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Abstract

In this Chapter, we look at how memory effects induced by a correlated

environment can alter the long-time dynamics of a quantum computer

running a quantum error correction protocol. This is done through a

Hamiltonian formulation which allows for a physical, microscopic mod-

eling of the interaction between the computer and the environment. As-

suming that single-qubit error probabilities are well defined, we use a

perturbative expansion to find expressions for the probability of faulty

paths in the evolution of the quantum computer. We obtain a dimen-

sional criterion for the stability of the perturbation theory and the appli-

cability of the error threshold theorem of fault-tolerant quantum compu-

tation. When this criterion is not satisfied, perturbation theory breaks

down and no definitive statement can be made about the existence of

an error threshold. We discuss the parallels between this situation and

the theory of quantum phase transitions in condensed matter systems.

1.1 Introduction

The proof that efficient quantum error correction (QEC) codes exist,

combined with the concept of error threshold [16, 20], brought confidence

that reliable quantum computation is achievable in practice. However, it

is fundamental to understand if there are physical limitations to resilient

quantum computation within this framework. In this chapter, we discuss

one of the few situations that still poses some doubts [7, 12, 18, 6, 9]

about the effectiveness of QEC codes: Critical environments.

The term ”critical environment” originates from condensed matter

physics. It refers to physical systems where quantum correlations decay
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as power laws. In this context, the Born-Markov approximation used to

evaluate decoherence rates cannot be formally justified. For quantum

computation, this fact translates into the appearance of errors that can

depend on previous events in the computer history. The ultimate night-

mare is that this memory effects may eventually lead to error probabili-

ties above the threshold value and therefore to the breakdown of resilient

quantum computation.

The first step in our quantitative study of critical environments is to

formulate the dynamics of the computer and the environment with a

Hamiltonian formulation. This allows for a systematic treatment of the

interaction between the computer and the environment. Crucial elements

such as space dimensionality, correlation function exponents, and cou-

pling constants can be incorporated into calculations. The first step is

to separate the total Hamiltonian into two distinct parts. The first part,

H0, we call “free”. We will assume that this operator has a simple enough

form as to allow for an explicit evaluation of the corresponding quantum

evolution operator. The second part we define as the “interaction”, V ,

which includes everything that preclude us from writing explicitly the

complete evolution operator for the problem at hand. In other words,

H0 contains the ideal evolution of the computer and the dynamics of

the environment while isolated from each other, while V represents the

coupling between the two.

Since V destroys our ability to write down explicitly the quantum

evolution of the entire system, we have to resort to an expansion of the

evolution operator in powers of the “interaction”. The result is usually

called a Dyson series [22],

U (T, 0) = Tt e
−i

R

T

0
dt′ V (t′), (1.1)

where Tt denotes the time ordering operator, T is the duration of the

computation, and V (t) = eiH0tV e−iH0t. In this series, every insertion

of V is a deviation of the computer evolution from the path that we

envisaged in H0. Of course, some of these deviations are harmless, since

these “good” paths bear no effects on the result of the computation. Our

problem is to evaluate the likelihood of ”bad” paths [28]. A reasonable

idea is to consider the evolution of the system with at least one insertion

of V [19, 28, 10, 4],

E (T ) = U (T, 0) − 1

= −i

∫ T

0

dt′ V (t′) U (t′, 0) . (1.2)
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It has been shown that using the operator norm, one can derive an upper

bound to the error probability of “bad” paths. The result is that

||E (T )||∞ ≤

∫ T

0

dt′ ||V (t′)||∞ ≤ ΛT, (1.3)

where Λ is the largest eigenvalue of V [19, 28, 10].

Without quantum error correction, Eq. (1.3) does not help much. That

is because the computational time T must be regarded as an unbounded

parameter. Therefore, after a time ∝ 1/Λ, the computation would cer-

tainly fail. Nevertheless, the situation changes when QEC is added to

the discussion. Error correction introduces another time scale into the

problem, namely, the periodicity ∆ in which error correction operations

are repeatedly carried out. In this case, the relevant time for Eq. (1.3)

is not the total computation time T , but rather ∆. The remaining issue

to be tackle is the dependence on Λ.

In many relevant physical situations, Λ can be extremely large since it

usually grows with the number of degrees of freedom of the environment

[28]. An illustrative example is that of a single qubit, σ, interacting with

N two-level systems, {τ j}, through

V = λ
N
∑

j=1

σzτ
(j)
z . (1.4)

This is a simplified version of the central spin problem [15] that has been

studied in the context of decoherence [5, 13]. It is straightforward to see

that Λ = λN , thus diverging with the number of degrees of freedom of

the spin bath.

