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Motivation

e Experiments show spatially heterogeneous dynamics.

e Goal: understanding spatial fluctuations in glassy dynamics.



Outline

. Experiments show strong fluctuations ( “dynamic heterogeneities’ )
in the aging regime.

. Soft mode approach to local fluctuations: the age of the sample
fluctuates locally. Scaling predictions and simulation results for
local fluctuations in a spin glass.

. Scaling in the behavior of local fluctuations in a structural glass:
probability distributions of one-point, two-time observables.

. Scaling in the behavior of local fluctuations in a structural glass:
spatial correlations.

. Scaling in the behavior of local fluctuations in a structural glass:
crossover between aging and equilibrium regimes.
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he Problem: Dynamical heterogeneities

Colloid: confocal microscopy (Courtland and Weeks, J. Phys. Cond. Mat 15 S359
(2003))

Figure 4. Locations of the 10% most mobile particles at three different ages 7,,. For each picture,
mobility was determined by calculating displacements Ar over an interval [7,, 7, + AT], with
AT = 10 min. Left: f,, = 10 min, and Ar > 0.43 pum for the most mobile particles. Middle:
ty = 55 min, Ar > 0.34 pm. Right: 7, = 95 min, Ar > 0.33 um. The data are the same as
shown in previous figures, and the choices of 7, correspond to local maxima of y in figure 2(a).
The particles are drawn to scale (2.36 um diameter) and the box shown is the entire viewing volume
(within a much larger sample chamber).



he Problem: Dynamical heterogeneities
PVAC: dielectric fluctuations (Vidal Russell & Israeloff, Nature 408, 695

(2000))
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Can we understand dynamical heterogeneities in
aging systems?

A possible explanation: the glassy material is aging, but the ages are
fluctuating in space.

X Xg Xc

RG in time: reparametrizations t — h(t) leave “dynamical action” S
unchanged (irrelevant terms break symmetry at finite times) (C.Chamon,
M.P.Kennett, H.E.C., L.F.Cugliandolo, PRL 89, 217201 (2002))



Probability distribution of local correlations: p(Cr)

(with C. Chamon, L. Cugliandolo, J. Iguain, and M. Kennett: PRL 88, 237201
(2002) and PRB 68, 134442 (2003))

IT Co(t, tw) ~ Co(h(t)/h(tw)) (for example, h(t) ~t in 3DEA) then:
t — hf*(t) — eSOF(t)
Ci(t, tw) = Co(hz(t)/hp(tw)) = Co(exp(ext) — ei(tw)))
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Collapse of p(Cx=) for fixed t/ty
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Noise-noise spatial correlations: exponential decay

RG-irrelevant = expect finite correlation length
symmetry-breaking terms (— oo for infinite ¢, tyw).
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Outline

. Experiments show strong fluctuations ( “dynamic heterogeneities’ )
in the aging regime.

. Soft mode approach to local fluctuations: the age of the sample
fluctuates locally. Scaling predictions and simulation results for
local fluctuations in a spin glass.

. Scaling in the behavior of local fluctuations in a structural
glass: probability distributions of one-point, two-time observ-
ables. (HC and A. Parsaeian, Nature Physics 2007)

. Scaling in the behavior of local fluctuations in a structural glass:
Spatial correlations.

. Scaling in the behavior of local fluctuations in a structural glass:
crossover between aging and equilibrium regimes.
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Structural glass simulations

e 30:20 binary Lennard-Jones mixture, 8000 particles. Thermalized
at 7; = 5.0, time origin at instantaneous quench to Tf = 0.4 (be-
low Ty ~ 0.435). Evolves for up to 100000 LJ units (i.e. ~ 1078s)
after quench. (3 relaxation time is of the order of 1 LJ unit. Re-
peated for 250 to 4000 independent runs (depending on timescale).

e Divide the system in regions, and measure one point, two time
quantities for each region.

CRM (ttw) = iy 2 cos(q - [7(t) — 7 (tw)])
: N (V) i (tw) EVp

Obtain the probability distributions p(C)) for the local values.

e Use the global intermediate scattering function

1 X Lo ,
Cylobal(t, tw) = Wi§1 cos(q - [75(t) — 75 (tw)])

to quantify how correlated the system is between times t,, and ¢t.



Approximate collapse of p(C)) at constant Cgiopal(t, tw)

P(C))
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Distribution of one-dimensional displacements p(Ax)

4 T
— t,=30.20
35 | C=0.7 > mene £ =302.0 1
0 ty = 3020 |
.............. ty = 30200

P(AX)

-1 -0.5 0 0.5 1
AX

approximate collapse at
constant Cyjopal(t, tw)-

nonlinear exponential tails
B exponent decreases for
iINncreasing tq

16



<(Cr-<C>)2>
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Outline

. Experiments show strong fluctuations ( “dynamic heterogeneities’ )
in the aging regime.

