The glass transition as a spin glass problem

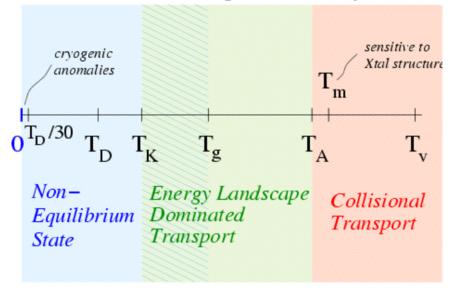
Mike Moore

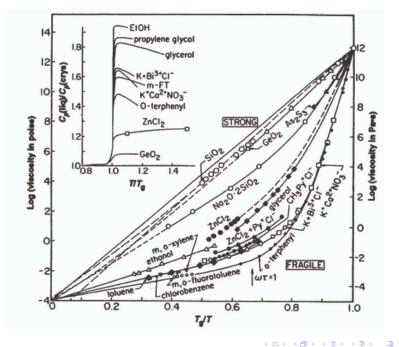
School of Physics and Astronomy, University of Manchester

UBC 2007

Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay

Regimes of Liquid/Glass Physics





Mike Moore (Manchester)

UBC 2007 3 / 21

- Glass phenomenology
- Formalism to show that the supercooled liquid (with no disorder) near its glass transition is in the universality class of the lsing spin glass in a field (with quenched disorder)
- Droplet scaling ideas: predicts behavior on long lengthscales and timescales
- Long lengthscales are probably not being reached in experiments.
- Glasses are in a pre-asymptotic regime numerical work on Ising spin glass in a field indicates that it mimics conventional glass phenomenology when lengthscales are modest.

Vogel-Fulcher law

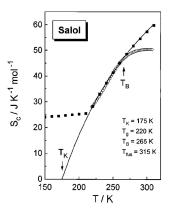
$$\eta \sim \exp[DT_0/(T-T_0)].$$

In truth just 'curve-fitting'.

- Relaxation time(s) $\tau \sim \eta$.
- Kauzmann Paradox: Configurational entropy per molecule apparently goes to zero at T_K

$$s_c(T) \sim k_B(1-T_K/T) \sim \Delta C_p(1-T_K/T) \sim (1-T_K/T)/D.$$

- The ratio T_K/T_0 lies between 0.9-1.1 for many glass formers for which T_K ranges from 50 K to 1000 K.
- Simulations (and experiment) support existence of a growing lengthscale L*(T); increasingly large regions have to move simultaneously for the liquid to flow.
- But at T_g , $L^*(T)$ is only a few particle diameters.



- "Equilibrium" near T_K or T_0 cannot be obtained due to freezing into an amorphous solid on experimental time scales.
- Consequence: experimental lengthscales cannot be made large and evidence for universality and well-defined power laws will (always?) remain weak.

The thermodynamic transition

- The apparent divergence of η at T_0
- The apparent vanishing of $s_c(T)$ at T_K
- The closeness of T_0 and T_K for many glasses
- A growing lengthscale $L^*(T)$

All the above suggest a transition as $T \rightarrow T_0$.

- We will argue the transition is in the universality class of the Ising spin glass in a field h(T) as h(T) → 0.
 (For all T < T_c, there is a line of critical points at h = 0 when d < 6).
- Lengthscales get large when h(T) gets small: $h(T)^2 \sim (T T_0)$.
- The spin glass transition temperature in zero field $T_c \approx T_A$.

Glass theories

- Locally geometrically frustrated systems; ⇒ an avoided transition. Explain simply the existence of supercooling.
- Kinetically contrained dynamical models.
- RFOT theory of Wolynes and co-workers.
 A theory at the level of molecules (a "plus"), whose underlying physics related to that of the "p-spin" model in the infinite dimensional limit e.g. use of the "mosaic" picture.
- Mapping to an Ising spin glass in a field. (Not a theory at the level of molecules, (a "minus").

The p-spin model maps to this when treated as a three dimensional system.

It allows prediction of the universal exponents $\psi\text{,}\ \theta\text{,}\ d\text{s}$ etc.

$$au \sim \exp\left[B_0 L(T)^{\psi}/k_B T
ight], \qquad L(T) \sim \left[rac{1}{T-T_0}
ight]^{rac{1}{d-2 heta}}$$

 d_s is the fractal dimension of the dynamically active regions in α -relaxation processes.

Effective Potential Formalism

(cf Franz and Parisi, Dzero et al.)

Define the overlap

$$\mathfrak{v}_c(\mathbf{r}) = \delta \rho_1(\mathbf{r}) \delta \rho_2(\mathbf{r})$$

between two configurations of density variations $\delta \rho = \rho - \langle \rho \rangle$ in two copies of the liquid.