Physical interactions are ultimately mediated by gauge fields. Hence,

a very natural assumption for V is to consider the minimum coupling

model

V =
∑

x

∑

α={x,y,z}

λα

2
fα(x)σα(x), (1.5)

where f is some (vector) function of the environmental variables and

σx,y,z are Pauli matrices representing the qubit degrees of freedom. The

bath are the gauge fields. In this case, it is clear that Λ diverges with

the number of modes in the field.

A way around was introduced by Aharonov, Kitaev, and Preskill [4].

In their discussion, they bypassed the divergence due to the gauge fields

by integrating them out of the problem. In this case, an effective many-

body interaction among the qubits of the computer is generated. They
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simplified the problem by considering these extra interaction only up to

second-order perturbation theory in V and by assuming that the velocity

of the gauge field modes is infinite. The net result was an instantaneous

interaction between any two qubits which decayed spatially as a power

law,

λαλβ

4

∑

x,y

1

|x − y|2δ
σα(x)σβ(y), (1.6)

where δ is a pure number that depends on the specific form of f . Their

analysis then proved that if the volume integral

∫

dDy
1

|x − y|2δ
(1.7)

converges, then the error probability can be bounded from above by the

resulting number (here, D denotes the spatial dimension).

This is a very elegant and general approach. However it precludes the

possibility of self-interaction and retardation effects. In order to deal

with these issues, we will follow a different path, namely we will study

the stability of the Dyson series in V [24, 26, 25]. For this purpose, we

assume that the environment is described by a free-field theory, with the

relevant two-point correlation function given by

〈Ψenv |fα (x1, t1) fβ (x2, t2)|Ψenv〉 ∼ Fαβ

(

1

(∆x)2δ
,

1

(∆t)
2δ/z

)

, (1.8)

and that we can use Wick’s theorem to calculate the higher-order cor-

relation functions. The parameters δ and z are usually called scaling

dimension and dynamical exponent, respectively.

Another critical assumption we make is that the qubits are separated

by a minimum distance in such a way that an entire error correction cycle

can be performed before correlations between any neighboring qubits

develop. We call this the “hypercube” assumption and adopted it in

order to allow for a connection to the usual derivation of the threshold

theorem. This assumption allows for the introduction of a well-defined

error probability for a single qubit during a QEC cycle.

The basic strategy that we will follow is to use the Dyson series to

find a reasonable way to calculate the probability of an error in a single

qubit. We will then determine the conditions necessary to reduce the

problem to a stochastic error problem.
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1.2 Microscopic Hamiltonian models

There is a variety of physical realizations of qubits where the interac-

tion between the environmental degrees of freedom and the qubits can

be cast in the form of Eq. (1.5). For instance, the spin of an electron

confined in a GaAs lateral quantum dot couples to nuclear spin through

a hyperfine interaction, in which case the field fα(x) represents a com-

ponent of the local nuclear magnetization, also known as Overhauser

field [11]. The minimum coupling model also appears in superconduct-

ing (Josephson) qubits, where the field fα(x) accounts for the coupling

to electromagnetic fluctuations. These fluctuations typically arise from

Johnson-Nyquist noise in currents and voltages and can be described by

a bath of harmonic oscillators, i.e., a bosonic field [23]. Another com-

mon situation where Eq. (1.5) applies is in qubits based on charge motion

(e.g., double-dot charge qubits or impurities embedded in a semiconduc-

tor matrix) [29, 17]. In this case the field fα(x) accounts for the coupling

to acoustic phonons and can also be represented by bosonic degree of

freedoms. Finally, if the qubit is a localized magnetic moment embed-

ded in a conducting medium, Eq. (1.5) can be used to represent the

coupling between the spin of itinerant electrons and the local moment

(the so-called Kondo problem [1]).

For many qubit systems, particularly in solid-state, the most common

environment is a bosonic one. A very ubiquitous interaction is

V =
∑

x

∑

α={x,y,z}

σα(x)
∑

q

λα,q e
iq·x

(

aq + a†−q

)

, (1.9)

where the bosonic field aq is usually assumed to have a free dynamics

described by a quadratic Hamiltonian,

Hbath =
∑

q

ωq a
†
qaq. (1.10)

(Generalizations where multiple bosonic baths couple to the qubits are

straightforward.) Equations (1.9) and (1.10) define the so-called spin-

boson model [21]. It has been intensively studied in the contexts of dissi-

pative quantum mechanics and condensed matter physics (for a detailed

discussion, see Ref. [30]). The spin-boson model is very representative

of the kind of physical constraints faced by qubits implementations and

should be regarded as a paradigmatic model.

