

## Magnetic non-uniformity in (La<sub>0.4</sub>Pr<sub>0.6</sub>)<sub>0.67</sub>Ca<sub>0.33</sub>MnO<sub>3</sub> films and measurement of the strainmagnetization coupling coefficient

S. Singh<sup>1,2</sup>, M. R. Fitzsimmons<sup>1</sup>, T. Lookman<sup>1</sup>, H. Jeen<sup>3,4</sup>, M. A. Roldan,<sup>5</sup> M. Varela<sup>3</sup>, and A. Biswas<sup>4</sup>

 <sup>1</sup>Los Alamos National Laboratory, Los Alamos, NM 87545, USA
 <sup>2</sup> Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400085, India <sup>3</sup>Oak Ridge National Laboratory, Oak Ridge TN 37831 USA
 <sup>4</sup>Department of Physics, University of Florida, Gainesville, FL 32611, USA
 <sup>5</sup> GFMC. Dpto. Fisica Aplicada III, Universidad Complutense de Madrid, 28040 Madrid, Spain
 Work supported by the OBES-DOE and the NSF.

### Outline

- Motivation and background
- Sample preparation and characterization
- Possible evidence for phase separation
- Magnetic depth profile  $\sigma$  = 0 and consequences
- Magnetic depth profile σ ≠ 0 and consequences
- Conclusions

#### Motivation

- To explore phase separation/co-existence in LPCMO thin films.
- To understand origin of low TMR (attributed to degraded interfacial magnetization).
- To understand the *exclusive* role of strain on magnetism.

## Motivation: Clarify the role of stress on ferromagnetism in manganite films, which is decidedly mixed.

|         | Report                  | Compressive,<br>strengthens<br>FM | Tensile,<br>weakens FM    | Compressive,<br>weakens FM | Tensile,<br>strengthens<br>FM |
|---------|-------------------------|-----------------------------------|---------------------------|----------------------------|-------------------------------|
|         | Bulk LCMO & pressure    | ✓                                 |                           |                            |                               |
|         | Theory 1                | $\checkmark$                      | $\checkmark$              |                            |                               |
|         | Theory 2                |                                   |                           | $\checkmark$               | $\checkmark$                  |
|         | Thickness 1             | $\checkmark$                      | $\checkmark$              |                            |                               |
|         | Thickness 2             |                                   |                           | $\checkmark$               | $\checkmark$                  |
| Films - | Epi-strain              | No effect                         | $\checkmark$              | No effect                  |                               |
|         | Chemical pressure       | $\checkmark$                      | $\checkmark$              |                            |                               |
|         | Phase<br>transformation |                                   |                           |                            | $\checkmark$                  |
|         | Piezeoelectric          |                                   | $\checkmark$              |                            |                               |
| ↓       | Mechanical jigs         | Т <sub>мі</sub> increases         | T <sub>MI</sub> decreases |                            |                               |

## Background



K.H. Ahn et al., Nature 428, 401 (2004).



- Property sum and product rules are important at the nm scale. R.E. Newnham, D.P. Skinner and L.E. Cross, Mat. Res. Bull. 13, 525 (1978).
- Also, quenched disorder [e.g.,
  E. Dagotto, Science 309, 257 (2005)].
  - Random fluctuations of dopant density, strain fields, J-T distortions...
- Phase coexistence very sensitive to the environment.

#### Complexity in systems that are not "clean".



E. Dagotto, Science 309, 257 (2005).D. Akahoshi et al., PRL 90 1777203 (2003).

#### Experimental evidence for phase coexistence.

DF and Lorentz images of **bulk** LPCMO. (Mori)



Field dependence SANS data of *bulk* PCMO. (Saurel)



Relevant length scales vary from 100's nm to 10's of microns.



H increases  $\rightarrow$ 

STM images of LCMO *thin film* from 0 to 9T. (Fäth)



MFM of LPCMO **thin film** Zhang et al., Science 298 805 (2002).



#### Compelling evidence

|      | Electronic<br>phase<br>separation? | Magnetic<br>phase<br>separation? |
|------|------------------------------------|----------------------------------|
| Bulk | Yes                                | Yes                              |
| Film | Yes                                | ;                                |

### Sample preparation

- Samples grown by PLD (A. Biswas, UFL).
- Target composition: (La<sub>0.4</sub>Pr<sub>0.6</sub>)<sub>0.67</sub>Ca<sub>0.33</sub>MnO<sub>3</sub>
- (110) NdGaO<sub>3</sub> (NGO) substrates are 1cm by 1cm by 250μm.
- 30 nm thick (101) LPCMO single crystal films.
- Small epi-strain:
- +0.4% || [001] NGO
- +0.2% || [-110] NGO

relative to bulk LPCMO.



#### Electron energy loss spectroscopy

- Chemically nonuniform.
- Excess Mn<sup>4+</sup> at surface and buried interface.
- Excess Mn<sup>4+</sup> due to excess O, not Ca deficiency.



#### Magnetometry

- Strong in-plane anisotropy.
- Field favors metallic phase.
- Metal-insulator transitions are not the same as the Curie temperature.



Performed at the ANL CINT facility (w/ J. Guest).

Temperature changed at 0.4K/min.







The length scales for electronic and magnetic texture do not match for films of the same nominal composition. cAFM (this work) MFM (Lozanne, Phys. Today 1/3)

0.5 μm



#### **Polarized Neutron Reflectometry**



Chemical and magnetic depth profiles are non-uniform ( $\sigma = 0$ )



Temperature dependence of the saturation magnetization



15

#### Saturation magnetization is less in Mn<sup>4+</sup> rich regions.



(1) M shows hysteresis similar to R.

(2)  $T_c$  of region II exceeds  $T_{MI}$ 

(3) M<sub>s</sub> suppressed in Mn<sup>4+</sup> rich regions (more AF interactions?).

<u>S. Singh et al., PRL **108**, 077207 (2012)</u>

# Compressive stress stabilizes $T_{IM}$ and $T_{MI}$ to higher T and increases $M_s$ .

- 4 point mechanical jig produces  $\varepsilon = \pm 0.011\%$ .
- Neutron scattering and transport measured vs.
   σ, H and T.
- Collected data for constant T and constant T/T<sub>IM,MI</sub>.
- Compressive stress ( $-\epsilon$ ) increases M<sub>s</sub> (T<sub>MI</sub> & T<sub>IM</sub>). H = 6 kOe

http://arxiv.org/abs/1201.4001







#### Characterization of the film: EELS, XRR, PNR



• 
$$F_C = \gamma \epsilon M_{\varepsilon}^2 + \frac{A}{2} \epsilon^2$$

- $M^2 = M_0^2 \frac{A}{\gamma}\epsilon$
- A = 200 GPa
- γ does not depend upon cooling or warming cycles.
- γ smallest for film bulk (least Mn<sup>4+</sup>) implies strongest coupling.
- γ ~ 0.0003-0.0006 N/A<sup>2</sup>



### Conclusions

- Length scales of electronic and magnetic texture may differ.
- Length scale of electronic texture confined by terrace steps.
- The LPCMO films are neither chemically nor magnetically uniform with depth.
- Compressive *elastic* strain (-'ve ε)
  - Increases M<sub>s</sub>.
  - Favors the ferromagnetic phase.
  - Increases the metal-insulator transition temperatures.
- Coupling between strain and ferromagnetism is strongest for the bulk film composition (i.e., not Mn<sup>4+</sup> rich).
- Demonstrated several technical innovations that can be broadly applied to other systems, especially multiferroic, and piezomagnetic films.