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Why are polymer glasses tough?

Polymer
glass Force

Allison,… J.Appl. Phys.38, 4164 (1967)

Polycarbonate = bullet-proof glass

High modulus +
 Large strain prior to fracture +
Low energy input in molding 

PMMA = 
plexiglass
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a)The thermodynamic answer - create two
equilibrium surfaces ≈ 10-5 J
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How much energy should it take to fracture a
PMMA glass of 1 cm3?

a)The thermodynamic answer - create two
equilibrium surfaces ≈ 10-5 J

b)The chemist’s answer - break all the polymer
chains in one plane ≈ 10-4 J

c)The solid-state physicist’s answer - elastic solid
to 2% strain ≈ 10-1 J

d)The real answer ≈ 20 J



One viewpoint: deformation induces mobility and
transforms the glass into a very viscous liquid

Polymer
glass

Force

Above Tg, small force, mobility allows flow, have molecular theories

Below Tg, large force, mobility allows flow?, no molecular theory

Allison,… J.Appl. Phys.38, 4164 (1967)



Broader context: Jamming

Liu and Nagel, Nature 1998

“Unjamming” is seen in many systems.
Polymer glasses are unique - large

deformation without failure due
to long chains



Observations of deformation-induced mobility
in polymer glasses

NMR experiments on nylon
 (Loo, Gleason, Cohen: Science 2000)

MD simulation on polyethylene
 (Capaldi, Boyce, Rutledge: PRL 2002)

Mechanical “tickle” measurements
 are controversial

 (Yee, Gacougnolle, McKenna, Zapas)



Goals

• Quantify deformation-induced mobility
• Fundamental understanding of

mechanism
• Better predictions of non-linear

mechanical properties
• Extend to composite systems



Key concept for our experiments:
Probe reorientation reports on polymer dynamics
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Deformation Cell (Creep Experiment)

Microscopy stageObjectiveInsulator

Temp.-controlled Cell PMMA
film

Weight

Top view of sample

   30 mm

 w0 = 2.5 mm

Place of observation

50 µm thick



Dye reorientation measured with photobleaching
technique
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Reorientation
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Strain and mobility are measured locally

Stretch the film

200 µ

200 µ

L0

L

Measure mobility
 of polymer in
 these small
 regions
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Local creep measurements agree well with standard creep measurements
during homogeneous deformation

Symbols: Optical creep measurement : T = 375.8 K (Tg-24.3 K)
Solid lines: Standard creep measurement (Caruthers) : T = 368.1 K (Tg-25 K)
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Evolution of mobility during creep and recovery
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Goals

• Quantify deformation-induced mobility
• Fundamental understanding of

mechanism
• Better predictions of non-linear

mechanical properties
• Extend to composite systems

Can free volume explain these results?



MD Simulations of a coarse-grained polymer melt at
Tg (Tg* = 0.37)

Polymer: 32 Lennard-Jones sites connected by
harmonic springs

Creep simulations in NσT ensemble under
compression and tension

Four system sizes studied:
     Lx   =    {8.8; 11.7; 17.7; 39.9}
     Lx / ξ = {1.1;  1.46; 2.21; 4.24}

NσT ensemble

Lx

        MD simulations of creep (        MD simulations of creep (Riggleman/de Riggleman/de Pablo)Pablo)

Pure polymer glass
before deformation



Dynamics are enhanced during creep (Dynamics are enhanced during creep (σσzzzz  = 0.54)= 0.54)

Strain and dynamic response of LJ polymer melt under tensile stress

Dynamics measured separately for individual configurations

All configurations show significant enhancement



= Compressive stress, σzz = -{0.27, 0.54, 0.62, 0.75}

Open symbols: LX = 17.7
Filled symbols: LX = 33.9

* = Tensile stress, σzz = {0.27, 0.425, 0.54, 0.62}

Evolution of τc with the strain rate (MD)
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CompressionCompression

TensionTension

Simple free volume cannot explain enhancedSimple free volume cannot explain enhanced
dynamicsdynamics

Plan to do experiments in compression also



True stress (MPa)
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Preliminary comparison with “molecular level Eyring theory”
(Chen and Schweizer)



Modelling the evolution of τc during creep

Creep
2.8 MPa
8 MPa
16 MPa

Cooling

Annealing

Medvedev and Caruthers, March 2007 APS Meeting

•Thermoviscoelastic model
•PMMA, 358 K
•Moderate stress
   has little effect
•Large stress has big effect

Recovery



Mobility in different regions of necked film
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Summary

 Quantitative determination of mobility changes during
deformation and recovery.

 Huge effect!  A dominant contribution to non-linear
deformation behavior.

 Simulations argue against free volume interpretation
 Critical for theory/modelling.
 Local measurement of mobility useful for understanding

inhomogeneous deformation.


