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Plan of Talk

Glass phenomenology

Formalism — to show that the supercooled liquid (with no disorder)
near its glass transition is in the universality class of the Ising spin
glass in a field ( with quenched disorder)

Droplet scaling ideas: predicts behavior on long lengthscales and
timescales

Long lengthscales are probably not being reached in experiments.

Glasses are in a pre-asymptotic regime — numerical work on Ising
spin glass in a field indicates that it mimics conventional glass
phenomenology when lengthscales are modest.
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Some Glass Phenomenology

Vogel-Fulcher law

η ∼ exp[DT0/(T − T0)].

In truth just ‘curve-fitting’.

Relaxation time(s) τ ∼ η.

Kauzmann Paradox: Configurational entropy per molecule apparently
goes to zero at TK

sc(T ) ∼ kB(1− TK/T ) ∼ ∆Cp(1− TK/T ) ∼ (1− TK/T )/D.

The ratio TK/T0 lies between 0.9-1.1 for many glass formers for
which TK ranges from 50 K to 1000 K.

Simulations (and experiment) support existence of a growing
lengthscale L∗(T ); increasingly large regions have to move
simultaneously for the liquid to flow.

But at Tg , L∗(T ) is only a few particle diameters.
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“Equilibrium” near TK or T0 cannot be obtained due to freezing into
an amorphous solid on experimental time scales.

Consequence: experimental lengthscales cannot be made large and
evidence for universality and well-defined power laws will (always?)
remain weak.
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The thermodynamic transition

The apparent divergence of η at T0

The apparent vanishing of sc(T ) at TK

The closeness of T0 and TK for many glasses

A growing lengthscale L∗(T )

All the above suggest a transition as T → T0.

We will argue the transition is in the universality class of the Ising
spin glass in a field h(T ) as h(T ) → 0.
(For all T < Tc , there is a line of critical points at h = 0 when
d < 6).

Lengthscales get large when h(T ) gets small: h(T )2 ∼ (T − T0).

The spin glass transition temperature in zero field Tc ≈ TA.
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Glass theories

Locally geometrically frustrated systems; ⇒ an avoided transition.
Explain simply the existence of supercooling.
Kinetically contrained dynamical models.
RFOT theory of Wolynes and co-workers.
A theory at the level of molecules (a “plus”), whose underlying
physics related to that of the “p-spin” model in the infinite
dimensional limit e.g. use of the “mosaic” picture.
Mapping to an Ising spin glass in a field. (Not a theory at the level of
molecules, (a “minus”).
The p-spin model maps to this when treated as a three dimensional
system.
It allows prediction of the universal exponents ψ, θ, ds etc.

τ ∼ exp
[
B0L(T )ψ/kBT

]
, L(T ) ∼

[
1

T − T0

] 1
d−2θ

ds is the fractal dimension of the dynamically active regions in
α–relaxation processes.
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Effective Potential Formalism

(cf Franz and Parisi, Dzero et al.)

Define the overlap
pc(r) = δρ1(r)δρ2(r)

between two configurations of density variations δρ = ρ− 〈ρ〉 in two
copies of the liquid.

Compute the constrained partition function by averaging over the
density configurations in the first copy:

Z [pc(r), δρ2(r)] = 〈δ(pc(r)− δρ1(r)δρ2(r))〉ρ1 .

The effective potential is given by averaging the free energy with
respect to the density configurations in the second copy

Ω[pc(r)] = −T 〈lnZ [pc , δρ2]〉ρ2 .

Use the replica trick to average the logarithm

lnZ = lim
n→0

(Zn − 1)/n.
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Use an integral representation of the delta function.

Ω[pc(r)] = −T

∫ ∏
α

Dλα
2π

exp

[
i
∑
α

∫
drλα(r)pc(r)

]

×

〈〈
exp

[
−i

∑
α

∫
drδρα1 (r)δρ2(r)λα(r)

]〉
ρ2

〉
ρα

1

.

Define qαβ(r) = λα(r)λβ(r) for α 6= β. Trace out the λα, ρα1 and ρ2 fields
using cumulant averaging (and further integral representations).

Ω[pc ] ∼
∫ ∏

α<β

Dqαβ exp[−H[q]].

pc(r) is determined from the condition δΩ/δpc = 0.
H[qαβ] is an even function of pc(r) so pc(r) = 0 is always a solution and
this describes the liquid phase. But at the “transition”, T = T0,
δΩ/δpc = 0 gives

lim
t→∞

< δρ(r, t)δρ(r, t = 0) >= qEA = pc .
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To cubic order when pc(r) = 0

H[q] =

∫
dr

{c

2

∑
α<β

(∇qαβ(r))
2 +

τ

2

∑
α<β

q2
αβ(r)

−w1

6
Tr q3(r)− w2

3

∑
α<β

q3
αβ(r)

}
.

The coefficients c , τ,w1 and w2 will be functions of the temperature
T and density of the liquid, with smooth dependence on them.

If one knows the correlation functions of the liquid, then in principle
one could determine these parameters.

The transition is usually driven by τ changing sign as a function of
temperature. Here the growing lengthscale will arise from w2 going to
zero: w2 ∼ (T − T0) in the ‘low-temperature’ regime τ < 0.

The w2 term breaks time-reversal invariance.

The physical significance of qαβ = λαλβ is not simple!
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Properties of the Functional

The same replica functional arises in studies of the p-spin model (and
also Potts models).

