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Liquid or solid?

Raft of soap bubbles: From M. Dennin UCI

Many amorphous materials 
behave like solids below some 
yield stress, but fluids above.

“Yield stress fluid.” 
“Visco-plastic solid.”

Examples:
Emulsions, Suspensions,
Granular materials
Metallic glasses

Issues:
Value of yield stress
Localization of flow
Intermittent behavior, etc.

Stress

Stress

Strain Rate

Strain

Nanoindentation of metallic glass:
From Moser et. al. ETH

Point of 
interest

From Liu and Nagel
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Dislocations

•Responsible for plastic 
deformation in crystals
•Nucleated at boundary or in pairs 
in the interior
•“T” “points” toward extra material
•“Glide” mechanism leaves behind a 
line of slip
•Particular to crystals!

TShear Stress
Increase

Shear Stress
Increase

Pressure Decrease

Pressure Increase

Elastic consequences:
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Shear Transformation Zones (STZs)

From C. Schuh

•Argon and Kuo: bubble raft experiments
•Maeda and Takeuchi: computer simulations 
•Bulatov and Argon: banding mechanism 
•Falk and Langer: mean field theoryHigher
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Elastic consequences:

Look for STZ cascades in 
numerical model and measure 

statistical parameters
!

Higher
!

Higher

Cascade mechanism:

No crystal... no defects

Analogous to dislocation glide:
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Outline
• Overview
• The Athermal Quasi-Static (AQS) limit
• Spatial structure of plastic rearrangement events
• Scaling with system size and interaction type

• Finite driving rates
• Strain distributions
• Spatial organization of strain
• Direct measure of diverging ξ
• Relation to thermally driven rearrangement

• Summary
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Atomistic Numerical Model
Various interaction potentials:

Uharm=(ε/2) s2

Uhertz=ε s5/2

ULennard-Jones=ε(r-12-r-6)

Binary distribution

s

r
Athermal, Quasistatic Procedure:

•Minimize potential energy
•Shear boundaries and particles
•Repeat

Represents:
•Bulk metallic glass in the zero 
temperature, zero strain rate limit
•Granular material or emulsion in zero 
strain rate limit

Behavior:
•Discrete plastic jumps separate 
smooth, reversible elastic segments

Minimize Energy

Shear system

En
er

gy

Strain

elast
ic

elast
ic

plastic

τpl << τdr << τth

P.E.L.:
after Malandro and Lacks
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A typical plastic event

0 1000 2000 3000 4000 5000
1658

1658.5

1659

1659.5

1660

1660.5

1661

U

0 1000 2000 3000 4000 5000

Number of Minimization Steps

0

0.05

0.1

0.15

0.2

<
F

*
F

>

0.15 0.155 0.16 0.165 0.17
!

1656

1658

1660

1662

U

•Single typical plastic event
•All relaxation at one strain
•“Number of minimization 
steps” analogous to time 
<F*F>~dU/dt

•Descent is intermittent...
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A typical plastic event
Initial portion of descent from previous slide:

Incremental “slip”: Cumulative slip Incremental energy drop!u − 〈!u〉

Expected 
energy 

change after 
nucleation of 
localized slip:
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A typical plastic event
At the end of the whole cascade, we are left with a slip line:

!u − 〈!u〉 !u“Slip”: Displacement:

Analogous to dislocation glide:

!
Higher
!

Higher

But with local shearing zones:
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Statistics and size scaling

µ=!"/!#

$#

$"

"

#

Collect statistics for different 
system size and interaction 
potentials:

•“Modulus”
•Elastic interval
•Stress drop
•Energy drop
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<σ>/μ is universal! ~ 3%
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Statistics and size scaling
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Collect statistics for different 
system size and interaction 
potentials:

•“Modulus”
•Elastic interval: Δγ
•Stress drop: Δσ
•Energy drop: ΔU

µ=!"/!#

$#

$"

"

#

Scaling argument: slip by length “a”

Scaled distributions of Δγ, Δσ, ΔU

L

a

Δγ~a/L 

Δσ~μΔγ~μa/L

ΔU~(L2/μ)<σ>Δσ
~aL<σ>

Event size independent of potential and scales simply with system size!
a

P(
a)
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Persistent localization?

