Universal nature of particle displacements close to the glass and jamming transitions

Ludovic Berthier

Joint Theory Institute (Argonne & University of Chicago)

Laboratoire des Colloïdes, Verres et Nanomatériaux Université de Montpellier II & CNRS (France)

Talk at 'Mechanical behaviour of glassy materials' – Vancouver, July 23, 2007

with P. Chaudhuri, P. Hurtado, R. Jack, W. Kob

Mechanics of glassy materials

Oil droplet in water + telechelic polymers = Transient Network fluid. Gel with non-linear rheological behaviour. [Appell, Porte, Mora, Montpellier]

t=0 10 20 30 40 ms

Hybrid MC/MD simulations

• Configuration: $\{\mathbf{r}_i(t), \mathbf{v}_i(t)\}$ for droplets; connectivity matrix $\{C_{ij} = \# \text{ polymers linking } i \text{ and } j\}$ for polymers.

• Solve Newton's equations for droplets with total Hamiltonian:

$$\mathcal{H} = \frac{1}{2}m\sum_{i=1}^{N} \mathbf{v}_i^2 + \sum_{i=1}^{N} \left(C_{ii}\epsilon_{\text{loop}} + \sum_{j>i} \left[V_{\text{soft sphere}}(r_{ij}) + C_{ij}V_{\text{fene}}(r_{ij}) \right] \right)$$

• Evolve the connectivity matrix $\{C_{ij}\}$ with Monte Carlo dynamics. Acceptance rate: $\tau_{\text{link}}^{-1} \min(1, \exp[-\Delta V_{\text{fene}}/k_BT]).$

• Control parameters:

 ϕ : droplet volume fraction;

 $R = 2N_{\rm p}/N$: number of stickers per droplet;

 τ_{link} : attempt timescale for sticker escape.

Equilibrium phase diagram

• Equilibrium results in agreement with experiments. [Hurtado, Berthier, Kob, PRL '07]

Gelation = geometric percolation

 $\phi = 0.2, R = 2$

Homogeneous overall structure, but fractal network of connected droplets

Glassy dynamics in gels

• Self intermediate scattering function, $F_s(q,t) = \langle e^{j\mathbf{q}.(\mathbf{r}_i(t)-\mathbf{r}_i(0))} \rangle$, mean squared displacement, $\Delta^2(t) = \langle |\mathbf{r}_i(t) - \mathbf{r}_i(0)|^2 \rangle$.

• But something's wrong: $F_s(q,t) \neq \exp(-q^2\Delta(t)^2/6)$. Decoupling!

Dynamic heterogeneity in gels

Non-Gaussian, "bimodal" distributions of particle displacements.

Dynamic heterogeneity in gels

• Coexistence of an "arrested" gel and "freely" diffusing droplets, with dynamic exchange between the 2 populations \rightarrow Simple modelling.

2-family dynamical model

• Assume 2 families of particles, A ("arrested", c_A) and M ("mobile", $c_M = 1 - c_A$).

• $p_{\alpha}(t)$: probability that a particle in α switches for the first time to $\bar{\alpha}$ at time t; $P_{\alpha}(t) = \int_{t}^{\infty} dt' p_{\alpha}(t')$ is a persistence function; $p_{\alpha}(t) = \exp(-t/\tau_{\alpha})/\tau_{\alpha}$.

• $g_{\alpha}(\mathbf{r}, t)$: van-Hove function for particles within family α in the interval [0, t]; $\Delta_{\alpha} \equiv p_{\alpha}(t)g_{\alpha}(\mathbf{r}, t)$; $g_{M} \sim \exp(-r^{2}/(4D_{M}t))$; $g_{A} \sim \exp(-r^{2}/a^{2})$.

• Dynamic evolution:

$$G_{\alpha}(\mathbf{r},t) = P_{\alpha}(t)g_{\alpha}(\mathbf{r},t) + \int_{0}^{t} dt' \int d\mathbf{r}' p_{\alpha}(t')g_{\alpha}(\mathbf{r}',t')G_{\bar{\alpha}}(\mathbf{r}-\mathbf{r}',t-t')$$

• Solved in the Fourier-Laplace domain. Free parameters are (c_A, D_M, a, τ_A) . Only τ_A is not fixed (but consistent) by simulations.

$$G_{\alpha}(\mathbf{q},s) = \frac{\tau_{\alpha} \Delta_{\alpha}(\mathbf{q},s) + \tau_{\bar{\alpha}} \Delta_{\alpha}(\mathbf{q},s) \Delta_{\bar{\alpha}}(\mathbf{q},s)}{1 - \Delta_{\alpha}(\mathbf{q},s) \Delta_{\bar{\alpha}}(\mathbf{q},s)}$$

Dynamic heterogeneity in gels

• Excellent fits throughout the gel phase for G_M , G_A and $G_s = c_A G_A + (1 - c_A) G_M$, for all *t*'s beyond microscopic: experiments?

Dynamics of supercooled liquids

• Dramatic slowing down as T decreases.

• Computer simulations record the dynamics over 9 decades, for simple liquids, a bit less for more complex structures (e.g. silica SiO₂).

• Something's wrong again: $F_s(q,t) \neq \exp(-q^2\Delta(t)^2/6)$. Decoupling! But structure provides no clue.

Dynamic heterogeneity in liquids

• Non-Gaussian distribution of particle displacements in a supercooled liquid.

• Gaussian part for small *r*, exponential tails at large distance.

• The exponential tail is the analog, in space, of stretched exponential decay of time correlation functions. Theories?

