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Motivation

• Experiments show spatially heterogeneous dynamics.

• Goal: understanding spatial fluctuations in glassy dynamics.
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Outline

1. Experiments show strong fluctuations (“dynamic heterogeneities”)

in the aging regime.

2. Soft mode approach to local fluctuations: the age of the sample

fluctuates locally. Scaling predictions and simulation results for

local fluctuations in a spin glass.

3. Scaling in the behavior of local fluctuations in a structural glass:

probability distributions of one-point, two-time observables.

4. Scaling in the behavior of local fluctuations in a structural glass:

spatial correlations.

5. Scaling in the behavior of local fluctuations in a structural glass:

crossover between aging and equilibrium regimes.
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The Problem: Dynamical heterogeneities

Colloid: confocal microscopy (Courtland and Weeks, J. Phys. Cond. Mat 15 S359

(2003))
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The Problem: Dynamical heterogeneities
PVAc: dielectric fluctuations (Vidal Russell & Israeloff, Nature 408, 695

(2000))

Polymer glass,

T = Tg − 9K,

transient

appearence of

strongly

fluctuating

region under tip

Heterogeneity

lifetime ≈

relaxation time
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Can we understand dynamical heterogeneities in
aging systems?

A possible explanation: the glassy material is aging, but the ages are

fluctuating in space.

xA xB
xC

time

RG in time: reparametrizations t → h(t) leave “dynamical action” S
unchanged (irrelevant terms break symmetry at finite times) (C.Chamon,

M.P.Kennett, H.E.C., L.F.Cugliandolo, PRL 89, 217201 (2002))
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Probability distribution of local correlations: ρ(C~r)

(with C. Chamon, L. Cugliandolo, J. Iguain, and M. Kennett: PRL 88, 237201

(2002) and PRB 68, 134442 (2003))

If C0(t, tw) ≈ C0(h(t)/h(tw)) (for example, h(t) ≈ t in 3DEA) then:

t → h~r(t) = eϕ~r(t)

C~r(t, tw) = C0(h~r(t)/h~r(tw)) = C0(exp(ϕ~r(t) − ϕ~r(tw)))

t

ϕ (t ,r)

ϕ (t,r)

ϕ (t,r)

r

ϕ (t ,r)

w

− w

• Fluctuating ϕ~r(t)

• Time

reparametriza-

tion invariance

• ⇒ ϕ~r(t) − ϕ~r(tw) ≈

ln
(

h(t)
h(tw)

)

+

√

a + b ln
(

h(t)
h(tw)

)

Xr
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Collapse of ρ(C~r) for fixed t/tw

0

0.5

1

1.5

2

2.5

-1 -0.5 0 0.5 1

ρ(
C

r)

Cr

V=323

tw = 4 104, ..., 6.4 105

t/tw =  2 →
t/tw =  4 →
t/tw =  8 →
t/tw = 16 →
t/tw = 32 →

36 samples
T = 0.72 Tg

10



Noise-noise spatial correlations: exponential decay

RG-irrelevant ⇒ expect finite correlation length

symmetry-breaking terms (→ ∞ for infinite t, tw).

B(~r, t, tw) ≡ 〈δC~ri
(t, tw) δC~ri+~r(t, tw)〉~ri
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Correlation length ξ(t, tw) → ξ(ttw)
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Outline

1. Experiments show strong fluctuations (“dynamic heterogeneities”)

in the aging regime.

2. Soft mode approach to local fluctuations: the age of the sample

fluctuates locally. Scaling predictions and simulation results for

local fluctuations in a spin glass.

3. Scaling in the behavior of local fluctuations in a structural

glass: probability distributions of one-point, two-time observ-

ables. (HC and A. Parsaeian, Nature Physics 2007)

4. Scaling in the behavior of local fluctuations in a structural glass:

spatial correlations.

5. Scaling in the behavior of local fluctuations in a structural glass:

crossover between aging and equilibrium regimes.
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Structural glass simulations

• 80:20 binary Lennard-Jones mixture, 8000 particles. Thermalized

at Ti = 5.0, time origin at instantaneous quench to Tf = 0.4 (be-

low Tg ≈ 0.435). Evolves for up to 100000 LJ units (i.e. ∼ 10−8s)

after quench. β relaxation time is of the order of 1 LJ unit. Re-

peated for 250 to 4000 independent runs (depending on timescale).

• Divide the system in regions, and measure one point, two time

quantities for each region.

Cpart
~r (t, tw) ≡ 1

N (V~r)

∑

~ri(tw)∈V~r

cos(~q · [~ri(t) − ~ri(tw)])

Obtain the probability distributions ρ(Cr) for the local values.