Before proceeding to the discussion of QEC, we still need to highlight

an important aspect of the Hamiltonian formulation: What is the form

of V in the interaction picture that enters into the Dyson series? As we
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argue below, this issue is related to the duration of the quantum gates

used in the computation.

The “free Hamitonian” is composed by two parts: The Hamiltonian

that dictates the time evolution of the environment and the control

Hamiltonian that implements quantum gates:

H0 (t) = Hbath +HQC(t). (1.11)

These terms act on different Hilbert spaces, hence [Hbath, HQC ] = 0.

In this case, it is straightforward to write an interaction picture which

takes into account not only the environment but also the free evolution

of the computer,

V (t) =
∑

x

∑

α={x,y,z}

λα

2

[

eiH0tfα(x) e−iH0t
]

W †(t)σα (x)W (t),

=
∑

x

∑

α={x,y,z}

λα

2
fα(x, t)Gα(x, t), (1.12)

whereW (t, 0) = Tt e
−i

R

t

0
dt′HQC(t′). The operatorGα is a SU(2N) matrix

that depends on the particular sequence of quantum gate which is being

performed. In order to keep the discussion general, it is necessary to

introduce some simplification. There are two possible paths:

(i) We can assume that the quantum gates are performed much faster

that the environment’s response time. In this limit, we can prove that

the gate operations implicit in Eq. (1.12) lead to the same microscopic

form of Eq. (1.5), namely

V (t) =
∑

x

∑

α={x,y,z}

λα

2
fα(x, t)σα(x). (1.13)

(ii) The other possibility is to derive an effective Hamiltonian that pro-

vides an upper estimate to the effect of errors. The point here is to

realize that the information encoded in the qubits is exposed to differ-

ent components of the environment depending on the particular gate

being performed. For instance, single-qubit gates can be written as

Gα,1(x, t) =
∑

β={x,y,z}

gαβ(x, t)σβ(x), (1.14)

where gαβ(x, t) are ordinary functions. Consequently, the “interaction”

Hamiltonian can be written as

V1(t) =
∑

x

∑

α={x,y,z}

∑

β={x,y,z}

λα

2
fα(x, t) gαβ(x, t)σβ(x), (1.15)
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which tell us that all components of the qubits mix with all components

of the environment. In order to define a suitable upper bound estimate,

we can make all functions gαβ(x, t) constant and set them to unity.

This obviously breaks the unitarity of the gates but has the virtue of

simplicity. More accurate upper bounds could in principle be obtained

by making use of the functional form of gαβ(x, t), but this would also

make any calculation considerably more difficult.

A similar argument can also be made for two-qubit gates. In this case,

a two-qubit rotation can be written as

W (x1,x2, t) = cos [θ(x1,x2, t)] + i sin [θ(x1,x2, t)]

× σa(x1)σb(x2), (1.16)

where θ(x1,x2, t) is an ordinary function, x1 and x2 tag the position of

the qubits involved in the gate, and a and b denote two arbitrary qubit

components. This implies that

Gα,2(x1, t) = sin [2θ(x!,x2, t)] ǫaαγσγ(x1)σb(x2)

+ cos [2θ(x1,x2, t)] (1 − δa,α) σα(x1)

+ δa,α σα(x1), (1.17)

where ǫαβγ is the usual anti-symmetric tensor. Once again, we can define

a suitable upper bound by setting all the functions in the prefactors to

unity, yielding

Gα,2(x, t) = ǫaαγσγ(x)σb(y) + σα(x). (1.18)

The corresponding “interaction” Hamiltonian is then

V2(t) =
∑

x

∑

α={x,y,z}

λα

2
fα(x, t)Gα,2(x, t). (1.19)

The second term on the r.h.s. of Eq. (1.18) is just a local noise. The

first term is more worrisome since it leads to errors propagating be-

tween target and control qubits. Obviously it is not unique to have the

error occurring during the two-qubit gate. In fact, we can re-interpret

Eq. (1.19) as an error on the qubit x before the gate is performed. This

error is then propagated by a perfect two-qubit gate. Propagation of er-

rors is in general unavoidable in a quantum circuit. Nevertheless, we can

assume that it can be handle by fault tolerant procedures. As a result,

we conclude that an upper bound estimate to the action of gates in the
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microscopic model is given by the interaction Hamiltonian

Veff(t) =
∑

x

∑

α={x,y,z}

λ

2
feff(x, t)σα(x, t), (1.20)

where

feff (x, t) =
1

λ2





∑

β={x,y,z}

λβfβ (x, t)



 (1.21)

and λ =
√

∑

β={x,y,z} λ
2
β is the new coupling parameter.

