

Berry-Phase Induced Kondo Effect in Single-Molecule Magnets

Eduardo Mucciolo

Department of Physics University of Central Florida

Collaborators: Michael Leuenberger (UCF) Gabriel Gonzalez (UCF)

Overview

- Single-molecule electronics
- Single-molecule magnets:
 - Berry-phase blockade in single molecules
 - Kondo effect in SMMs

molecular transistor

Potential advantages:

- fast operation
- large energy scales (eV)
- quantum effects at high temperatures ?!

(Enrique del Barco, UCF)

Fabrication of the nano gaps: *Electromigration and breaking of nanowires*

before after 4K Current (mA) 2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Voltage (V)

Multiwire chip: Trial and error approach

Single-electron transistors: What is actually measured?

 $\mu_D < \mu_{N+1} < \mu_S$

 $\mu_{S} = \mu_{N+1} = \mu_{D}$

.....

no current (Coulomb blockade)

finite current with (nearly) zero bias

dl/dV

Early experiments: Non magnetic molecules

NATURE VOL 407 7 SEPTEMBER 2000 www.nature.com

Nanomechanical oscillations in a single-C₆₀ transistor

Hongkun Park*‡§, Jiwoong Park†, Andrew K. L. Lim*, Erik H. Anderson‡, A. Paul Alivisatos*‡ & Paul L. McEuen†‡

NATURE | VOL 417 | 13 JUNE 2002 |www.nature.com/nature

Coulomb blockade and the Kondo effect in single-atom transistors

Jiwoong Park*†‡, Abhay N. Pasupathy*‡, Jonas I. Goldsmith§, Connie Chang*, Yuval Yaish*, Jason R. Petta*, Marie Rinkoski*, James P. Sethna*, He´ctor D. Abrun[~]a§, Paul L. McEuen* & Daniel C. Ralph*

* Laboratory of Atomic and Solid State Physics; and § Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA † Department of Physics, University of California, Berkeley, California 94720, USA

Several other groups around the world have also observed similar effects in molecular transistors

STM of molecules

Advantages: fabrication, control *Drawbacks:* no gating

(Photo credit: Ben Utley)

A recent but extensive literature on this technique already exists.

How to increase the functionality of a molecular transistor ?

Combine electronics with magnetism:

(i) Use magnetic molecules

(ii) Use magnetic contacts

How do QTM and Berry phase interference

manifest themselves in electronic transport

through a single SMM?

- Spin-current blockade

- Kondo effect

Berry-phase blockade:

G. Gonzalez and M. Leuenberger [PRL 98, 256804 (2007)] G. Gonzalez, M. Leuenberger, ERM [PRB 78, 054445(2008)]

polarized leads

Recent experiments (Mn₁₂): Still not very conclusive...

Herre van der Zant (Delft)

Dan Ralph (Cornell)

Enrique del Barco (UCF)

No experiment has yet seen a unambiguous manifestation of QTM, much less Berry phase interference...

Kondo effect: The case of quantum dots and molecules attached to leads

At low temperatures, spin flip processes strongly renormalize the conductance

Sharp resonance at the Fermi level appears at $T < T_{K}$

Tunneling conductance *increases* as the temperature goes down!

Another way of probing QTM: Kondo effect

NATURE | VOL 417 | 13 JUNE 2002 | www.nature.com/nature

Wenjie Liang*, Matthew P. Shores†, Marc Bockrath*, Jeffrey R. Long† & Hongkun Park*

The Kondo effect in a non-magnetic single-electron transistor has already been observed by several groups...

... but not yet for SMMs.

<u>Unconventional Kondo effect in SMMs:</u> How it happens

 $S_z = m$ $S_z = m - l$ $(\Delta S_z = -1, \Delta s_z = +1)$ $S_z = m - \frac{1}{2}$ $\sim \frac{t^2}{11}$ *inelastic* (suppressed at zero bias) 11 $(E_m \neq E_{m-1})$ $s_{z} = \frac{+1}{2}$ $s_z = \frac{-l}{2}$ $S_7 = m$ $S_7 = m$ $(\Delta S_z = 0, \Delta S_z = 0)$ $S_z = m - \frac{1}{2}$ $\sim \frac{t^2}{U}$ no spin J_{z} elastic flipping $\frac{1}{U}$ $s_z = \frac{-1}{2}$ $s_z = \frac{-l}{2}$ $S_z = m$ $S_7 = -m$ $(\Delta S_z = -2m, \Delta s_z = +1)$ $S_z = m - \frac{1}{2}$ $S_z = -m + \frac{1}{2}$ spin $\sim \frac{t^2}{1I^2} \Delta E$ J_{\perp} elastic flipping $\frac{1}{U}$ $\frac{1}{U}$ ΔΕ $(E_m = E_{-m})$ $s_z = \frac{+1}{2}$ $s_z = \frac{-1}{2}$

M. Leuenberger and ERM [PRL 97, 126601 (2006)]

Kondo effect in SMMs: detailed theory

$$\mathcal{H}_{\text{SMM}} = \sum_{m^*} E_{m^*} |m^*\rangle \langle m^*|, \qquad E_{m^*} = E_{-m^*} \ [\Delta_{m^*, -m^*}(H_x^*) = 0]$$

pseudo-spin operators

$$\Sigma_{z}^{(m)} = \frac{1}{2} \left(|m\rangle \langle m| - |-m\rangle \langle -m| \right)$$

$$\Sigma_{\pm}^{(m)} = |\pm m\rangle \langle \mp m|$$

anisotropic coupling constants

$$j_z^{(m)} = 2J_z \langle m | S_z | m \rangle$$
$$j_{\pm}^{(m)} = J_{\pm} \langle \pm m | S_{\pm} | \mp m \rangle$$

