacting

system. However, ultimately, this concession does not help because such a proposal would still face the additional obstacles

outlined in the following paragraphs.
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The failure of Lorentz covariance furnishes sufficient reason to reject the FOK1 representation for
an interacting field; however, for the sake of completeness, it is necessary to investigate another
obstacle to obtaining a quanta interpretation for this representation. In a nutshell, the other problem
is that there are special circumstances which make Fourier analysis an appropriate technique to
employ in the free case, but not the interacting case. This problem is unrelated to relativistic
considerations. Recall that, in the free case, the definitive argument for regarding states of the form
âyðkÞj0i as states in which a single quantum is present is that there is a correlation between the
energies of these states and the energies of the corresponding solutions to the classical field
equation. Formally, the mapping K : S!H from the space of positive frequency solutions of the
classical field equation S to states in the one-particle Hilbert space H can be set up using the Fourier
decomposition. K is specified by setting eik�x ! âyðkÞj0i when k040 and k2

¼ m2 and eik�x ! 0 when
k0o0 and k2

¼ m2. This stipulation fully specifies K because any solution of the classical
Klein–Gordon equation can be Fourier analyzed in terms of eik�x with k2

¼ m2. It is a contingent
fact that functions of the form eik�x ðk2

¼ m2Þ are themselves solutions of the Klein–Gordon equation;
this happy accident enables us to describe the component S of the mapping K in terms of solutions to
the Klein–Gordon equation as well as in terms of Fourier modes eik�x ðk2

¼ m2Þ.
Consider what happens when one tries to define an analogous mapping K 0 for an interacting field

ĵðxÞ. Since we know that, in general, the Fourier decomposition yields operators which are not
Lorentz covariant, restrict attention to a single inertial frame of reference. The Fourier decomposition
gives the following mapping: K 0 : X!HI is fully specified by setting eik�x ! b̂þðkÞj0i where k040
and k satisfies the constraint obtained by substituting the expression for jðxÞ given by the Fourier
decomposition into the interacting field equation and determining the values of k for which bþðkÞ,
b�ðkÞ are non-zero;21 again, Fourier analysis guarantees that this fully specifies K 0. In this case,
functions of the form eik�x (k040 and k satisfies the constraint) are not solutions of the interacting
field equation. Consequently, X is not the set of positive frequency complex solutions to the classical
interacting field equation. Fourier analysis guarantees that X contains the set of positive frequency
complex solutions, but in addition X also contains other elements. One way of proceeding is to isolate
the subset S̄ � X that contains the positive frequency complex solutions and define the partial
mapping K̄ : S̄!HI . Assuming that the vector addition operation is chosen to be arithmetic
addition, S̄ is not a vector space because it is not closed under this operation: the interacting field
equation is non-linear so the sum of two solutions will in general not be a solution. Since S̄ is not a
vector space, it cannot be taken to be the vector space for the Hilbert space HI. This is a problem
because the specification of HI is an essential component of the ‘Fock’ quantization.

To get around this difficulty, employ the original mapping K 0 : X !HI , which contains the vector
space X, for the purpose of the quantization, but appeal to the partial mapping K̄ : S̄!HI to justify
the interpretation of HI as the one-particle Hilbert space containing one-particle states. The
interpretation of HI is secured by establishing a correspondence between the energies of classical
solutions and quantum states in HI . But there is at least one serious problem with this maneuver. In
the free case, K maps positive frequency complex solutions of the Klein–Gordon equation of the form
eik�x to Hilbert space states of the form âyðkÞj0i. In the interacting case, K̄ maps an integral over eik�x to
an element of X. In the free case, the imposition of finite volume or periodic volume boundary
conditions allows the integral to be replaced by an infinite sum. This may not hold in the interacting
case, but assume for the moment that it does (if not, then this could introduce the additional
complication of the Hilbert space associated with X being non-separable). Then K̄ maps an infinite
sum over eik�x to a superposition bþðk1Þb̂

