

Topological structures in patterned nanomagnets

Olle Heinonen^{1,2} and C. Phatak¹

¹Materials Science Division, Argonne National Laboratory ²Department of Physics and Astronomy, Northwestern University

PRL 2012

Use of facilities at the Center for Nanoscale Materials, Argonne National Laboratory, is gratefully acknowledged. Argonne National Laboratory is operated under Contract No. DE-AC02-06CH11357 by U.S. DOE.

Outline

- Competing interactions and frustration vortices, spin-ice lattices
- Experimental system
- Lorentz images in zero applied field
- Quasi-static response
- Micromagnetic modeling statics
- Micromagnetic modeling dynamics
- Summary

Frustration and competing interactions

Micron- or nano-sized systems can be engineered to have competing interactions

In a thin, micron-sized disk, the magnetization forms a vortex. Exchange interactions want to keep the magnetization uniform but demagnetizing fields are minimized when poles are avoided at the edges

In artificial spin ice lattice, frustration is engineered by geometry

Experimental system

• What effect do engineered inter-layer exchange have on the magnetization in coupled stacked discs?

Two Permalloy discs, 2 μ m diameter, 20 nm thick, separated by 2 nm Cr The Cr promotes a weak anti-ferromagnetic coupling between the Py discs

NiFe 20 nm Cr 2 nm NiFe 20 nm

What are the equilibrium magnetization configurations?

Lorentz image in zero applied field

Magnetic North III - Heinonen and Pathak

Quasi-static response

What gives???

Vortices in a magnetic field: the core should move **perpendicularly** to the applied field!

Summary observations:

- Zero field: Dot consistent with stacked vortices, but details do not quite agree with vortex configuration
- Static field response: dot moves about 45° to field direction. Vortex core should move perpendicularly to field direction
- Dots split apart and move away from 45° direction
- This is not consistent with vortex configurations

Micromagnetic modeling

- 2 μ m diameter Py discs (H_K=0), thickness 20 nm, A=1.3 erg/cm
- Antiferromagnetically coupled through infinitely thin layer; coupling=-0.025 erg/cm² (-15.6 Oe coupling field)
- Demagnetizing field calculated using fast Fourier transforms on 5 nm x 5 nm x 5nm mesh
- Damping typically α =0.25 (statics), time-integration using a modified Bulirsch-Stoer adaptive integrator

Zero-field magnetization states

Initial state is vortices with same chirality, AFM interlayer coupling

Relaxation from initial FM vortices

Relaxation of initial FM vortices to meron state

Simulated quasi-static response

Field

Magnetic North III - Heinonen and Pathak

Summary quasi-static response

- Initial FM vortices will deform to a meron state (two merons) but will not continue to deform to AFM vortices
- Simulated images and quasi-static response are consistent with experimental observations
- Configuration with AFM vortices has lower energy than meron state
- Speculate that the deposition process and spatial variations initially align magnetization along edges ferromagnetically – the structure will then deform to a meron state as the deposition continues
- Quasi-static field response is (almost) Goldstone-like the cores can move along degenerate trajectories; experimental inhomogeneities will pin cores at fixed field. Increasing field and thermal fluctuations will move cores further

Summary and conclusions

- A weak antiferromagnetic coupling between to discs can give rise to an un-anticipated structure "meron"
- Lorentz TEM images and micromagnetic simulations agree very well
- Meron response to quasi-static field is weird cores can slide around in a static field
- Meron dynamics is very different from dynamics of FM or AFM vortices – slow breathing-like modes