. Soft mode approach to local fluctuations: the age of the sample
fluctuates locally. Scaling predictions and simulation results for
local fluctuations in a spin glass.

. Scaling in the behavior of local fluctuations in a structural glass:
probability distributions of one-point, two-time observables.

. Scaling in the behavior of local fluctuations in a structural
glass: spatial correlations. (A. Parsaeian and HC, cond-mat/0610789

. Scaling in the behavior of local fluctuations in a structural glass:
crossover between aging and equilibrium regimes.
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Dynamical correlations: densities

(Lacevic¢, Starr, Schrgder, Glotzer J. Chem. Phys 119, 7372 (2003))

’UJ(I‘, t7 tUJ)

g4(I‘, ta tw)
£4(t7 tUJ)

X4(t7 tw)

1 if particle at r has moved < ay;ip
O otherwise

spatial correlation of w(r,t, tw)
correlation length for g4(r,t, tw)

dynamic density susceptibility
[ & gart,tw)
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Time evolution of x4

Aging regime
Supercooled regime
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Time evolution of &4

Supercooled regime

(Starr et al. J. Chem. Phys. 2003)

10

Aging regime

) N
W

o
o

S4(@)/S4(@ ~ 0)

N
W
o
W
s
o
RS
o
S
Oy
W
R
AN T
\\\‘ A \\\\\\\\\\\\\\\

oW e
o ““‘|||III|II|||IIII

N LY

N A\
;\“\\\“
W

Q
N
W
O
N
FEEE R | L L PR

10

t-t

100

W

- tw=10
tw=21
v tw=44
tw=100
tw=209
tw=437

o« tw=1000

tw=1445

1000

22



1/e)

€4/€4(C

1.1

09 ¢
0.8 |
0.7
0.6 |

Scaling of &4

:n“.#..,‘_
o"
y |
A « tw=10
2 tw=21 |
A’ . tw=44
= tw=100 |
A tw=209
tw=437
. +  tw=1000
T A w=l445
02 04 06 08 1
1-C

e'l)

&4(C

e
a (twe |
cnt,)td o gttt

Nw-‘”
¥
\g}-
a*dﬂ
‘ufr
U
it
¥
o
it
10 100 1000
l:W

b= 0.146 + 0.001

23




X4(C:e_1)

X4 VS.

&4

10 I tW

Xa

il o
SR
Sy S

......

24




Anisotropy

Cre(R,t,tw) = (0x (R, t, tw)dx(0,t,tw))ec
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Outline

. Experiments show strong fluctuations ( “dynamic heterogeneities’ )
in the aging regime.

. Soft mode approach to local fluctuations: the age of the sample
fluctuates locally. Scaling predictions and simulation results for
local fluctuations in a spin glass.

. Scaling in the behavior of local fluctuations in a structural glass:
probability distributions of one-point, two-time observables.

. Scaling in the behavior of local fluctuations in a structural glass:
spatial correlations.

. Scaling in the behavior of local fluctuations in a structural
glass: crossover between aging and equilibrium regimes. (A.
Parsaeian and HC, in preparation)
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P(C,(t.ty)

Fluctuations: crossover from aging to equilibrium
WCA potential (repulsive only)
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P(C(t,ty))

Fluctuations: crossover from aging to equilibrium
WCA potential (repulsive only)
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P(AX(t, 1))

Fluctuations: crossover from aging to equilibrium
WCA potential (repulsive only)
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Fluctuations: crossover from aging to equilibrium
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Summary

e Aging in a binary LJ: Probability distributions of local two-time quantities like C,
and Ax show approximate collapse at fixed Cglobal(tvtw)- Slow drift of distribu-

tions with t,, no timescale observed. Tails of p(Ax) are nonlinear exponential
with exponent g~ 0.8 — 1.4, with the lower 3 corresponding to the longest t,,.

e Aging in a binary LJ: Scaling of 4-point density correlation
xa(t, tw) = x4°(tw)d(C (L, tw)), With limggs )0 ¢(C(t,tw)) = 0. Scaling of the cor-

relation length &a(t, tw) ~ &°(tw)e(C(t,tw)), With liMmesy o p(C(t tw)) = o #
0. Data are consistent with a power law x4(C = 1/e) ~ (£&4(C = 1/e))?, how-
ever the decay of xa(t,t,) when C(t,t,) — O does not correspond to a decay in

54(757 tw)'

e Aging and equilibrium in a binary WCA: One-point distributions seem identical
in the aging and equilibrium regimes. (Collapse is better when small coarse
graining regions are used due to correlation length effects). The relationship
between the rescaled x4 and C(t,t,) is also the same in the aging and equilibrium
regimes.
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Determination of &4

Fit S4(q,t,tw) at small g using the form: S4(q,t, tw) = 1+(2‘4q)7 + b.
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