þ
ðk1Þj0i þ bþðk2Þb̂

þ
ðk2Þj0i þ � � � . There are two problems

with this. First, following the same logic as in the free case, if anything should be identified as a one-
particle state in HI , it is not a state like b̂þðk1Þj0i, but a superposition of such states,
b̂þðk1Þj0i þ b̂þðk2Þj0i þ � � � . This confounds the usual quanta interpretation of a Fock representation.
Second, there is no reason to expect that the set of superpositions given by K̄ contains a set of
pairwise orthogonal vectors that spans the Hilbert space because the coefficients bþðkiÞ and the ki’s
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21 It is not necessary to use the Fourier decomposition to determine this constraint; the Fourier transform jðxÞ ¼R
d4kbðkÞ eikx is sufficient for this purpose.
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are fixed by the interacting field equation. This line of argument supplies the justification for
Redhead’s assertion that, for interacting fields, ‘‘the equations of motion are in general non-linear so
unlike the free-field case we cannot reduce the problem to independent harmonic oscillators (the
normal modes)’’ (1988, p. 20).

In response to the failure of the method of Fourier decomposing an interacting field to
yield a quanta interpretation, one might consider generalizing the construction. Instead of
Fourier decomposing the classical interacting field into functions of the form eik�x, one might
attempt to decompose it into functions of some other form. A suggestion along these lines is mooted
in Huggett and Weingard (1994) and Huggett (2000). Huggett floats—but ultimately rejects22—the
possibility of extending the oscillator analogy to the interacting case in the following way: ‘‘[f]or an
interacting field the oscillators do not move independently, but as if they were interconnected: there
might be further springs, one between any pair of bobs’ (p. 628). Translated into the terms of the
present discussion, the suggestion is that instead of decomposing the field into independent
oscillators—the plane waves eik�x—the field should be decomposed into coupled oscillators, which
are represented by functions of some other form. Huggett and Weingard suspect that this is not
possible (p. 376). This is a reasonable conjecture because the proposal faces significant obstacles
from two sources. First, there is no guarantee that a function can be decomposed using an arbitrary
set of functions; the set of functions of the form eik�x is special in this respect. Second, even if a
workable alternative to Fourier analysis were identified, this resulting decomposition might very
well fail to be Lorentz covariant. Since these challenges are both substantial, it seems safe to conclude
that it is not possible to obtain an analogue of the Fock representation suited to an interacting field
by applying an analogue of the mathematical construction that produces the Fock representation for
a free field.

5. Method #3: stipulation of formal conditions

The method for obtaining a FOK1 representation pursued in the previous section was to quantize
a given classical interacting field in the same manner in which a given classical free field is quantized
to produce a Fock representation. Following the failure of this method, a different method for
extending the definition of ‘Fock representation’ to interactions will be pursued in this section. The
strategy is to arrive at a Hilbert space representation of the ETCCRs by stipulating formal conditions
on the field operators rather than by quantizing a classical field. This strategy is characteristic of the
axiomatic approach to QFT. The definition of FOK2 representation set out below was first proposed
by Wightman, a leading practitioner of axiomatic QFT, and his collaborators. The focus is on the
product of the quantization process for a free field instead of the quantization process itself;
the formal conditions are gleaned from the properties of a Fock representation listed in Section 2. The
hope is that while the quantization procedure for a free field does not produce the desired result
when applied to an interacting field, the formal product of the quantization procedure for free
systems can be extended to interacting systems and possesses the appropriate features. As we shall
see, this wish is not fulfilled.