Because Eqs. (1.13) and (1.20) have the same functional form, we

hereafter drop the subscript “eff”.

1.3 Time evolution with quantum error correction

In this chapter we will mostly consider the case where the initial state

of the computer, ψ0, and the environment, ϕ0, are pure states. However,

the generalization of our discussion to the case of mixed initial states is

straightforward.

A particularly simple case occurs when the environment is at a finite

temperature, T. In many situations, this simply introduces a thermal co-

herence length ξT for the bath modes. For distances smaller than ξT, the

correlation functions have a power-law behavior that is potentially trou-

blesome. However, for distances larger than ξT, the correlation functions

will decay exponentially. This raises the obvious question: Why don’t we

simply operate the computer at a finite temperature and use the results

from Aharonov and Ben-Or [3]? The answer is that the same mechanism

that is setting the temperature T for the environment is also affecting

the qubits. Thus, this is likely to introduce an exponentially short co-

herence time for the qubits as well. Furthermore, since one of the basic

assumptions of quantum computation is the ability to prepare the ini-

tial state of the computer, it is reasonable to consider that the computer

and the environment are not entangled at beginning of the calculation.

Hence, we assume that the initial state vector of the system is

|Ψ (t = 0)〉 = |ψ0〉 ⊗ |ϕ0〉 . (1.22)

The state Ψ will evolve according to the unitary operator U(∆, 0). At

a time ∆, the syndrome is extracted and the computer wave function is

projected,

Pm U (∆, 0) |Ψ (0)〉 ,
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where m corresponds to a particular syndrome, with
∑

m Pm = I and

P 2
m = Pm. In the case of many logical qubits evolving together, the

symbol m denotes the set of all the syndromes extracted at time ∆.

Finally, as required by QEC, an appropriate recovery operation Rm is

performed:

|Ψ (∆)〉 = Rm (∆ + δr,∆) Pm U (∆, 0) |Ψ (0)〉 , (1.23)

where δr denotes the duration of the recovery operation.

It is well known that quantum error correction could also be per-

formed without the measurement of the syndrome. However, in that

case a fresh supply of cold ancillas must be made available at each QEC

step. Thus, we must consider two possible scenarios: i) If the ancillas are

only briefly in contact with the computer and bath, then to our purposes

this procedure is completely equivalent to the use a measurement; ii) if,

however, the ancillas cannot be separated from the computer and the

bath, then we must also follow their dynamics. Although the inclusion

of the ancillas would not change our conclusion, it would introduce some

non-essential elements to the discussion (such as where and how they are

stored). Therefore, we will limit ourselves to the more usual prescription

of QEC using syndrome extraction.

The generalization of Eq. (1.23) to a sequence of QEC cycles is straight-

forward [24],

Υw = υwN

(

N∆, (N − 1)∆
)

...υw1
(∆, 0), (1.24)

where w is the particular history of syndromes for all the qubits and

υwj

(

j∆, (j − 1)∆
)

= Rwj

(

j(∆ + δr), j∆
)

Pwj
U
(

j∆, (j − 1)∆
)

(1.25)

is the quantum error correction evolution after each cycle.

There are two useful quantities that we can now calculate. The first

one is the probability to have a particular history of syndromes,

Pr (Υw) = 〈ϕ0| 〈ψ0|Υ
†
wΥw |ψ0〉 |ϕ0〉 . (1.26)

The second quantity is the residual decoherence, which can be read from

the reduced density matrix

ρ~r,~s (Υw) =
〈ϕ0|

[

〈ψ0|Υ
†
w |~s〉 〈~r|Υw |ψ0〉

]

|ϕ0〉

〈ϕ0| 〈ψ0|Υ
†
wΥw |ψ0〉 |ϕ0〉

, (1.27)

with ~r and ~s being elements of the logical subspace.

The presence of the “interacting” Hamiltonian V precludes us from

explicitly writing the exact quantum evolution. Therefore, the best that
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we can do with Eqs. (1.26) and (1.27) is to write them as a double

series in V , namely, one for each Υw operator. These are usually rep-

resented graphically as a double contour in time [see Fig. (1.1)]. The

upper leg stands for the time ordered series (Υw) , while the lower leg

stands for the anti-time-ordered (Υ†
w). In the out-of-equilibrium liter-

ature, this sort of diagram is sometimes referred as Keldysh’s contour.