• Compute the constrained partition function by averaging over the density configurations in the first copy:

$$Z[p_c(\mathbf{r}), \delta\rho_2(\mathbf{r})] = \langle \delta(p_c(\mathbf{r}) - \delta\rho_1(\mathbf{r})\delta\rho_2(\mathbf{r})) \rangle_{\rho_1}.$$

• The effective potential is given by averaging the free energy with respect to the density configurations in the second copy

$$\Omega[\mathbf{p}_{c}(\mathbf{r})] = -T \langle \ln Z[\mathbf{p}_{c}, \delta \rho_{2}] \rangle_{\rho_{2}}.$$

• Use the replica trick to average the logarithm

$$\ln Z = \lim_{n \to 0} (Z^n - 1)/n.$$

Use an integral representation of the delta function.

$$\Omega[p_{c}(\mathbf{r})] = -T \int \prod_{\alpha} \frac{D\lambda_{lpha}}{2\pi} \exp\left[i\sum_{lpha} \int d\mathbf{r}\lambda_{lpha}(\mathbf{r})p_{c}(\mathbf{r})
ight]
onumber \ imes \left\langle \left\langle \exp\left[-i\sum_{lpha} \int d\mathbf{r}\delta
ho_{1}^{lpha}(\mathbf{r})\delta
ho_{2}(\mathbf{r})\lambda_{lpha}(\mathbf{r})
ight]
ight
angle
ight
angle_{
ho_{2}}
ight
angle_{
ho_{1}^{lpha}}.$$

Define $q_{\alpha\beta}(\mathbf{r}) = \lambda_{\alpha}(\mathbf{r})\lambda_{\beta}(\mathbf{r})$ for $\alpha \neq \beta$. Trace out the λ_{α} , ρ_{1}^{α} and ρ_{2} fields using cumulant averaging (and further integral representations).

$$\Omega[p_c] \sim \int \prod_{\alpha < \beta} \mathcal{D}q_{lpha eta} \exp[-H[q]].$$

 $p_c(\mathbf{r})$ is determined from the condition $\delta\Omega/\delta p_c = 0$. $H[q_{\alpha\beta}]$ is an even function of $p_c(\mathbf{r})$ so $p_c(\mathbf{r}) = 0$ is always a solution and this describes the liquid phase. But at the "transition", $T = T_0$, $\delta\Omega/\delta p_c = 0$ gives

$$\lim_{t\to\infty} \langle \delta\rho(\mathbf{r},t)\delta\rho(\mathbf{r},t=0)\rangle = q_{EA} = p_c.$$

To cubic order when $p_c(\mathbf{r}) = 0$

$$H[q] = \int d\mathbf{r} \left\{ \frac{c}{2} \sum_{\alpha < \beta} \left(\nabla q_{\alpha\beta}(\mathbf{r}) \right)^2 + \frac{\tau}{2} \sum_{\alpha < \beta} q_{\alpha\beta}^2(\mathbf{r}) - \frac{w_1}{6} \operatorname{Tr} q^3(\mathbf{r}) - \frac{w_2}{3} \sum_{\alpha < \beta} q_{\alpha\beta}^3(\mathbf{r}) \right\}.$$

- The coefficients c, τ, w_1 and w_2 will be functions of the temperature T and density of the liquid, with smooth dependence on them.
- If one knows the correlation functions of the liquid, then in principle one could determine these parameters.
- The transition is usually driven by τ changing sign as a function of temperature. Here the growing lengthscale will arise from w₂ going to zero: w₂ ~ (T T₀) in the 'low-temperature' regime τ < 0.
- The w₂ term breaks time-reversal invariance.
- The physical significance of $q_{\alpha\beta} = \lambda_{\alpha}\lambda_{\beta}$ is not simple!

- The same replica functional arises in studies of the p-spin model (and also Potts models).
- If w₂/w₁ > 1 there are two transitions at mean-field level, a dynamic transition at T_A and a first-order thermodynamic glass transition at T_K (below which p_c(**r**) becomes non-zero).

- Glass phase (T < T_K) has one-step replica symmetry breaking (1RSB) order.
- Above T_A , dynamics parallels that in mode-coupling theory.

Beyond the mean-field approximation

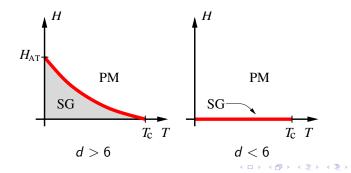
- Outside mean-field theory no true dynamical transition T_A exists as true metastable states do not exist in finite dimensions.
- Outside mean-field theory the 1RSB phase below T_K does not exist. It is destroyed by thermal excitation of large droplets: the free energy cost of a droplet of linear extent L falls as $\exp(-L/\xi)$.
- Numerical studies of the 10-state Potts models in three dimensions: no sign of MCT like effects or a glass transition or growing lengthscales. (All visible at mean-field level).
- When $w_2/w_1 < 1$ a continuous transition to a glass state with full RSB exists at mean-field level.