In order to properly define a FOK2 representation, the loose characterizations of operators
employed to this point must be refined. In order to be well-defined as operator-valued distributions,
the fields must be smeared with test functions. Let T be a real vector space with scalar product ðf ; gÞ
and norm kfk ¼ ðf ; f Þ1=2 that serves as the test function space; then, for example, fðf ; tÞ ¼

R
fðx; tÞf ðxÞd3x

for f 2T.
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22 He argues that, in any case, ‘‘if the bobs do not move as SHOs but in some more complex way then there are no SHOs and

by analogy no quanta in the field’ (p. 628). He may have in mind the point made above that the relativistic energy constraint

k2
¼ m2 only holds for the Klein–Gordon equation, which can be interpreted as describing an infinite collection of SHOs.
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Let fðf ; tÞ satisfy some quantum field equation23 and let pðf ; tÞ be its conjugate momentum field.
The definition of a FOK2 representation of the ETCCRs24 for fðf ; tÞ, pðf ; tÞ has two parts (Gårding &
Wightman, 1954; Wightman & Schweber, 1955):

Condition 1. Define, for any f 2T, the operator

cðf ; tÞ ¼
1ffiffiffi
2
p ½fðf ; tÞ þ ipðf ; tÞ� (18)

and define cyðf ; tÞ as the adjoint of cðf ; tÞ.

Condition 2. The FOK2 representation is the irreducible representation of the ETCCRs for which
there exists a normalizable vector (the ‘no-particle state’) j0i such that25.

cðf ; tÞj0i ¼ 0 for all f 2T (19)

These conditions are familiar from the discussion of the Fock representation for a free field in
Section 2. This definition is clearly not restricted to free fields; fðf ; tÞ may satisfy any field equation.
Wightman and Schweber (1955, p. 816) explicitly state that this is the case.26 Unlike the operators
b̂ðkÞ, b̂yðkÞ, which were defined using the Fourier decomposition of the classical field, the operators
cðf ; tÞ, cyðf ; tÞ are Poincaré covariant since fðf ; tÞ, pðf ; tÞ are Poincaré covariant.27 These two conditions
pick out a representation of the ETCCRs that is unique up to unitary equivalence28 (Gårding &
Wightman, 1954, pp. 624–625; see also Wightman & Schweber, 1955, pp. 819–822). (Of course, while
the FOK2 representation for a field fðf ; tÞ satisfying a specified field equation is unique up to unitary
equivalence, the FOK2 representations for fields fðf ; tÞ and f0ðf ; tÞ satisfying different field equations
may not be unitarily equivalent.) Since the Fock representation for a free field satisfies these two
conditions (see Section 2), when fðf ; tÞ satisfies a Klein–Gordon equation, the FOK2 representation
coincides with the Fock representation

A FOK2 representation also shares some of the other properties of a Fock representation
rehearsed in Section 2. It follows from the definitions in Condition 1 and the fact that fðf ; tÞ, pðf ; tÞ
satisfy the Weyl form of the ETCCRs that cðf ; tÞ, cyðf ; tÞ satisfy the usual ETCCRs29

½cðf ; tÞ; cðg; tÞ� ¼ 0 ¼ ½cyðf ; tÞ; cyðg; tÞ�

½cðf ; tÞ; cyðg; tÞ� ¼ ðf ; gÞ (20)
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23 Specification of a field equation may not be sufficient to isolate a representation that is unique up to unitary

equivalence in all cases, but this potential problem is unrelated to the present discussion. See Baez & Zhou (1992).
24 There is an analogous definition of FOK representation for the ETCARs (equal-time canonical anti-commutation

relations) (Wightman & Schweber, 1955, pp. 816–820).
25 The cyclicity of j0i with respect to cyðf ; tÞ follows from the assumption that the Weyl representation of the ETCCRs for

fðf ; tÞ, pðf ; tÞ is irreducible, which implies that every non-zero vector in the representation is cyclic with respect to eifðf ;tÞ , eipðf ;tÞ