Kondo effect in SMMs: microscopic derivation of coupling constants

$$j_z = \pm 2t^2 \left[\frac{U + \Delta_0}{(U + \Delta_0)^2 - \Delta_1^2} + \frac{U + \Delta_0}{(U - \Delta_0)^2 - \Delta_1^2} \right] \approx \pm \frac{4t^2}{U} \quad \blacksquare$$

The sign depends on the intermediate spin state of the molecule!

$$j_{\perp} = 4t^2 \left[\frac{\Delta_1}{(U + \Delta_0)^2 - \Delta_1^2} + \frac{\Delta_1}{(U - \Delta_0)^2 - \Delta_1^2} \right] \approx \frac{8t^2 \Delta_1}{U}$$

 $|j_z| \gg j_{\perp} \longrightarrow$ anisotropic exchange interaction

$$S_1 = S_0 - \frac{1}{2} \implies \mathsf{AF}$$
$$S_1 = S_0 + \frac{1}{2} \implies \mathsf{FM}$$

Kondo effect in SMMs: poor man's Renormalization Group

total Hamiltonian in projected subspace

$$\mathcal{H} = \sum_{m} \left[E_m \left(\Sigma_z^{(m)} \right)^2 + \eta^{(m)} H_x^* \Sigma_x^{(m)} \right] + \sum_{k,\alpha} \xi_k \psi_{k\alpha}^{\dagger} \psi_{k,\alpha} + \mathcal{H}_{\text{ex}}$$

 $\eta^{(m)} = 1 - \frac{\nu j_{\perp}^{(m)}}{2}$

molecule's pseudo-spin couples to transversal field

Renormalization Group flow equations... $\zeta = \ln(\tilde{D}/D)$

$$\frac{dj_z}{d\zeta} = -2\nu \, j_+ j_- \qquad \frac{dj_\pm}{d\zeta} = -2\nu \, j_\pm j_z \qquad \frac{d\eta}{d\zeta} = \frac{\nu^2}{2} \left(j_+ + j_-\right) j_z$$

... and solutions

$$j_z^2 - j_\perp^2 = C > 0$$
$$\frac{1}{2\nu\sqrt{C}}\operatorname{arctanh}\left(\frac{\sqrt{C}}{j_z}\right) = \ln\left(\frac{\tilde{D}}{T_K}\right)$$

Kondo effect in SMMs: Conductance

Non-linear conductance (T=0) away from the degeneracy points

$$\begin{aligned} A^{(m)}_{\omega\approx\tilde{D}} \approx j^{(m)}_{\perp,\omega\approx\tilde{D}} + \nu j^{(m)}_{\perp,\omega\approx\tilde{D}} j^{(m)}_{z,\omega\approx\tilde{D}} \ln \left| \frac{\omega + \tilde{D} - eV/2}{\omega - \tilde{D} + eV/2} \right| & \text{2nd order perturbation theory} \\ G(V) &= G_0 \frac{\pi^2 \nu^2}{16} j^2_{\perp,\tilde{D}} \left[\delta_{eV,0} + \nu j_{z,\tilde{D}} \ln \left(\frac{\Delta_{m,-m}}{||eV| - \Delta_{m,-m}|} \right) \right] & \underbrace{\int_{0}^{0} \frac{\omega}{2\Delta}}_{z\Delta} \end{aligned}$$

Kondo effect in SMMs: Berry phase oscillations

The tunnel splitting is an oscillating function of the transverse magnetic field due to the Berry phase interference.

two-fold degeneracy points (Kondo effect)

I) The Kondo peak splitting is a non-monotonic function of the transverse magnetic field.

2) The period of Berry oscillations is renormalized by the Kondo effect (strongly temperature dependent, with a universal function form).

Kondo effect in SMMs: Ni₄, the best candidate

 $[Ni_4(ROH)_4L_4O_{12}]$ (R=Me, Et) Sieber et al. (2005)

Spin tunneling splitting Δ (numerical simulations)

<u>Some estimates</u> (Ni_4) :

M. Leuenberger and ERM [PRL 97, 126601 (2006)]

$$T_{K} \approx D \exp\left[-\arctan\left(\sqrt{C}/j_{z}\right)/2\nu\sqrt{C}\right]$$

$$\left\{\begin{array}{l}\nu(J_{z}-J_{\pm}) \approx 0.15\\\\\Delta E = D = \left|A\left[S^{2}-(S-1)^{2}\right]\right| \approx 9.3 \,\mathrm{K}\end{array}\right\} \xrightarrow{T_{K} \approx 1.2 \,\mathrm{K} \ (m = \pm 4)}$$

crucial requirements:

i) large spin tunnel splitting

ii) large coupling to states in the leads

issues under investigation: i) quantitative theory for transport (NRG, DMRG?)

ii) spin/angular momentum relaxation in isolated molecules

See also related work by the Aachen group (H. Schoeller).

Some Questions and Challenges for the STM group:

- (1) How does the SMM bind to metallic surfaces?
- (2) Where does the additional electron go in a SMM?
- (3) Can the SMM be manipulated by the SMT tip? (move it, flip it, and extract or modify ligands)
- (4) Does the tip position change the electric response of the SMM?
- (5) Can a SP-STM measure the magnetization curve of a SMM (quantum tunneling, coherent oscillations, decoherence)?

chemistry/electronic structure

physics

SMMs have intrinsically large magnetization and strong anisotropy, so a magnetic island may not be necessary.

The End