•200x200 sized 
binary LJ system 
shown

•Individual events 
localized.

•Inter-event 
correlation exists 
but short-lived.

•No persistent 
localization.

Red: new slip.  White: all slip in last 0.5% strain
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Finite Strain Rates
To address objections to AQS 
simulation protocol, do “plain 
old” Molecular Dynamics:
•binary Lennard-Jones 
system quenched at P=0
•local damping (Kelvin/DPD)
•uniaxial stress state
•bi-periodic boundaries
•system sizes up to 
3000x3000 in QS regime 
(order 500 CPU days / run)

Note: switching 
deformation mode to 
uniaxial compression

prescribed Ly(t)
set σxx=0
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What to measure?

∂ui

∂xj

= Fij

ω = Fxy − Fyx

ω<0

For each triangle:

Invariants:

ε1 =
Fxx − Fyy

2

ε2 =
Fxy + Fyx

2

ω>0

ε =

√

ε
2
1

+ ε
2
2

Fij ∼ εδixδjy Fij ∼ εδiyδjx

“Right Strain” “Left Strain”
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Local Strain (ω)

ω
3% Strain

log10[S(qx,qy)]
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4% Strain

Local Strain (ω)

ω log10[S(qx,qy)]
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5% Strain

Local Strain (ω)

ω log10[S(qx,qy)]
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6% Strain

Local Strain (ω)

ω log10[S(qx,qy)]
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Distribution of Local ω
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Distribution of ω 
has exponential tail 
and scales roughly 
with applied strain!
 

P(ω)~e-ω/ω*  
ω*~Aεapplied

A~2.2

A seems size and 
rate independent. 

19



Scenarios for S(q)

Scenario B: S ∼ qα sin2(2θ)

ln (S) ∼ α sin2(2θ) ln (q)

〈ln(S)〉θ ∼
α

2
ln q

S ∼ qα sin2(2θ)

ln (S) ∼ α ln (q) + ln (sin2(2θ))
ln (〈S〉θ) ∼ α ln (q)

Scenario A:

Two power-law 
scenarios  for S(q)

log10[S(qx,qy)]

0

-1

-2

-3
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S(q;θ)
Note:
•Signal is strong along 
diagonals and flat 
along θ~0 and π/2

•Increasing strain 
revelas an apparent 
power law.

•Either exponent or 
low-q cutoff (or 
both) depends 
strongly on angle.
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S(q;θ)
Note:
•Signal is strong along 
diagonals and flat 
along θ~0 and π/2

•Increasing strain 
revelas an apparent 
power law.

•Either exponent or 
low-q cutoff (or 
both) depends 
strongly on angle.
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S(q;θ)
Note:
•Signal is strong along 
diagonals and flat 
along θ~0 and π/2

•Increasing strain 
revelas an apparent 
power law.

•Either exponent or 
low-q cutoff (or 
both) depends 
strongly on angle.
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5% Strain
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S(q) collapse for particular θ (=π/4)
Note:
•S(q) along diagonal at 
various applied strain.
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Relation to Thermal Relaxation

Shear

Method: locate neighboring pairs of particles 
which become separated after some time.

For large enough strain rate, lowering T doesn’t change dynamics

τα~105 No Shear
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Relation to Thermal Relaxation

Raw S(q) for no shear Scaled S(q) for all data

Y.O. scaled onto:

1/(1 + (qξ)2)
q-2

q-1

q-2

q-1
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Summary

•Yield stress is about 3% 
times the shear modulus 
regardless of interactions!

•Data for event size based on 
i) strain interval, ii) stress 
drop, iii) energy drop collapse 
onto single master curve for 
all interactions and system 
sizes.  Gives characteristic 
length of a few tenths of a 
particle diameter.

•Long-range spatial 
correlations and avalanche 
events remain in “plain old 
MD” at finite strain rate.

•Distribution of local slip is 
exponential.