(Emch, 1972, p. 84).
26 They use the terminology of ‘Heisenberg or interaction representation quanta.’ In the interaction representation the field obeys

the free Klein–Gordon equation and in the Heisenberg representation the field evolves with the full interaction Hamiltonian.
27 Unlike b̂ðkÞ, b̂yðkÞ, the operators cðkÞ, cyðkÞ do not arise from coefficients in the Fourier decomposition of the classical

interacting field.
28 Gårding and Wightman’s proof establishes that, if the representation exists, then it is unique up to unitary equivalence,

but it is not clear that it establishes that the representation necessarily exists for an interacting field (i.e., that there exists a

representation containing a normalizable j0i). I will assume that such a representation exists and argue that, even if the

representation does exist, it cannot sustain a quanta interpretation.
29 Consider the case in which fðf ; tÞ is a free field. Note that Wightman’s definitions imply

fðx; tÞ ¼
Z

d3k

ð2pÞ3=2
ffiffiffi
2
p ½cyðk; tÞ eik�x þ cðk; tÞe�ik�x�

pðx; tÞ ¼
Z

i d3k

ð2pÞ3=2
ffiffiffi
2
p ½cyðk; tÞeik�x � cðk; tÞ e�ik�x�

The first expression differs from (2) in Section 2 by a factor of o�1=2
k inside the integral and the second differs from (3) by a

factor of o1=2
k inside the integral. These factors cancel when fðx; tÞ, pðx; tÞ are multiplied, so Wightman’s fðf ; tÞ, pðf ; tÞ obey the
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Most significant for our purposes is the fact that a FOK2 representation has a well-defined total
number operator NðtÞ ¼

P1
j¼1cyðf j; tÞcðf j; tÞ where f j are members of any orthonormal set in T

(Gårding & Wightman, 1954, p. 625; Wightman, 1967b, p. 188; Wightman & Schweber, 1955, p. 822).
Moreover, any representation in which NðtÞ is well-defined (where cyðf j; tÞ, cðf j; tÞ are defined as in
Condition 1) is a direct sum of representations in which both of the conditions hold (Dell’Antonio
et al., 1966).30 This result provides assurance that the FOK2 representation is the unique
generalization of a Fock representation capable of furnishing a quanta interpretation: imposing
the definition of cyðf ; tÞ, cðf ; tÞ set out in Condition 1 and the condition that NðtÞ be well-defined also
yields a direct sum of FOK2 representations.31

A FOK2 representation for an interacting field fðf ; tÞ possesses a total number operator but,
once again, this is an insufficient basis for an interpretation in terms of particlelike entities.
In addition, it is necessary to establish that each of the eigenstates of N is a state in which the
system possesses the appropriate physical properties for a state in which the indicated number of
quanta is present. It turns out that this cannot be done if fðf ; tÞ is an interacting field. Recall from
the discussion in Section 2 that, in order for the no-particle state to have the correct energy for
a state in which no quanta are present and to possess the expected property of invariance under
Poincaré transformations, the no-particle state must coincide with the vacuum. One would expect a
state in which no quanta are present to exhibit these properties regardless of whether the system is
free or interacting. If, in addition to the two conditions stated above, it is assumed that the no-
particle state in a FOK2 representation is the vacuum state, then it can be proven that fðf ; tÞ
cannot be a non-trivial interacting field (Emch, 1972, p. 242). Essentially,32 this result is proven
by calculating the vacuum expectation values of products of the fields. The vacuum expectation
value of any product of n (where n42) fields can be expressed solely in terms of the vacuum
expectation values of products of two fields. This implies that the S-matrix is the identity
(Garczyński, 1964). That is, no interaction occurs; the initial state of the system is identical to the
final state. This result entails that, in the presence of a non-trivial interaction, the no-particle state is
not the vacuum state. Therefore, a FOK2 representation does not furnish a quanta interpretation for
an interacting system.

