Domain Wall Motion in Magnetic Nanowires

Mark Stiles Center for Nanoscale Science and Technology - NIST

Jiang Xiao – Fudan Andrew Zangwill – Georgia Tech Wayne Saslow – Texas A&M

Hongki Min - NIST Jacques Miltat – Paris Sud Robert McMichael – NIST Michael Donahue – NIST

Keith Gilmore – LBL Ion Garate – Yale Allan MacDonald – UT Austin Paul Haney – NIST

Christian Heiliger - Geissen

Vladimir Demidov – Muenster U Sergei Demokritov – Muenster U Sergei Urazhdin – Emory U

Kyung-Jin Lee – Korea U Hyun-Woo Lee – Pohang U

Torque from interfacial spin orbit coupling

Torque from current flow Spin transfer torque

Current Induced domain wall motion

Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films L. Berger, J. Appl. Phys. **55**, 1954 (1984)

> Review articles: JMMM 320 p. 1272, Current-induced domain wall motion, Beach et al. p. 1282, Theory of current-driven ..., Tserkovnyak et al.

Slowly varying magnetization adiabatic spin transfer torque

when flowing spins align with magnetization:

Conservation of angular momentum \Rightarrow Reaction torque on magnetization Wall translates $\mathbf{n}_{st} = \frac{Pg\mu_B}{e} \mathbf{j} \cdot \nabla \hat{\mathbf{m}} x$ $v_s = \frac{-Pjg\mu_B}{eM_s}$

Spin wave Doppler effect – measure spin transfer velocity v_s

V. Vlaminck and M. Bailleul, Science, **322**, 410 (2008) R. D. McMichael and M. D. Stiles, Science, **322**, 386 (2008)

Dynamics – Landau-Lifshitz-Gilbert equation

Importance of non-adiabatic torque

Variation of vortex wall motion with non-adiabatic spin transfer torque

Work done by Hongki Min

Aspects of current-induced domain wall motion

Paul Haney
NGT & Center for Nanoscale Science & Technology

Spin Hall Effect (Anomalous Hall Effect)

Spin Hall effect in bilayer nanowire

Spin transfer torques in magnetic multilayers

- Independent predictions in 1996 by J. C. Slonczewski and L. Berger
- Observation by Grenoble/Michigan State (1998) and Cornell (1999)

Giant Magnetoresistance

Current-Induced Switching

Interfacial absorption of the transverse spin current

"pillbox" around interface

- Longitudinal spin current conserved
- Transverse spin current absorbed

Due to details of spin-dependent reflection

Effective (anti)damping due to spin transfer torque

Modification of thermal spin wave amplitudes due to spin Hall effect spin transfer torque

Work done by Vladimir Demidov

Magnetization switching due to spin Hall effect spin transfer torque

Spin torque switching with the giant spin Hall effect of tantalum Luqiao Liu, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph and R. A. Buhrman arXiv:1203.2875

spin orbit coupling

Spin transfer torque

Is something more needed? (controversial)

I.M. Miron et al., Nature (2011), Nature Materials (2011), Nature Materials (2010)

S.S.P. Parkin et al (unpublished)

- Domain wall velocities much larger than expected
- Domain wall motion opposite electron flow

• • • •

⇒ Interpretation – large "field-like" torque due to strong interfacial spin orbit coupling

Additional spin Hall spin transfer toques

Difficult problem – multipronged approach

Electronic Structure - To understand interface Semiclassical Transport

- To determine the torque

Micromagnetic simulations

- To determine what equations of motion can reproduce experiment

Modification of electronic structure at the interface

Work in progress by Paul Haney

Crude model for semiclassical transport

http://www.phys.ufl.edu/fermisurface/

- Boltzmann equation
- Spherical Fermi surfaces
- Spin-dependent scattering
- "extrinsic" spin Hall effect
- Delta function interfacial potential

$$g_0 + g_p \boldsymbol{\sigma} \cdot \mathbf{m} + g_r \boldsymbol{\sigma} \cdot \mathbf{k} \times \hat{\mathbf{z}} \quad \delta z$$

Boltzmann equation calculation of spin transport and torques in bilayer nanowires

Solid curves – no interfacial spin-orbit coupling Dash-dot curves – with additional interfacial spin-orbit coupling (very asymmetric reflection amplitudes)

$$\dot{\mathbf{M}} = -\gamma_{\mathbf{0}} \mathbf{M} \times \mathbf{H}_{\text{ext}} + \mathbf{H}_{\text{dipole}} + \mathbf{H}_{\text{ani}} + \mathbf{H}_{\text{ex}} + \alpha \hat{\mathbf{M}} \times \dot{\mathbf{M}}$$

"Standard" torques Damping

$$+v_{s} \hat{\mathbf{j}} \cdot \nabla \mathbf{M} - \beta v_{s} \hat{\mathbf{M}} \times \hat{\mathbf{j}} \cdot \nabla \mathbf{M}$$

Adiabatic spin transfer torque Non-adiabatic spin transfer torque

$$+ \theta_{\rm SH} c_j \mathbf{M} \times \mathbf{M} \times \hat{\mathbf{j}} \times \hat{\mathbf{n}} + \beta' \theta_{\rm SH} c_j \mathbf{M} \times \hat{\mathbf{j}} \times \hat{\mathbf{n}}$$
Spin Hall spin transfer torques
Damping-like Field-like

Micromagnetic simulations with different current-induced torques

Work by Kyung-Jin Lee

Summary

Torque from current flow through a magnetization pattern

Torque from current flow In adjacent layer Spin Hall effect Spin transfer torque

CO

Torque from interfacial spin orbit coupling

More information at http://cnst.nist.gov

Review articles: JMMM 320

p. 1190, Spin transfer torques, Ralph & Stiles

- p. 1272, Current-induced domain wall motion, Beach et al.
- p. 1282, Theory of current-driven ..., Tserkovnyak et al.
- p. 1300, Current-induced torques ..., Haney et al.