
Particles and Fields in Quantum Field Theory

James Owen Weatherall

Logic and Philosophy of Science
University of California

Irvine, CA USA

Seven Pines Symposium
16 May 2014

J. O. Weatherall (UCI) Particles & Fields 16 May 2014 1 / 69



Apologia

Most of what I say follows papers by David Malament, Rob Clifton,
Hans Halvorson, and Michael Redhead.

Their work builds on a long history of results, going back to the early
1960s, by Schlieder, Reeh, Hegerfeldt, Fleming, Ruijsenaars,
Jancewicz, Skagerstam, Jauch, and others.
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Quantum Systems

Consider a physical system S.
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Quantum Systems

A quantum mechanical description of S consists in:

1 A Hilbert space H, rays of which represent possible states of S;
and

2 A collection E of projection operators P on H, representing
propositions (or “eventualities”) concerning S.

In general, E will have non-trivial algebraic structure related to the
physical structure of S.
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Quantum Systems

For now, a quantum mechanical system will be a pair (H, E).
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Ontology of a Quantum System

What determines the “ontology” of a quantum mechanical system?
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Ontology of a Quantum System

In other words...

What makes (H, E) a representation of system S?
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Ontology of a Quantum System

Trick question!
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Ontology of a Quantum System

What can we do?

Study what physical systems admit a quantum mechanical
description at all.
Characterize a physical system by the algebraic structure of the
associated propositions.
Reason metaphorically about systems characterized by the same
algebraic structures.
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Affine spaces

An affine space is a structure (A,V,+), where A is a collection of
points; V is a vector space; and + is a map from A× V to A such that:

AS 1 For all p,q ∈ A, there is a unique u ∈ V such that q = p + u; and
AS 2 For all p ∈ A and all u,v ∈ V, (p + u) + v = p + (u + v).
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Affine spaces

Let (A,V,+) and (A′,V,+′) be affine spaces.

An affine space isomorphism is a bijection φ : A→ A′ and a vector
space isomorphism Φ : V→ V′ such that for all points p,q ∈ A,
p = q + u if and only if φ(p) = φ(q) + Φ(u).
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Affine spaces

Let (A,V,+) be an affine space.

Every vector u ∈ V determines an affine space isomorphism φ : A→ A
defined by φ : p 7→ p + u.

The collection of such isomorphisms forms a group T under
composition, known as the translation group of A.
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Affine spaces

The dimension of an affine space (A,V,+) is the dimension of its
associated vector space, V.

For any n ∈ N, is a unique n−dimensional affine space (up to
isomorphism).
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Galilean spacetime

Galilean spacetime is a 4-dimensional affine space with the following
additional structure:

1 There exists a distinguished 3-dimensional subspace S ⊆ V;
2 There exists a positive definite inner product 〈·, ·〉 on S; and
3 There exists a linear functional t : V→ R such that t(u) 6= 0 iff

u 6∈ S.
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Galilean spacetime

A vector u ∈ V is called spacelike if u ∈ S. Otherwise, it is called
timelike.

The spatial length of a spacelike vector u is given by 〈u,u〉1/2.

The temporal length of a timelike vector u is given by t(u).
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Galilean spacetime

Points p,q ∈ A are said to be spacelike related if the vector
connecting them is spacelike. Otherwise they are timelike related.

The spatial (resp. temporal) distance between spacelike (resp.
timelike) related points p and q is the spatial (resp. temporal) length of
the vector u from p to q.
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Galilean spacetime

The points of Galilean spacetime are taken to represent locations of
events in space and time.

Spacelike related points represent simultaneous events.

The collection of all points simultaneous with a point p, the
simultaneity slice Σ(t), represents space at a time t .
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Galilean spacetime

The spatial distance between spacelike related points represents that
distance between simultaneous events.

The timelike distance between timelike related points represents the
duration between non-simultaneous events.
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Galilean spacetime

We will call a Borel subset ∆ of a simultaneity slice Σ(t) a spatial set.
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Example: One particle in Galilean spacetime

Consider a single particle in Galilean spacetime.
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A single particle in Galilean spacetime

Classically, we represent a particle by its wordline, a curve γ : R→ A
that intersects each simultaneity slice exactly once.

Given any spatial set ∆, there is an associated proposition:

E∆ = “The particle is in region ∆ (at time t).”
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A single particle in Galilean spacetime

Quantum mechanically, we first fix a Hilbert space H of states of the
particle.