To see that a FOK2 representation for an interacting field also fails to ascribe the correct
properties to higher particle states, consider the example of a Lagrangian with a f4 interaction term.
The following is the formal expression for the Hamiltonian Hf4

in terms of cyðk; tÞ, cðk; tÞ, the
‘unsmeared’ Fourier transforms of the annihilation and creation operators defined in Condition 1
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(footnote continued)

same ETCCRs as their counterparts in Section 2. In ðk; tÞ-space

½cðk1 ; tÞ; cðk2; tÞ� ¼ 0 ¼ ½cyðk1 ; tÞ; c
yðk2 ; tÞ�

½cðk1 ; tÞ; c
yðk2 ; tÞ� ¼ okdðk1 � k2Þ

which differs from the ETCCRs in Section 2 by a factor of ok. Note also that, if fðf ; tÞ, pðf ; tÞ are regarded as fields at arbitrary

times rather than a fixed time, pðf ; tÞadf0ðf ; tÞ=dt; pðf ; tÞ ¼ df0ðf ; tÞ=dt where f0ðk; tÞ ¼ ð1=okÞfðk; tÞ.
30 Chaiken (1968) proves the same result for an N specified using the exponentiated form of the ETCCR Na�ðjÞ ¼

a�ðjÞðN þ 1Þ (where a�ðjÞ is the creation operator for the wavefunction j) when the spectrum of N is bounded from below

(1.3 Theorem, p. 167). (cf. Halvorson & Clifton, 2002, p. 203 n. 5).
31 It is worth pointing out the differences between this definition of a FOK2 representation and another rigorous

generalization of the definition of Fock representation that has recently been discussed by philosophers (see, e.g., Arageorgis et

al., 2002), even though the alternative definition is inapplicable to interactions. Kay (1978) sets out a definition of Fock

representation that is suitable for arbitrary globally hyperbolic spacetimes, but is only applicable to free fields. In a stationary

spacetime, this definition picks out a representation that is unique up to unitary equivalence. Briefly, for free fields on

Minkowski spacetime, the main differences between Kay’s definition and the definition of a FOK2 representation are that (1)

while Kay’s definition requires that the no-particle state coincide with the physical vacuum, this may not be true in a FOK2

representation (see below) and (2) Condition 1 for a FOK2 representation is not a part of Kay’s definition.
32 Emch states and proves this result within the algebraic framework for QFT. For a brief overview of the relevant features

of the algebraic approach, see the Appendix to Earman & Fraser (2006).

D. Fraser / Studies in History and Philosophy of Modern Physics 39 (2008) 841–859854



Author's personal copy

(where :: represents normal ordering):

Hf4

¼

Z
dkcyðk; tÞcðk; tÞ þ l

ZZ ZZ
dk dk0 dk00 dk000

	
dðkþ k0 þ k00 þ k000Þ

4
: ½cyðk; tÞ þ cðk; tÞ� � � � ½cyðk000; tÞ þ cðk000; tÞ�: (21)

It can be confirmed that the no-particle state j0i does not coincide with the vacuum: the interaction
term contains one term with four creation operators; as no other term in Hf4

contains four creation
operators, this term is not offset by any other term, which means that Hf4

j0ia0. Furthermore, j0i is
not an eigenstate of Hf4

, so it is not possible to make j0i coincide with the vacuum by adding a finite
constant to Hf4

.
The result of applying Hf4

to a one-particle state is the following:

Hf4

cyðk; tÞj0i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þm2

q
cyðk; tÞj0i þ � � � (22)

where the ellipsis stands in for the terms resulting from application of the interaction term of Hf4

.

Clearly, cyðk; tÞj0i is not an eigenstate of Hf4

. On many interpretations of quantum theory, this means

that cyðk; tÞj0i is a state which does not possess a definite value of energy. This seems strange for a
state which is supposed to definitely contain a single quantum. However, set this issue aside, because

there is a serious problem with interpreting cyðk; tÞj0i as a state in which a single quantum is present
that is independent of controversies surrounding the interpretation of quantum theory. This
argument takes the form of a dilemma. There are two positions that could be taken on the correct

relativistic energy possessed by a single quantum associated with the interacting field fðxÞ: either

that it should be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þm2

p
, the relativistic energy for a single non-interacting particle, or that it

should not be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þm2

p
because the field equation for fðxÞ contains a self-interaction term. If the

former position is taken, then cyðk; tÞj0i cannot be interpreted as a state in which one quantum is

present because the expectation value for energy in this state is not
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þm2

p
. If the latter position is

adopted, we are left without any guidance from special relativity about what the correct energy

for a single quantum state should be; consequently, we have no grounds for claiming that cyðk; tÞj0i

is a single quantum state. Therefore, cyðk; tÞj0i cannot be interpreted as a state in which one quantum
is present.