There are six (non independent) Green functions in such representation:

The usual advanced and retarded functions for the time-ordered series;

the advanced and retarded functions for the anti-time-ordered; and the

< and > functions, corresponding to contracting a term from the time-

order series with a term from the anti-time-ordered one. There are very

good reviews on the Keldysh formalism, but unfortunately the diagram-

matic rules can be very cumbersome. Hence, before we start a general

discussion, it is instructive to consider a simple case. Also, for clarity, we

will focus our discussion on the simplest quantity to calculate, Pr (Υw).

t t t

1

3 4

t t2

(a)

1 2

t t

t t

3 4t
(b)

Fig. 1.1. Graphical representation of two fourth-order terms in a “time-loop”
expansion for either the probability of a given evolution or the reduced density
matrix (spatial dimensions are suppressed for clarity). Points of interaction
with the bath (circles) are connected by propagation of the environmental
modes (wiggly lines).

1.3.1 Qualitative discussion

In this section we develop some intuitive understanding of how QEC

works in a critical environment. Hence, we assume (for the moment)

two simplifications: i) For quantum error correction periods where an

error was diagnosed, we expand the evolution to lowest order in U ; ii)

for QEC periods where a “non-error” was diagnosed, we approximate

U ≈ I. Neither of these assumptions is rigorously valid in general, but

they strip the discussion of many unimportant details.

The simplest case to discuss is a single error and a single quantum

error correction step. For example, let us consider that the syndrome

m1 tell us that a Z error occurred at qubit 1 in the first quantum error
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correction cycle. Thus, using Eqs. (1.25) and (1.26), it is straightforward

to write the probability of this history,

Pr
(

υm1

(

∆, 0
))

=

(

λz

2

)2 ∫ ∆

0

dt2

∫ ∆

0

dt1
〈

f †
z (x1, t2)fz(x1, t1)

〉

+O(λ4
z).

(1.28)

If the theory is properly regularized in the ultraviolet, Eq. (1.28) is a

well-defined object, P
(

υm1

(

∆, 0
))

= ǫ.

The next case is to consider two Z errors at different periods. For

instance, let us assume the history points to an error in the first period

at qubit 1 and another error in period j + 1 at qubit 3. The quantum

evolution now reads

υm3
υm1

=

(

λz

2

)2 ∫ (j+1)∆

j∆

dt3

∫ ∆

0

dt1 fz(x3, t3)fz(x1, t1) + O(λ4
z),

(1.29)

which implies a probability

Pr (υm3
υm1

) =

(

λz

2

)4 ∫ (j+1)∆

j∆

dt4 dt3

∫ ∆

0

dt1 dt2

×
〈

f †
z (x1, t2)f

†
z (x3, t4)fz(x3, t3)fz(x1, t1)

〉

+ O(λ6
z). (1.30)

Using Wick’s theorem, we can write the four-point correlation function

in terms of products of two-point correlation functions, Eq. (1.8). Hence,

Eq. (1.30) can be simplified to

〈

f †
z (x1, t2)f

†
z (x3, t4)fz(x3, t3)fz(x1, t1)

〉

〈

f †
z (x1, t2)f

†
z (x3, t4)fz(x3, t3)fz(x1, t1)

〉

〈

f †
z (x1, t2)f

†
z (x3, t4)fz(x3, t3)fz(x1, t1)

〉

+

+

=

〈

f †
z (x1, t2)f

†
z (x3, t4)fz(x3, t3)fz(x1, t1)

〉

(1.31)

where the bars indicate the correspondent two-point functions. The first

term in this equation is the simplest to understand. The domains of

integration are disjoint and we simply obtain a result proportional to ǫ2,
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i.e., the probability of having two “uncorrelated” errors. The other terms

are corrections to ǫ2 due to “correlations” between errors. It is expected

that these terms should produce small corrections to the “uncorrelated”

value. Hence, the strategy that we shall follow is to derive a perturbative

expansion for these corrections.