If w2/w1 > 1 there are two transitions at mean-field level, a dynamic
transition at TA and a first-order thermodynamic glass transition at
TK (below which pc(r) becomes non-zero).

0 ——————– TK ——————– TA —————–→
Glass phase (T < TK ) has one-step replica symmetry breaking
(1RSB) order.

Above TA, dynamics parallels that in mode-coupling theory.
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Beyond the mean-field approximation

Outside mean-field theory no true dynamical transition TA exists as
true metastable states do not exist in finite dimensions.

Outside mean-field theory the 1RSB phase below TK does not exist.
It is destroyed by thermal excitation of large droplets: the free energy
cost of a droplet of linear extent L falls as exp(−L/ξ).

Numerical studies of the 10-state Potts models in three dimensions:
no sign of MCT like effects or a glass transition or growing
lengthscales. (All visible at mean-field level).

When w2/w1 < 1 a continuous transition to a glass state with full
RSB exists at mean-field level.
Moore and Drossel (2003), Moore and Yeo (2006) showed that this
transition was in the same universality class as that of an Ising spin
glass in a field.

H = −
∑
<ij>

JijSiSj − h
∑

i

Si , w2 ∼ h(T )2
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Ising spin glass in a field

de Almeida-Thouless (AT) line at which there is a continuous ‘replica
symmetry breaking transition’. Exists at mean-field level and possibly
for all d > 6?
No AT transition for d < 6 (Moore 2005) where the loop expansion
around the mean-field theory fails.
For d < 6, a transition arises only if h(T ) → 0. The whole line
T < Tc is critical i.e. the correlation length is infinite.

Tc T Tc T

ATH

H H

PM

SG SG

PM

d > 6 d < 6
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Droplet scaling

The lengthscale L(T ) is the size of a compact region, (containing
∼ Ld spins) in which the spins flip to lower their magnetic energy.

Domain wall energy ∼ Lθ, θ ≈ 0.2 when d = 3.

Magnetic field energy gained ∼ h(T )Ld/2

Equating these two energies – the Imry-Ma argument

L(T ) ∼
[

1

h(T )2

] 1
d−2θ

∼
[

1

T − T0

] 1
d−2θ

∼
[

1

T − T0

]0.4

Contrast with the mosaic picture: γ(T )L(T )d−1 ∼ sc(T )Ld .

Barrier against flipping B(T ) ∼ B0L(T )ψ, ψ not yet determined.

From Arrhenius

τ ∼ τ0 exp

[
B(T )

kBT

]
∼ τ0 exp

[
DT0

T − T0

]0.4ψ
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The broken symmetry of the glass transition

The transition arises from taking the field h(T ) to zero as T → T0.
At h = 0, the Ising spin glass Hamiltonian has time-reversal invariance
(up-down symmetry).

At the level of molecules the transition is driven by w2 going to zero
at T0. There must be an extra symmetry in the system at this
temperature.

What is it? Particle-hole symmetry?

Notice that < qαβ >=< λαλβ > is non-zero at all T .
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Relation to RFOT theory and MCT theories

The p-spin version of the RFOT and the Ising spin glass in a field
have the same starting functional.

The mapping to the Ising spin glass in a field applies when the loop
corrections destroy the mean-field character of the transition.

The RFOT and mosaic pictures will be OK in a regime not too close
to T0 where loop corrections might be small.

The existence of such a regime would seem to require the existence of
“long-range” interactions.

This does not imply that the intermolecular interactions have to be
long-ranged, but just that the parameters c , τ,w1,w2 in the
functional are such as to make loop corrections small and w2/w1 > 1
when T ≈ TA.

‘Success’ of MCT and RFOT theories suggest that this might be the
case! Then only as T → T0 would the crossover to Ising spin glass
behaviour in a field emerge.
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Numerical Studies of Ising Spin Glass in a Field

3d spin glasses in a field are being studied by Peter Young.
One-dimensional Ising spin glass – useful illustration of some points:

H = −
∑

i

JiSiSi+1 − h
∑

i

Si .

In d = 1 there is no spin glass phase. h(T ) was kept temperature
independent, (so entropies are too low to be “realistic”).
Glass-like features emerge because of a growing lengthscale as T is
reduced.
Size of domains saturates at a lengthscale: ξ at T = 0: Jξθ ∼ hξd/2

For d = 1, θ = −1, so ξ ∼ h−2/3

ξ(T ) and S can be exactly calculated by RG decimation.
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Relaxation time τ : 〈Si (tW )Si (t + tW )〉c ∼ exp(−(t/τ)β)
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Vogel-Fulcher fit τ = τ0 exp[A/(T − T0)] with T0 similar to TK

works!

Streched exponential exponent β arises because there is a range of
relaxation times.

Mike Moore (Manchester) The glass transition as a spin glass problem UBC 2007 20 / 21



Conclusions

A functional can be derived from liquid state theory which maps the
glass transition problem onto the Ising spin glass problem in a field.

Droplet arguments predict that lengthscales should increase as the
temperature decreases, but at Tg lengthscales may not be large
enough for asymptotic droplet scaling formulae to be appropriate.

Conventional fits, (Vogel-Fulcher, Kauzmann, Adams-Gibbs) may
‘work’ in this pre-asymptotic region as well as (possibly) RFOT ideas.
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