In sum, a FOK2 representation does not sustain a quanta interpretation for any interacting field
because the no-particle state is not the vacuum state. In addition, there are no grounds for

interpreting one-particle states of the form cyðk; tÞj0i as states in which one quantum is present.
In response to the FOK2 representation’s failure to support a quanta interpretation for an

interacting system, one might want to further generalize the definition of Fock representation. A

prerequisite for a quanta interpretation is that a total number operator NðtÞ ¼
P1

j¼1 cyðf j; tÞcðf j; tÞ

exist, but there is no reason that cyðf ; tÞ, cðf ; tÞ must be defined as in Condition 1. Further motivation
for this move is that, in a Fock representation for a free field, Condition 1 is a product of the Fourier
decomposition procedure for quantizing a classical free field. However, this proposal requires

fleshing out: clearly, in the absence of a definition of cyðf ; tÞ, cðf ; tÞ in terms of fðf ; tÞ, pðf ; tÞ, the
requirement that a total number operator exist or that the no-particle state exists is insufficient to
pick out a representation of the ETCCR that is unique up to unitary equivalence. But how should

cyðf ; tÞ, cðf ; tÞ be defined in terms of fðf ; tÞ, pðf ; tÞ in the presence of an interaction? A well-motivated
answer to this question would require revisiting the issue of how to quantize an interacting field.
Once again, what is needed is an analogue of the Fourier decomposition of a classical free field that is
appropriate for an classical interacting field and, as argued in the previous section, it is
overwhelmingly unlikely that such a procedure could be found. The discussion in this section has
raised another potential difficulty: it is not automatic that the one-particle states will (or even

should!) possess the energies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
þm2

p
. If not, then most compelling argument for interpreting one-

particle states as states in which one quantum is present is undermined.
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6. Scattering theory does not support a quanta interpretation

To recapitulate the argument thus far, we set out to find a mathematical representation for an
interacting system that sustains a quanta interpretation in the same manner that a Fock
representation furnishes a quanta interpretation for a free system. All three methods for
accomplishing this have proven unsuccessful. Generalizations of two of the strategies cannot be
ruled out entirely, but success seems exceedingly unlikely. Since in QFT there is no known alternative
for establishing that a free or interacting system exhibits particlelike properties, this would seem to
be a fatal blow to the project of interpreting any realistic physical system—which is bound to
interact—in terms of particlelike entities.

In a last-ditch attempt to save the quanta interpretation of QFT, one could try to find a convincing
argument that the quanta interpretation for free systems is all that is needed to interpret an
interacting system in terms of quanta. This position can be motivated by considering how particle
physicists interpret a theory in terms of particlelike entities. For experimentalists, it is immaterial
whether or not an interacting system can be given a quanta interpretation; this question is irrelevant
because the only data collected from scattering experiments are for systems with negligibly small
interactions. Roughly speaking, this is because the data are collected long before and long after the
collision between the ‘particles’ occurs. The input of the experiment is the prepared system of
particlelike entities of certain types with certain properties; this system is prepared in such a way
that interactions are negligible33 (e.g., the particlelike entities are very far apart).34 Similarly, the
output of the experiment is the measured system of particlelike entities of certain (possibly
different) types with different properties; measurements are performed on the system at a time
when interactions are negligible. These conditions are reflected in scattering theory:35 it is assumed
that the interacting system tends to a free system at asymptotically early and late times (i.e., as the
time variable t tends to plus or minus infinity). At these times, the free system can be given a Fock
representation and a quanta interpretation in the usual way.