We associate with each spatial set ∆ a projection operator P∆ on H
corresponding to the proposition E∆.
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A single particle in Galilean spacetime

The collection E of all such projection operators is required to have
additional structure.
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A single particle in Galilean spacetime

The projection operators associated with a single simultaneity slice
Σ(t) are required to commute, and to satisfy:

P∆1∩∆2 = P∆1P∆2

P∆1∪∆2 = P∆1 + P∆2 − P∆1P∆2

PΣ(t)/∆ = I − P∆

Note that if ∆1 and ∆2 are disjoint, then P∆1P∆2 = P∆2P∆1 = 0.
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A single particle in Galilean spacetime

There exists a (strongly continuous) unitary representation a 7→ U(a)
of the translation group on Galilean spacetime.
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A single particle in Galilean spacetime

By Stone’s theorem, for any vector a, there exists a unique self-adjoint
operator P(a) such that

U(αa) = eiαP(a).

If a is timelike, we require that P(a) is bounded from below.
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A single particle in Galilean spacetime

We require that for all spatial sets ∆ and all vectors a,

P∆+a = U(a)P∆U(−a)

where ∆ + a = {q : q = p + a for some p ∈ ∆}.
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A single particle in Galilean spacetime

E forms a spectral measure over R4, which defines a self-adjoint
position operator Q.

We exponentiate Q to find a bounded operator, define the Weyl
commutation relations, ...

yada yada yada
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A single particle in Galilean spacetime

Upshot: There exists a representation of the operators described,
satisfying the required properties, on H.
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Example: One particle in Minkowski spacetime

Consider a single particle in Minkowski spacetime.
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Minkowski spacetime

Minkowski spacetime is a 4-dimensional affine space with the
following additional structure:

There is a non-degenerate inner product 〈·, ·〉 on V s.t. given any
orthogonal basis u1 · · ·u4, one element u1 satisfies

〈u1,u1〉 > 0

while the others satisfy
〈uj ,uj〉 < 0.
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Minkowski spacetime

A vector u ∈ V is called spacelike if 〈u,u〉 < 0; timelike if 〈u,u〉 > 0;
and null if 〈u,u〉 = 0.

The length of a vector u is given by |〈u,u〉|1/2.
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Minkowski spacetime

Points p,q ∈ A are said to be spacelike related (resp. timelike, null)
if the vector relating them is spacelike (resp., timelike, null).

The distance between points p and q is the length of the vector
relating them.
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Minkowski spacetime

The points of Minkowski spacetime are taken to represent locations of
events in space and time.

A timelike vector u determines a reference frame, corresponding to a
family of co-moving observers.
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Minkowski spacetime

Points p,q are simultaneous relative to u if the vector relating them
is orthogonal to u.

The collection of all points simultaneous with a point p, the
simultaneity slice Σ(u, t), represents space at a time as determined
by the family of observers.
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Minkowski spacetime

Determinations of spatial distance, temporal duration, and simultaneity
can be made only relative to a reference frame.
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A single particle in Minkowski spacetime

In what follows, suppose we fix a reference frame determined by some
timelike vector u.

We will call a Borel subset of a simultaneity slice Σ(u, t) a spatial set.
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A single particle in Minkowski spacetime

Classically, we represent a particle by its wordline, a curve γ : R→ A
that intersects each simultaneity slice (relative to any reference frame)
exactly once.

Given any spatial set ∆, there is an associated proposition:

E∆ = “The particle is in region ∆ (at time t).”
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A single particle in Minkowski spacetime

We expect a quantum mechanical description of a single particle in
Minkowski spacetime to have the following ingredients.

1 A Hilbert space H of states of the particle;
2 An assignment to each spatial set ∆ of a projection operator P∆,

corresponding to the proposition E∆; and
3 A (strongly continuous) unitary representation v 7→ U(v) of the

translation group of Minkowski spacetime.
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A single particle in Minkowski spacetime

In addition, we suppose the following four conditions are met.
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A single particle in Minkowski spacetime

Translation covariance: For all vectors a in V and all subsets ∆ of all
instants t ,

P∆+a = U(a)P∆U(−a).
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A single particle in Minkowski spacetime

Semi-bounded energy: For all timelike vectors a satisfying 〈u,a〉 > 0,
the unique operator H(a) satisfying

U(ta) = e−itH(a)

has spectrum bounded from below.
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A single particle in Minkowski spacetime

Localizability: If ∆1 and ∆2 are disjoint subsets of a single instant t ,
then

P∆1P∆2 = P∆2P∆1 = 0.
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A single particle in Minkowski spacetime

Locality: If ∆1 and ∆2 are spacelike related subsets of instants t1 and
t2, then

P∆1P∆2 = P∆2P∆1 .
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A single particle in Minkowski spacetime

Note: Translation covariance, Semi-bounded energy, and
Localizability are all satisfied in identical form by the Galilean
example.

