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Prediction 

Exchange interaction between ferromagnetic domain wall 
and electric current in very thin metallic films 
L. Berger, J. Appl. Phys. 55, 1954 (1984) 

Current Induced domain wall motion 

Review articles: JMMM 320 
p. 1272, Current-induced domain wall motion, Beach et al. 
p. 1282, Theory of current-driven …, Tserkovnyak et al. 



Wall translates 

when flowing spins align with magnetization: 

Slowly varying magnetization 
adiabatic spin transfer torque 
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Spin wave Doppler effect –  
measure spin transfer velocity vs 

e-   

f (GHz) 

M. Zhu and R. D. McMichael 

V. Vlaminck and M. Bailleul, Science, 322, 410 (2008)  
R. D. McMichael and M. D. Stiles, Science, 322, 386 (2008) 
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S12:  Spin wave propagating with electrons 
S21:  Spin wave propagating against electrons 
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Dynamics – Landau-Lifshitz-Gilbert equation 
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Importance of non-adiabatic torque 

Magnetostatic torque compensates adiabatic torque - wall stops 

Adiabatic torque - translates wall 

Gilbert damping torque - tilts wall out of plane 

Non-adiabatic torque acts opposite to Gilbert damping  

- reduces tilt, and allows continued motion -                   v  = vs .  

electron flow 
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Variation of vortex wall motion  
with non-adiabatic spin transfer torque 
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Work done by Hongki Min 



Aspects of  
current-induced domain wall motion 

● Disorder  
 pinning, 

modified velocities  
Hongki Min 

Co 

● Abrupt domain walls  
 mistracking  

Jiang Xiao 

● Strong spin-orbit coupling in the FM  
 lattice torques  

Paul Haney 

● Calculation of  and   
Keith Gilmore 
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Spin Hall Effect (Anomalous Hall Effect) 

current Extrinsic  
(Mott scattering) 

Intrinsic 

spin current 



Spin Hall effect in bilayer nanowire 

Co 
Pt 



Spin transfer torques in magnetic multilayers 

● Independent predictions in 1996 by J. C. Slonczewski and L. Berger 

● Observation by Grenoble/Michigan State (1998) and Cornell (1999) 

J. Z. Sun 
et al., JAP 
(2003) 
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Giant Magnetoresistance Current-Induced Switching 
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Interfacial absorption of the transverse spin current 
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Spin 
Current 

“pillbox” around interface 

● Longitudinal spin current conserved 
● Transverse spin current absorbed 

Due to details of spin-dependent reflection 



Effective (anti)damping due to spin transfer torque 
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Modification of thermal spin wave amplitudes  
due to spin Hall effect spin transfer torque 

Work done by Vladimir Demidov 



Magnetization switching  
due to spin Hall effect spin transfer torque 

Spin torque switching with the giant spin Hall effect of tantalum 
Luqiao Liu, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph and R. A. Buhrman 
arXiv:1203.2875 
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Is something more needed? (controversial) 

Co – 0.6 nm 
Pt  – 10 nm 

I.M. Miron et al., 
Nature (2011),  
Nature Materials (2011), 
Nature Materials (2010) 
 
S.S.P. Parkin et al  
(unpublished) 

● Domain wall velocities much larger than expected 
● Domain wall motion opposite electron flow 
● … 

 
Interpretation – large “field-like” torque due to strong 
interfacial spin orbit coupling 



Additional spin Hall spin transfer toques 

Damping-like                           Field-like 



Difficult problem – multipronged approach 

Co – 0.6 nm 
Pt  – 10 nm 

Micromagnetic simulations 
- To determine what equations of motion 
can reproduce experiment 

Electronic Structure 
- To understand interface 

Semiclassical Transport 
- To determine the torque 



Modification of electronic structure at the interface 
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Work in progress by Paul Haney 



Crude model for semiclassical transport 

● Boltzmann equation 
● Spherical Fermi surfaces 
● Spin-dependent scattering 
● “extrinsic” spin Hall effect 
● Delta function interfacial potential 

0 p r
ˆg g g zm k z

Pt Co Majority Co Minority 

http://www.phys.ufl.edu/fermisurface/  
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Solid curves – no interfacial spin-orbit coupling 

Dash-dot curves – with additional interfacial spin-orbit coupling 

(very asymmetric reflection amplitudes) 

Boltzmann equation calculation of 

spin transport and torques in bilayer nanowires 



Equation of motion 
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Micromagnetic simulations  
with different current-induced torques 

with 

electron flow 
against 

electron flow 

NiFe (4 nm) | Pt (3 nm) Pt | Co (0.6 nm) 

Walker-Breakdown 

Damping-like torque  

+ large field torque (4x) 
Only damping-like torque 

with 

electron flow 
against 

electron flow 

Work by Kyung-Jin Lee 



Summary 

More information at http://cnst.nist.gov 

Review articles: JMMM 320 
p. 1190, Spin transfer torques, Ralph & Stiles 
p. 1272, Current-induced domain wall motion, Beach et al. 
p. 1282, Theory of current-driven …, Tserkovnyak et al. 
p. 1300, Current-induced torques …, Haney et al. 
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