If errors occur far away in space-time, the precise position of each one

is not very relevant to the calculation. Hence, we can coarse grain the

space-time to a volume ∆ × (v∆)
D/z

. Probably the simplest method to

perform this step is to use the operator product expansion on υm3
and

υm1
,

fz(x, t) ∼ fz(x, 0) + ∂tfz(x, 0) t+ l.r.t.

where ∼ stands for equal up to non-singular terms. Thus, the leading

corrections to the “uncorrelated” probability are

Pr (υm3
υm1

) ≈ ǫ2

+

(

λz

2

)4
〈

f †
z (x1, 0)f †

z (x3, j∆)fz(x3, j∆)fz(x1, 0)
〉

∆2

+

(

λz

2

)4
〈

f †
z (x1, 0)f †

z (x3, j∆)fz(x3, j∆)fz(x1, 0)
〉

∆2

Of course there are many more terms to be calculated, but these leading

terms already reveal a very important pattern. Since we known from

the syndrome that a particular event (error or no-error) has happened,

both branches of the Keldysh contour (the time-ordered and anti-time

ordered series) must have insertions of V occurring at the same coarse-

grained times (see Fig. 1.2). This reduces the number of time integrals

to be taken from four to two. Thus, the effective scaling dimension for

the infrared component of the probability is doubled in comparison to

the naive expectation. Most of our discussion will now turn to formalize

this result and to properly calculate ǫ.

1.3.2 Quantitative discussion

The key step in the discussion of the previous section was the coarse

graining of space-time. But this crucial step introduces a conceptual

problem. If two qubits are separated by a distance smaller than (v∆)
1/z

,

then we cannot define neither a unique probability for an event nor
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t 0 ∆j

∆j0

(a)

t

0 ∆j

0 j∆

(b)

Fig. 1.2. Graphical representation of two fourth-order terms in the coarse-
grained scale.

a unique “long-range” operator, such as the one we wrote using the

operator product expansion. For instance, imagine that two errors were

diagnosed in two physical qubit belonging to different logical qubits. If

the two errors are inside the fundamental volume ∆× (v∆)
D/z

, then the

probability of this two events, to lowest order in V , is

Pr (υm1
) = ǫ2 +

(

λα

2

)4 ∫ ∆

0

dt1 dt2 dt3 dt4 (1.32)

〈

f †
α(x1, t4)f

†
α(x2, t2)fα(x2, t3)fα(x1, t1)

〉

+ 〈

f †
α(x1, t4)f

†
α(x2, t2)fz(x2, t3)fα(x1, t1)

〉

The last two terms are corrections to the probability ǫ of an error in

a qubit that is conditional to the events in the other qubits inside the

fundamental volume. Similarly, if we try to coarse grain space-time, then

we would find a different operator for each possible set of events in

∆ × (v∆)D/z.

Since we do not want to deal with such conditional probabilities, we

assume the single most important simplifying hypothesis of our discus-

sion: We assume hereafter that the qubits are separated by a minimum

distance

ξ = (v∆)
1/z

, (1.33)

where v is the velocity of the bath modes and z is the dynamical exponent

of the theory describing the environment. This implies that for all qubits

separated by this minimum distance, x1 6= x2 and |t1 − t1| < ∆, we

have 〈fα(x2, t2)fα(x1, t1)〉 ≈ 0. Thus, if we impose this “hypercube”

assumption in the previous example, we see that Eq (1.32) is reduced

to ǫ2. In conclusion, the hypercube assumption allow us to assign an

independent probability for an error to each qubit.
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Until this point, all our discussion was based on using an expansion

to the evolution operator to lowest nontrivial order. However, in order

to obtain a better quantitative result, it is important to try to improve

the expansion by taking into account higher order contributions.

We start by writing the evolution operator at the end of a quantum

error correction cycle. Using the hypercube assumption, it is straightfor-

ward to see that if an error α was diagnosed on qubit 1, the lowest-order

terms in the evolution are

υα (x1, λα) ≈ −iλα

∫ ∆

0

dt fα (x1, t)

−
1

2
|ǫαβγ |λβλγ σα (∆)Tt

∫ ∆

0

dt1 dt2

×fβ (x1, t1) fγ (x1, t2) σβ (t1)σγ (t2)

+
i

6

∑

β

λαλ
2
β σα (∆) Tt

∫ ∆

0

dt1 dt2 dt3

×fα (x1, t1) fβ (x1, t2) fβ (x1, t3)

×σα (t1)σβ (t2)σβ (t3) + . . . , (1.34)

where ǫαβγ is the antisymmetric tensor. In Refs. [26, 25], we employed a

perturbation theory improved by the renormalization group to take into

account higher-order terms. This is certainly a very compact and elegant

way to proceed, but a conceptually simpler approach is also possible in

many cases by summing the so-called bubble diagrams.

By time-ordering the probability, TtP (υm1
), we obtain a term at m-th

order in the perturbation theory as

∫ ∆

0

dt1...

∫ tm−1

0

dtm 〈fα (t1) fα (t2)〉 ... 〈fα (tm−1) fα (tm)〉 . (1.35)

In the case where 〈fαfβ〉 ∝ δαβ, the series of diagrams with this form is

certainly the most divergent set.