Moore and Drossel (2003), Moore and Yeo (2006) showed that this transition was in the same universality class as that of an Ising spin glass in a field.

$$\mathcal{H} = -\sum_{\langle ij \rangle} J_{ij} S_i S_j - h \sum_i S_i, \quad w_2 \sim h(T)^2$$

Ising spin glass in a field

- de Almeida-Thouless (AT) line at which there is a continuous 'replica symmetry breaking transition'. Exists at mean-field level and possibly for all d > 6?
- No AT transition for *d* < 6 (Moore 2005) where the loop expansion around the mean-field theory fails.
- For d < 6, a transition arises only if h(T) → 0. The whole line T < T_c is critical i.e. the correlation length is infinite.



Droplet scaling

- The lengthscale L(T) is the size of a compact region, (containing $\sim L^d$ spins) in which the spins flip to lower their magnetic energy.
- Domain wall energy $\sim L^{\theta}$, $\theta \approx 0.2$ when d = 3.
- Magnetic field energy gained $\sim h(T)L^{d/2}$
- Equating these two energies the Imry-Ma argument

$$L(T) \sim \left[\frac{1}{h(T)^2}\right]^{\frac{1}{d-2\theta}} \sim \left[\frac{1}{T-T_0}\right]^{\frac{1}{d-2\theta}} \sim \left[\frac{1}{T-T_0}\right]^{0.4}$$

- Contrast with the mosaic picture: $\gamma(T)L(T)^{d-1} \sim s_c(T)L^d$.
- Barrier against flipping $B(T) \sim B_0 L(T)^{\psi}$, ψ not yet determined.
- From Arrhenius

$$au \sim au_0 \exp\left[\frac{B(T)}{k_B T}\right] \sim au_0 \exp\left[\frac{DT_0}{T - T_0}\right]^{0.4\psi}$$

- The transition arises from taking the field h(T) to zero as T → T₀. At h = 0, the Ising spin glass Hamiltonian has time-reversal invariance (up-down symmetry).
- At the level of molecules the transition is driven by w_2 going to zero at T_0 . There must be an extra symmetry in the system at this temperature.
- What is it? Particle-hole symmetry?
- Notice that $< q_{\alpha\beta} > = < \lambda_{\alpha}\lambda_{\beta} >$ is non-zero at all T.

Relation to RFOT theory and MCT theories

- The p-spin version of the RFOT and the Ising spin glass in a field have the same starting functional.
- The mapping to the Ising spin glass in a field applies when the loop corrections destroy the mean-field character of the transition.
- The RFOT and mosaic pictures will be OK in a regime not too close to *T*₀ where loop corrections might be small.
- The existence of such a regime would seem to require the existence of "long-range" interactions.
- This does not imply that the intermolecular interactions have to be long-ranged, but just that the parameters c, τ, w_1, w_2 in the functional are such as to make loop corrections small and $w_2/w_1 > 1$ when $T \approx T_A$.
- 'Success' of MCT and RFOT theories suggest that this might be the case! Then only as $T \rightarrow T_0$ would the crossover to Ising spin glass behaviour in a field emerge.

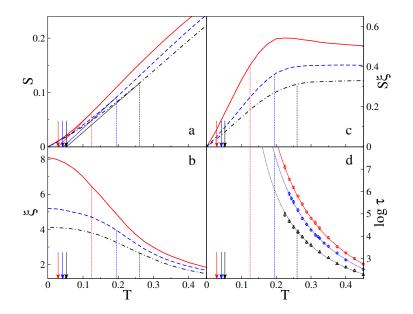
3d spin glasses in a field are being studied by Peter Young. One-dimensional Ising spin glass – useful illustration of some points:

$$\mathcal{H} = -\sum_{i} J_i S_i S_{i+1} - h \sum_{i} S_i.$$

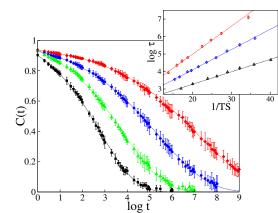
In d = 1 there is no spin glass phase. h(T) was kept temperature independent, (so entropies are too low to be "realistic"). Glass-like features emerge because of a growing lengthscale as T is reduced.

Size of domains saturates at a lengthscale: ξ at T = 0: $J\xi^{\theta} \sim h\xi^{d/2}$ For d = 1, $\theta = -1$, so $\xi \sim h^{-2/3}$

 $\xi(T)$ and S can be exactly calculated by RG decimation.



<ロト </p>



Relaxation time au: $\langle S_i(t_W)S_i(t+t_W)
angle_c\sim \exp(-(t/ au)^eta)$

- Vogel-Fulcher fit $\tau = \tau_0 \exp[A/(T T_0)]$ with T_0 similar to T_K works!
- Streched exponential exponent β arises because there is a range of relaxation times.

- A functional can be derived from liquid state theory which maps the glass transition problem onto the lsing spin glass problem in a field.
- Droplet arguments predict that lengthscales should increase as the temperature decreases, but at T_g lengthscales may not be large enough for asymptotic droplet scaling formulae to be appropriate.
- Conventional fits, (Vogel-Fulcher, Kauzmann, Adams-Gibbs) may 'work' in this pre-asymptotic region as well as (possibly) RFOT ideas.