Bain has advanced a quanta interpretation for QFT based on scattering theory. He proposes that
‘‘a ‘particle’ be considered a system that minimally possesses an asymptotic state (i.e., a system that
is free for all practical purposes at asymptotic times)’’ (Bain, 2000, p. 394). Since the asymptotic state
is a free state, it possesses a Fock representation and can be given an interpretation in terms of
quanta. Bain urges that this is sufficient grounds for interpreting interacting states at intervening
times as states in which quanta are present. Teller (1995, p. 123) opposes this position, arguing
that such a quanta interpretation is ‘severely limited’ because the total number operator Nfree defined
in the Fock representation at asymptotic times does not exist at intervening finite times. Bain
counters that

a particle interpretation should not be dependent on the existence of a (free field) [total] number
operator. To require otherwise seems to me to be placing undue emphasis on the free theory. . . .
Whether or not [a system that possesses an asymptotic state] has a corresponding [total] number
operator, I would claim, is irrelevant. (Bain, 2000, p. 394)

The analysis in the preceding sections provides a basis for settling this dispute about whether the
existence of Fock representations for asymptotic free systems is a sufficient basis on which to regard
quanta as fundamental entities in our ontology. The evidence weighs against Bain’s definition of
‘particle’. The underlying problem is a weakness in Bain’s approach to ontology. The point at issue is
whether entities with certain properties—particlelike properties—exist. More precisely, does QFT
support the inclusion of particlelike entities as fundamental entities in our ontology? Bain contends
that the fact that there is no free field total number operator Nfree at intervening times is irrelevant.
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33 Set aside the issue of whether the asymptotic system is genuinely free or only free to a very good approximation. If the

latter, then it cannot be given a quanta interpretation for all the reasons stated in the preceding sections.
34 Exclude quantum chromodynamics from consideration because, due to confinement, interacting systems approach free

systems in the limit of small distance rather than large distance. See Redhead (1988, p. 21).
35 For example, LSZ or Haag–Ruelle scattering theory. For a discussion of the latter see Earman and Fraser (2006, Section 6).
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But, since the question is whether there are entities with particlelike properties at finite times, what
is certainly relevant is whether the interacting system contains entities that are countable. In terms
of the formalism, it is relevant whether a surrogate for Nfree is available at finite times. Bain does not
offer any substitute for Nfree; he does not point to any evidence for the existence of particlelike
entities in the presence of an interaction (e.g., that states of an interacting system possess the
expected energies for states in which a definite number of quanta are present). Instead, Bain
redefines ‘quanta’ to fit the evidence that QFT does provide. But lack of evidence is not the sort of
thing that can be defined away in the realm of ontology. The ‘quanta’ in Bain’s scheme may not
possess any particlelike properties in the presence of interactions. Appealing to the theory of a free
system with which the interacting system is associated in an idealized infinite past or future does not
fill this gap in the evidence.

The investigation conducted in the preceding sections establishes that the evidence that Bain
omits in fact cannot be supplied. It is not possible to produce a mathematical representation for an
interacting system that is relevantly similar to the Fock representation for a free system. No
substitute for Nfree is available; it is not possible to identify n-particle states which possess the
correct energies. Therefore, we cannot ascribe particlelike properties to a system in a scattering
experiment at finite times, and this final attempt to extend the quanta interpretation to interacting
systems is also unsuccessful.