From our qualitative discussion, we know that there are two very

different frequency regimes: i) A high-frequency domain from ∆−1 to

the cutoff frequency of V , ωΛ, which corresponds to summing up the

most divergent diagrams inside a hypercube; ii) a low-frequency domain,

for contractions between hypercubes. Hence, it is convenient to separate

these two domains,

fα = f (<)
α + f (>)

α , (1.36)
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and integrate out of the problem the high-frequency components of the

environment. This integration produces two effects.

First, the sum of diagrams containing only high-frequency terms usu-

ally produces a geometric progression. Assuming, for the sake of sim-

plicity, bosonic commutation relations, the series adds to

ǫα ∼
λ2

α (Ω∆)
2(z−δ)

1 + λ2
α (Ω∆)

2(z−δ)
, (1.37)

where Ω is a function of ωΛ and other microscopic parameters. The

second effect is to dress the low-frequency part and create an effective

coupling constant

λ∗α ∼
λα

√

1 + λ2 (Ω∆)
2(z−δ)

. (1.38)

These two contributions can be put together under a new set of oper-

ators defined in the coarse-grained space-time grid,

υ2
0 (x,∆, 0) ≈

(

1 −
∑

α

ǫα

)

F0 (x, 0) (1.39)

and

υ2
α (x,∆, 0) ≈ ǫα [1 + Fα (x, 0)] , (1.40)

where

F0 (x, 0) = 1 −

∑

α (λ∗α∆)2

1 −
∑

α ǫα
:
∣

∣

∣
f (<)

α (x, 0)
∣

∣

∣

2

: (1.41)

and

Fα (x, 0) =
1

ǫα
(λ∗α∆)

2
:
∣

∣

∣
f (<)

α (x, 0)
∣

∣

∣

2

:, (1.42)

with : : denoting the normal ordering with respect to the environment

state ϕ0. If ǫα and λ∗α are small parameters, Eqs. (1.39) and (1.40)

are a good approximation to the expectation value that we are trying

to evaluate. They separate the local (stochastic) contribution to the

probability of a particular syndrome from the long-range (correlated)

part.

1.4 The threshold theorem in a critical environment

Using the results from the previous section, it is relatively simple to

try to calculate the probability of a particular history of syndromes.
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In this section, we use such calculation to address the issue of the re-

silience of quantum computation in a critical environment. The basic

strategy is rather simple: If a correlated error model can be reasonably

approximated by a stochastic error model, then we can make use of the

traditional derivation of the threshold theorem [16, 3, 20].

We start by asking what is the probability of a computer with R qubits

to have m errors of type α diagnosed after N quantum error correction

cycles. Recalling Eqs (1.39) and (1.40), this probability can be written

as

Prα
m = pm

∫

dx1

(v∆)
D/z

. . .
dxm

(v∆)
D/z

∫ N∆

0

dt1
∆

. . .

∫ tm−1

0

dtm
∆

×

〈

[

∏

ζ

F0(xζ , tζ)
]

[

1 + Fα(x1, t1)
]

. . .
[

1 + Fα(xm, tm)
]

〉

,

(1.43)

where we integrated over all possible grid positions, (xj , tj), ζ denotes

the set of remaining hypercubes, and pm = (1 −
∑

α ǫα)
RN−m

(ǫα)
m

.

t

ξ
(a)

t

ξ
(b)

Fig. 1.3. Graphical representation of Eqs. (1.44) and (1.45). Wiggly line rep-
resents a pair contraction 〈Fα (xi, ti) Fα (xj, tj)〉.

We now organize the expectation value of Eq. (1.43) in powers of

(λ∗, ǫα) and invoke Wick’s theorem again. The first term is just the

stochastic contribution to the probability [see Fig. (1.3-a)],

pm

∫ m
∏

k=1

dxk

(v∆)
D/z

dtk
∆

= pm

(

NR

m

)

∼ pm (NR)
m
. (1.44)
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The next term is typically of the form [see Fig. (1.3-b)]

pm

∫ m
∏

k=1

dxk

(v∆)D/z

dtk
∆

〈Fα (xi, ti)Fα (xj, tj)〉 . (1.45)

All higher-order terms can be systematically taken into account and sim-

ply provide corrections to the stochastic probability shown in Eq. (1.44).