Only Locality has changed, because the definition of spacelike has
changed. (In the Galilean case, Locality is subsumed by
Localizability.)
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A single particle in Minkowski spacetime

Theorem (Malament (1996))
If the structure (H,∆ 7→ P∆,a 7→ U(a)) satisfies Translation
covariance, Semi-bounded energy, Localizability, and Locality,
then P∆ = 0 for all spatial sets ∆.
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Another tack

You might think:

Jim! You’re doing this wrong!
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Number operators

Suggestion 1: Instead of considering projections P∆, consider (local)
number operators N∆.

A local number operator N∆ is an observable whose eigenvalues give
the “number of particles” in spatial region ∆.

J. O. Weatherall (UCI) Particles & Fields 16 May 2014 53 / 69



Number operators

Suggestion 1: Instead of considering projections P∆, consider (local)
number operators N∆.

A local number operator N∆ is an observable whose eigenvalues give
the “number of particles” in spatial region ∆.

J. O. Weatherall (UCI) Particles & Fields 16 May 2014 53 / 69



Number operators

Suppose we have a Hilbert space, a (strongly continuous)
representation a 7→ U(a), and assignments ∆ 7→ N∆ of number
operators to spatial (Borel) sets.

Translation covariance, Semi-bounded energy, Localizability, and
Locality carry over intact to (H,∆ 7→ N∆,a 7→ U(a)).
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Number operators

Number Additivity: If ∆1 and ∆2 are disjoint subsets of the same
simultaneity slice Σ(t), then N∆1∪∆2 = N∆1 + N∆2 .
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Number operators

Number conservation: If {∆n : n ∈ N} is a disjoint covering of a
simultaneity slice Σ(t), then

∑
n N∆n converges to a densely defined,

self-adjoint operator N on H (independent of the covering), and for any
timelike vector a, U(a)NU(−a) = N.
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Number operators

Theorem (Halvorson & Clifton (2001))
If the structure (H,∆ 7→ N∆,a 7→ U(a)) satisfies Translation
covariance, Semi-bounded energy, Localizability, Locality,
Additivity, and Number conservation then N∆ = 0 for all spatial sets
∆.
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Number operators, take 2

Suggestion 2: Instead of considering projections local number
operators on spatial sets, consider local number operators on
spacetime regions.
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Algebraic QFT

Fix a Hilbert space H and a (strongly continuous) unitary
representation a 7→ U(a) of the translation group on Minkowski
spacetime.

A net of local observables is an assignment O 7→ R(O) of (von
Neumann) sub-algebras of B(H) to each bounded, open subset of
Minkowski spacetime.

The global algebra R is the smallest (von Neumann) algebra
containing all of the local algebras.
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Algebraic QFT

Isotony: For any two bounded open sets of Minkowski spacetime O1
and O2, if O1 ⊆ O2, then R(O1) ⊆ R(O2).
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Algebraic QFT

Algebra Additivity: Given any bounded open set O of Minkowski
spacetime, the set {R(O + a) : a ∈ V} generates R as a C∗-algebra.
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Algebraic QFT

Locality (Microcausality): Given any spacelike separated bounded
open sets O1, O2, and any observables A ∈ R(O1) and B ∈ R(O2),
[A,B] = 0.
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Algebraic QFT

Vacuum: There exists a vector Ω ∈ H, called the vacuum, such that
for any vector a ∈ V, U(a)Ω = Ω.
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Local Number operators in AQFT

A local number operator associated with spacetime region O, NO, is
an element of R(O).
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Local Number operators in AQFT

Necessary condition: Given any bounded open subset O of
Minkowski spacetime, NO ∈ R(O) can be a local number operator
operator only if NOΩ = 0.
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Reeh-Schlieder Theorem

Theorem (Reeh-Schlieder (1961))
If the structure (H,O 7→ R(O),a 7→ U(a)) satisfies Isotony, Additivity,
Semi-bounded energy, and Locality, then given any bounded open
set O, an operator A ∈ R(O) satisfies AΩ = 0 only if A = 0.
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Reeh-Schlieder Theorem

Corollary
There are no local number operators.
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The Unruh effect
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