7. Conclusion

A Fock representation sustains a quanta interpretation for a free field. The goal of this paper was
to determine whether an interacting field possesses a mathematical representation that sustains a
quanta interpretation in the same manner. The simplest solution would have been to use the Fock
representation for a free field to represent an interacting field. This option was ruled out by Haag’s
theorem. It then became necessary to find another Hilbert space representation for an interacting
field. In principle, there are two ways to generalize the definition of a Fock representation to cover
interacting systems, each of which is an instance of one of the two approaches to arriving at a
formulation of QFT. The constructive method is to quantize a classical interacting field by carrying
out the same mathematical construction that, for a free field, generates a Fock representation. The
axiomatic method is to pick out a unique (up to unitary equivalence) Hilbert space representation of
the ETCCR by stipulating that it share a set of formal properties with a Fock representation. Neither of
these approaches is successful, and the prospects for success of generalizations of these methods are
negligibly small. A Hilbert space representation cannot be constructed by Fourier decomposing a
classical interacting field because the resulting expressions are not relativistically covariant, and
therefore are not candidates for physical fields in relativistic QFT. The FOK2 representation for an
interacting field that is picked out by formal conditions does not support a quanta interpretation
because, for all non-trivial interactions, the no-particle state does not coincide with the vacuum and,
typically, the argument that one-particle states have the energy expectation values that special
relativity assigns to single particle states is undercut.

These conclusions are significant for metaphysics as well as for the foundations of QFT. The
metaphysical implication is that QFT does not support the inclusion of particlelike entities in our
ontology. At least on the surface, QFT is a theory of fields. The only known method of interpreting a
QFT in terms of particlelike entities is the quanta interpretation that naturally arises from the Fock
representation for a free system. The arguments presented here establish that it is not possible to
extend this quanta interpretation to an interacting system. One response would be to find another
way of interpreting interacting fields in terms of particlelike entities, one that does not require a Fock-
type Hilbert space representation. But this is a program, not a solution, and even at that a program
without an obvious starting point. Therefore, since in the real world there are always interactions, QFT
does not furnish grounds for regarding particlelike entities as constituents of reality.

A second line of response would be to agree that quanta are not part of the ontology of
fundamental entities described by QFT, but to argue that nevertheless quanta do exist according to
QFT. For example, Wallace considers the ‘particle’ concept to be an emergent concept (see, e.g.,
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Wallace, 2001). For this to be a viable response, the cogency of the distinction between fundamental
and less fundamental entities must be defended and a case must be made for admitting additional,
non-fundamental entities into our ontology. Alternatively, the quanta concept may be regarded as a
concept that is only approximately or ideally applicable because it is restricted to free systems. In the
context of a scattering experiment, free systems occur in the idealized limits of infinitely early and
late times. Teller (1995, p. 124) suggests that ‘‘we regard this idealization as one of the ways in which
the interpretation’s similarity relation between the model and the world is only approximate’’. Again,
a case would have to be made that the similarity relation between the model and the world need
only be approximate rather than exact. However, the important question–which remains out-
standing—is not the status of quanta, but what fundamental entities are allowed into our ontology
by QFT.

The reasons that an interacting system cannot be given a quanta interpretation are also
illuminating for the foundations of QFT. Scattered remarks in the philosophical literature on QFT
often convey the impression that interacting fields do not admit Fock representations due to
problems representing two-particle (and three-particle, etc.) states in such a framework (for an
explicit example see Bain, 2000, p. 393). One rationale for this assessment is that, for a free system,
the energy of a two-particle state is simply the sum of energies of the component one-particle states;
however, this is not the case for an interacting system. This property of a free system is built into the
definition of a Fock representation: a two-particle state is the direct product of component one-
particle states. However, the above analysis reveals that this discrepancy is not the primary difficulty.
Problems already emerge at the level of no-particle and one-particle states. Furthermore, the source
of these problems is the special theory of relativity. Haag’s theorem relies on relativistic premises;36

the Fourier decomposition is not covariant under Poincaré transformations; the no-particle state in a
FOK2 representation is not invariant under Poincaré transformations; and special relativity may not
supply the correct assignment of energies to one-particle states. For a free system, special relativity
and the linear field equation conspire to produce a quanta interpretation. For an interacting system,
the combination of special relativity and the non-linear field equation is not so fortuitous; as a result,
there is no quanta interpretation and there are no quanta.
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