The last step to complete the discussion is to use Wick’s theorem and

Eq. (1.8) to show that the two-point correlation function for Fα has the

general form

〈Fα (xi, ti)Fα (xj, tj)〉 ∼ F

(

1

|xi − xj |
4δα
,

1

|ti − tj|
4δα/z

)

. (1.46)

Hence, a perturbative expansion in λ∗α is guaranteed to be stable if the

term in (1.45) remains finite and smaller than the leading term (1.44).

This requires

D + z − 2δ < 0. (1.47)

In other words, whenever Eq.(1.47) is satisfied, correlations between hy-

percubes produce small corrections to Eq. (1.44). Therefore, the tradi-

tional proof of resilience holds whenever the error probability ǫα is below

the threshold value.

The opposite situation, D + z − 2δ > 0, is much less clear. In this

case, the expansion is not stable and no conclusion can be draw. It

is important to emphasize that the calculation we just did does not

precludes that QEC can still be effective. The instability is only telling

us that a perturbative expansion in λ∗α is not well define and that the

threshold theorem, as we stated, does not hold. It is conceivable that

some different derivation of the theorem could still exist in this case.

1.5 The threshold theorem and quantum phase transitions

It is possible to construct a very nice analogy between our discussion

and the theory of quantum phase transitions [27]. In fact, the tradi-

tional threshold theorem can be thought as a quantum/classical phase

transition: Ref. [2] tell us that the error probability ǫ plays to fault tol-

erance a role similar to the temperature in a physical system. This is

how:

i) For ǫ < ǫc, the computer components can maintain a large entan-

glement through fault-tolerant procedures, which in turn means that

the computer and the environment are weakly entangled. Hence, due to
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Fig. 1.4. Phase diagram of a quantum computer running QEC. The parameter
δ denotes the scaling dimension of the environment operator in the system-
environment interaction [see Eq. (1.8)].

this large internal entanglement, the quantum computer departs from

the classical computer model and can not be efficiently simulated by a

Turing machine.

ii) For ǫ > ǫc, the computer components are weakly entangled and,

therefore, can be efficiently simulated by a Turing machine. In other

words, the computer density matrix is no longer represents a pure state,

but rather a statistical mixture, and the computer components are strongly

entangled with the environment.

In this sense, the threshold theorem defines a “phase transition” from

a high-temperature phase, where qubits are ”independent“ from each

other, to a low-temperature phase, where quantum coherence and en-

tanglement are possible.

Our analysis of a critical environment adds another parameter to this

interpretation: The scaling dimension δ. This quantum parameter de-

fines another axis in the ”phase diagram“ of a quantum computer [see

Fig. (1.4)].

In the theory of quantum phase transitions, a dimension criterion as

D+z = 2δ defines what is usually referred as the upper critical dimension

of the model. Above the upper critical dimension [when the inequality

(1.47] is satisfied) the model is essentially free and perturbation theory

works. Below the upper critical dimension, there are two possibilities:

i) If the system is above its lower critical dimension, some infinite re-

summation of diagrams is necessary, but the theory is still preserve its

weak coupling character (although no longer with mean-field exponents);

ii) if, however, the theory is below its lower critical dimension, the theory
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is in a strong coupling regime, and no re-summation of diagrams will help

us to determine its physical characteristics.

If we take the analogy with the theory of quantum phase transitions

literally, we could argue that below the upper critical dimension of the

computer, D + z > 2δ, there are two possible scenarios. It is possi-

ble that for a range of scaling dimensions δ another proof of resilience

can be achieved. However, there may also be a range of δ where no

proof of resilience exists (in other words, there is never resilience to er-

rors). Although this issue is rather speculative, the similarity between

the threshold theorem and quantum phase transitions is so striking and

intuitive that the existence of these extra “phases” is rather tantalizing

and likely worth exploring.

1.6 Conclusions

It is believed that some sort of Quantum Error Correction must be al-

ways implemented at last logical level[31]. Thus, it is undoubtedly one of

the cornerstones of quantum computation. However, it has been argued

that QEC relies on a set of unphysical assumptions [7, 8, 9], namely: (i)

“fast” measurements, (ii) “fast” gates, and (iii) describing decoherence

by error models. Our perspective is that all these problems are not of

fundamental nature. They are legitimate concerns, but they also have

been discussed extensively in the literature: First, in Ref. [14] DiVincenzo

and Aliferis demonstrated that resilient circuits can be constructed with

slow measurements. Second, we used some reasonable assumptions to

treat “slow” gates and laid the groundwork for a theoretical framework

that connects microscopic Hamiltonian’s with error models in correlated

environments. Finally, our results, in conjunction with those of Ref. [4],

show that a large class of critical environments are already properly

treated within the QEC framework.
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