• Use the global intermediate scattering function

Cglobal(t, tw) ≡ 1
N

N
∑

i=1
cos(~q · [~ri(t) − ~ri(tw)])

to quantify how correlated the system is between times tw and t.



Approximate collapse of ρ(Cr) at constant Cglobal(t, tw)
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Distribution of one-dimensional displacements ρ(∆x)
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Slow tw dependences at constant Cglobal(t, tw)
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Outline

1. Experiments show strong fluctuations (“dynamic heterogeneities”)

in the aging regime.

2. Soft mode approach to local fluctuations: the age of the sample

fluctuates locally. Scaling predictions and simulation results for

local fluctuations in a spin glass.

3. Scaling in the behavior of local fluctuations in a structural glass:

probability distributions of one-point, two-time observables.

4. Scaling in the behavior of local fluctuations in a structural

glass: spatial correlations. (A. Parsaeian and HC, cond-mat/0610789)

5. Scaling in the behavior of local fluctuations in a structural glass:

crossover between aging and equilibrium regimes.
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Dynamical correlations: densities

(Lačević, Starr, Schrøder, Glotzer J. Chem. Phys 119, 7372 (2003))

w(r, t, tw) = 1 if particle at r has moved < avib
= 0 otherwise

g4(r, t, tw) = spatial correlation of w(r, t, tw)

ξ4(t, tw) = correlation length for g4(r, t, tw)

χ4(t, tw) = dynamic density susceptibility

∝
∫

d3r g4(r, t, tw)
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Time evolution of χ4

Supercooled regime

(Starr et al. J. Chem. Phys. 2003)

Aging regime
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Scaling of χ4
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Time evolution of ξ4

Supercooled regime

(Starr et al. J. Chem. Phys. 2003)

Aging regime
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Scaling of ξ4
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χ4 vs. ξ4
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Anisotropy

Cx(R, t, tw) ≡ 〈δx(R, t, tw)δx(0, t, tw)〉c

x

y

Constant Cx contours at fixed (t,tw)

    0.03
    0.02
    0.01

-20  0  20
-20

 0

 20

tw = 30.2, t = 2511.88

x

y

Cx = 0.008 contours for various (t,tw)

C=0.3C=0.5

tw=17.38
tw=100

tw=575.44

-12  0  12
-12

 0

 12

25



Outline

1. Experiments show strong fluctuations (“dynamic heterogeneities”)

in the aging regime.

2. Soft mode approach to local fluctuations: the age of the sample

fluctuates locally. Scaling predictions and simulation results for

local fluctuations in a spin glass.

3. Scaling in the behavior of local fluctuations in a structural glass:

probability distributions of one-point, two-time observables.

4. Scaling in the behavior of local fluctuations in a structural glass:

spatial correlations.

5. Scaling in the behavior of local fluctuations in a structural

glass: crossover between aging and equilibrium regimes. (A.

Parsaeian and HC, in preparation)
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Fluctuations: crossover from aging to equilibrium
WCA potential (repulsive only)
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Fluctuations: crossover from aging to equilibrium
WCA potential (repulsive only)

coarse graining: 6.6 particles
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Fluctuations: crossover from aging to equilibrium
WCA potential (repulsive only)
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Fluctuations: crossover from aging to equilibrium
WCA potential (repulsive only)
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Summary

• Aging in a binary LJ: Probability distributions of local two-time quantities like Cr

and ∆x show approximate collapse at fixed Cglobal(t, tw). Slow drift of distribu-

tions with tw, no timescale observed. Tails of ρ(∆x) are nonlinear exponential
with exponent β ≈ 0.8 − 1.4, with the lower β corresponding to the longest tw.

• Aging in a binary LJ: Scaling of 4-point density correlation
χ4(t, tw) ≈ χ4

0(tw)φ(C(t, tw)), with limC(t,tw)→0 φ(C(t, tw)) = 0. Scaling of the cor-

relation length ξ4(t, tw) ≈ ξ4
0(tw)ϕ(C(t, tw)), with limC(t,tw)→0 ϕ(C(t, tw)) = ϕ0 6=

0. Data are consistent with a power law χ4(C = 1/e) ∼ (ξ4(C = 1/e))b, how-
ever the decay of χ4(t, tw) when C(t, tw) → 0 does not correspond to a decay in
ξ4(t, tw).

• Aging and equilibrium in a binary WCA: One-point distributions seem identical
in the aging and equilibrium regimes. (Collapse is better when small coarse
graining regions are used due to correlation length effects). The relationship
between the rescaled χ4 and C(t, tw) is also the same in the aging and equilibrium
regimes.
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Determination of ξ4

Fit S4(q, t, tw) at small q using the form: S4(q, t, tw) = a
1+(ξ4q)γ + b.
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