•S(q) consistent with power-
law (exponent~one) cut off 
by a lengthscale which grows 
with applied strain.

•Athermal, quasistatic dynamics characterized by intermittent 
avalanche events with long range spatial correlations.
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• Sequence:

• Initial packing, F=0

Non-affine Elastic Response

• What is this stuff?

• Bubbles or

• Grains or

• Atoms
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• Sequence:

• Initial packing, F=0

• Sheared state, F!=0

Non-affine Elastic Response
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• Sequence:

• Initial packing, F=0

• Sheared state, F!=0

• Allow correction so 
F=0 again.

Non-affine Elastic Response
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• Sequence:

• Initial packing, F=0

• Sheared state, F!=0

• Allow correction so 
F=0 again.

• Subtract affine 
piece.

Non-affine Elastic Response
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Motivation:

Q) How to characterize the 
local disorder?
A) The “affine forces”, Ξ

Q) Can a characteristic length 
be defined?
A) No.  Vortices scale with 
system size.

Q) How do heterogeneities in 
the elasticity initiate plasticity?
A) Elastic response localizes 
into a shear zone
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Motivation:

Q) How to characterize the 
local disorder?
A) The “affine forces”, Ξ

Q) Can a characteristic length 
be defined?
A) No.  Vortices scale with 
system size.

Q) How do heterogeneities in 
the elasticity initiate plasticity?
A) Elastic response localizes 
into a shear zone

•Leonforte, et. al., find a 
characteristic vortex size.

•DiDonna and Lubensky 
develop a framework which 
exhibits log divergences.

•We develop a similar 
framework, but conclude 
that vortices are scale free.

•Can get good quantitative 
agreement with the data.
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Motivation:

Q) How to characterize the 
local disorder?
A) The “affine forces”, Ξ

Q) Can a characteristic length 
be defined?
A) No.  Vortices scale with 
system size.

Q) How do heterogeneities in 
the elasticity initiate plasticity?
A) Elastic response localizes 
into a shear zone

•Older studies [Srolovitz et. al. 
Acta Metal. 1981] find that 
plasticity is nucleated near stress 
concentrations.

• In our systems, plasticity is 
instead nucleated at regions of 
large non-affine elasticity.  

•We derive analytical expressions 
for this nucleation process.
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Computing the response
• Single particle toy 

problem:

• Start at F=0

Ordered Case
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Computing the response
• Single particle toy 

problem:

• Start at F=0

• Apply affine shear

• Forces remain zero

• No correction 
necessary

Ordered Case
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Computing the response
• Single particle toy 

problem:

• Start at F=0

Disordered Case
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Computing the response
• Single particle toy 

problem:

• Start at F=0

• Apply strain

Disordered Case
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• Single particle toy 
problem:

• Start at F=0

• Apply strain

Computing the response
Disordered Case

Use Hessian to 
compute “Affine force”

!Ξi =

∑

j

Hij
!drj

!Ξi = γ
∑

j

Hijx̂δyj
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Computing the response
• Single particle toy 

problem:

• Start at F=0

• Apply strain

Disordered Case

Use Hessian to find 
position correction

!Ξi = Hii
!dri

!dri = H
−1

ii
!Ξi
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Computing the response
• Back to full assembly:

•Measure of local 
disorder.

•No spatial 
correlations in our 
samples.

!Ξi = γ
∑

j

Hijx̂δyij
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Computing the response
• Back to full assembly:

Force balance: 
Affine forces, Ξ , must 
be balanced by 
correction forces, 
H-1ijdxj

!dri = γ
∑

j

H
−1
ij

!Ξj
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Outline
• Overview

• Scale free vortices: (CEM [PRL 2006])

• Autocorrelation g(r)

• Normal-mode decomposition

• Plastic nucleation

• Outlook
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Autocorrelation, g(δ)

g(!δ)
.
=

∫
!v(!r) · !v(!r + !δ)d!r

δ

•Usual autocorrelation

•Measures “vortex size”

•Characteristic length?
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Autocorrelation, g(δ)
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g(δ): Theoretical form
Recall:

Then:

•Note:

•Ξp are random

•Ψp are plane waves to 
first order in Ξ

!dri = γ
∑

j

H
−1
ij

!Ξj

!dri = γ
∑

p

(

Ξp

λp

)

!ψip
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g(δ): Theoretical form
Approximate dri as 
random sum of plane 
waves:

Then g(δ) is:

Recall:

Then:

•Note:

•Ξp are random

•Ψp are plane waves to 
first order in Ξ

!dri = γ
∑

j

H
−1
ij

!Ξj

!dri = γ
∑

p

(

Ξp

λp

)

!ψip

!dri ∼
∑

k=(m,n)

φmn
e2πi"k·"xi/L

|!k|

g(!δ) ∼
∑

k=(m,n)

cos(2π!k ·
!δ/L)

k2
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Simulation and Theory
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Cont. Theory

Similar to DiDonna
+Lubenksy, 

•g(k)~1/k2

but:

•Fully discrete 
derivation

Blue curve:
Semi-continuum 

Red curve(s):
Partial sum (n=40)
3 different angles

g(!δ) ∼
∑

k=(m,n)

cos(2π!k ·
!δ/L)

k2
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Outlook
Summary:

•Displacement field 
from random forces 
on a homogeneous 
sheet.

•Predicts “vortex 
length” ~ .32 Lbox

•No length scale comes 
out of data or theory.

Future Direction:

•When does the 
assumption of 
uncorrelated Ξ break 
down?

•Can this bring out a 
characteristic length?

•How to make 
systematic pert. 
expansion for H?
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Large Strains

<!>
!

"

<!>

<!>/<µ>

“Lees-Edwards” Cell Typical Stress-Strain Curve

•Protocol:
•Minimize energy
•Shear system
•Repeat

•Procedure is:
•Athermal, Quasi-static
•“minimalist”

Only if I have time.
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Landscape Perspective
Increasing strain

Response can be linearized.
Deformation is reversible (elastic).

Response cannot 
be linearized.

Deformation is 
irreversible 

(plastic).

After Malandro
 and Lacks

Elastic step Elastic step Plastic step

Recall: !dri = γ
∑

j

H
−1
ij

!Ξj
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Singular Mode

Plastic nucleation is intrinsically non-local!
Cannot be detected via Ξ!

Ξ dr
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Singular Mode
Lamé-Navier predicts, 
for quadrupoles:

Can critical mode be 
rationalized elastically?

vr(r) =
2A

r3
+

(1 + κ)B

r

101
Radius

104

105

A
m
pl
itu
de
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Outlook
Summary:

• Diverging elastic 
displacement triggers 
plastic nucleation

•Onset of plasticity is 
NOT detectable via 
the local quantities 
(σ,Ξ,μBorn, etc)

Future Direction:

•Can a critical “core” 
region be defined?

•How might these core 
regions affect the non-
critical elastic 
behavior?
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Jammed Systems
• Examples:

• Bubbles/Emulsions
• Grains
• Glasses

• Non examples:
• Suspensions / Rigid Grains

• Differences:
• Inertia/Temp/Dissipation

• Similarity:
• Geometry!

• Issues:
• Characterizing disorder
• Elasticity / Vibrations
• Plasticity / Yielding

From (M Dennin)
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Numerical protocol
•All results for 2D

•Binary mixtures to prevent 
crystalization

•Interactions:

•Harmonic contact repulsion

•Standard Lennard-Jones 6-12

•Preparation: “violent” quench from 
initial random state.
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Approach to Singularity
dσ

dγ
=

∂σ

∂γ
+

∑

i

∂σ

∂riα

driα

dγ

=
∂σ

∂γ
−

∑

ij

ΞiαH−1

iαjβΞjβ

Catastrophe 
Theory:

=
∂σ

∂γ
−

∑

p

Ξ2
p

λp

λ0 ∼

√

δγ

µ ∼ −(δγ)−1/2
Initiation of single 

plastic event

St
re

ss
St

iff
ne

ss

Strain
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