• A new, universal dynamical feature characterizing the dynamics of glass-forming liquids.

This behavior is truly universal

Structure or dynamics?

• Harrowell *et al.* define the 'propensity' $\langle \mu_i(t) \rangle = \langle |\mathbf{r}_i(t) - \mathbf{r}_i(0)| \rangle$ by averaging at constant structure at t = 0.

- structure \rightarrow propensity replaces structure \rightarrow dynamics
- What about propensity \rightarrow dynamics? Predictability? [Berthier, Jack arXiv:0706.1044]

Predictability at large lengthscales

• $\Delta(t) = \mathbb{E}\left[\langle \mu_i^2(t) \rangle\right] - \mathbb{E}^2\left[\mu_i(t)\right] = \Delta^{\mathrm{iso}}(t) + \delta(t)$

 $\Delta^{\text{iso}}(t) = \mathbb{E}\left[\langle \mu_i^2(t) \rangle - \langle \mu_i(t) \rangle^2\right] \text{ at constant structure (dynamical origin)}$ $\delta(t) = \mathbb{E}\left[\langle \mu_i(t) \rangle^2\right] - \mathbb{E}^2[\mu_i(t)] \text{ propensity fluctuations (structural origin)}$

- Simulations indicate $\delta(\tau_{\alpha})/\Delta(\tau_{\alpha}) < 4$ %: dynamical origin.
- Repeat for global fluctuations: $C(t) = \frac{1}{N} \sum_{i} \mu_i(t)$: $\chi_4(t) = N\{\mathbb{E}\left[\langle C^2(t) \rangle\right] - \mathbb{E}^2\left[C(t)\right]\} = \Delta_4^{iso}(t) + \delta_4(t)$
- $\delta_4(\tau_{\alpha})/\chi_4(\tau_{\alpha})$ grows rapidly and ≈ 35 % at lowest temperature: structure's back!
- Dynamic heterogeneity dynamical in essence at single particle level, but structural origin of fast and slow domains. [Berthier, Jack, arXiv:0706.1044]
- Coarse-grained dynamics \approx propensity

Predictability at large lengthscales

Dynamical microscopic origin

• Particles perform random walks at random times, "CTRW", with specific properties. [Montroll, Bouchaud, Odagaki, Heuer, Langer, Berthier *et al.*, EPL '05, & Chaudhuri *et al.*, arXiv: :0707.0319].

Modified CTRW

•
$$G_s(\mathbf{r},t) = \sum_{n=0}^{\infty} \pi_n(t) f_n(\mathbf{r}).$$

• $\pi_0(t) = P(t)$ is a persistence function; $P(t) = \int_t^\infty dt' p(t')$; $f_0(\mathbf{r}) = f_{vib}(\mathbf{r})$ for vibrations.

• $\pi_1(t) = \int_0^t dt' p(t') \Psi(t - t'); \Psi(t) = \int_t^\infty \psi(t'); \psi(t)$ is the distribution of exchange times; $f_1(\mathbf{r}) = [f_0(\mathbf{r}) \otimes f_{\text{jump}}(\mathbf{r})] \otimes f_{\text{vib}}(\mathbf{r}).$

• $\pi_2(t) = \int_0^t dt' \pi_1(t') \psi(t-t'); f_2(\mathbf{r}) = [f_1(\mathbf{r}) \otimes f_{jump}(\mathbf{r})] \otimes f_{vib}(\mathbf{r})$, etc.

• Solution: $G_s(\mathbf{q}, s) = P(s)f_0(\mathbf{q}) + \frac{p(s)f_0(\mathbf{q})f(\mathbf{q})[1-\psi(s)]}{s[1-f(\mathbf{q})\psi(s)]}$, with $f(\mathbf{q}) = f_{\text{vib}}(\mathbf{q})f_{\text{iump}}(\mathbf{q})$.

• Timescales: $p(t) = \exp(-t/t_1)/t_1$ and $\psi(t) = \exp(-t/t_2)/t_2$.

• Lengthscales: $f_{\rm vib} \sim \exp(-r^2/\sigma_1^2)$ and $f_{\rm jump} \sim \exp(-r^2/\sigma_2^2)$.

Fitting data in real materials

$$G_s(r,t) = P(t)f_{\rm vib}(r) + \frac{4\pi}{r}\int_0^\infty dq \frac{q\sin(qr)f(q)f_0(q)}{(1-f(q))\frac{t_2}{t_1} - 1} \left(e^{-t/t_1} - e^{-t(1-f(q))/t_2}\right)$$

The last integral is not nice, but it generically (saddle-point) leads to an exponential tail (with log-corrections).

• Using (σ_1 , σ_2 , t_1 , t_2), data for liquids, colloids and grains can be fitted for many (t, T, φ).

Decoupling re-interpreted

• $\alpha = t_1/t_2$ from fitting the data vs. $R_{dec} = \frac{D_s(T)\tau_{\alpha}(T)}{D_s(T_0)\tau_{\alpha}(T_0)}$: translational decoupling measured in simulations.

• Clear link between exponential tail and decoupling.

Conclusions

- Slow dynamics in gels and glassy materials
- Dynamically heterogeneous behaviour is commonly observed
- Single particle dynamic heterogeneity results from structure in gels, is purely dynamical in glasses
- Simple stochastic models can be devised to capture generic behaviours in gels and glasses
- Lengthscales are important...
- More experimental data are needed to confirm exponential tail, link with spatial correlations, microscopic calculations, etc.