On measurement-based quantum computation with the toric code states

Robert Raussendorf
Perimeter Institute, moving to UBC in Jan 08

PITP Vancouver, Dec 2, 2007

Joint work with Sergey Bravyi, IBM; PRA 76, 022304 (2007).

Where does the power in quantum computation come from?

• A prerequisite for a speed-up in quantum computation is the hardness of its classical simulation.

Quantum computation and statistical mechanics

• Characteristic *state overlaps* in measurement-based quantum computation can be related to the *partition function* of the Ising model.

Ising model

One-way QC

 Z_{Ising}

~ \langle local state | quantum resource \rangle

planar + magn. field simulation >= NP hard¹ |cluster state>
universal

planar, no magn. field simulation efficient

|planar code state>
not universal

1: F. Barahona (1982).

Talk outline

Part I: One-way quantum computer $(QC_{\mathcal{C}})$ and cluster states What is the one-way quantum computer?

Part II: Efficient classical simulation of MQC based on the tree-ness of graphs

The $QC_{\mathcal{C}}$ on graph states of tree graphs can be efficiently simulated classically.

Part III: Efficient classical simulation of MQC based on planarity of graphs

The $QC_{\mathcal{C}}$ on the planar code state can be efficiently simulated classically.

Part I:

The one-way quantum computer and cluster states

The one-way quantum computer

measurement of Z (\odot) , X (\uparrow) , $\cos \alpha X + \sin \alpha Y$ (\nearrow)

- Universal computational resource: cluster state.
- Information written onto the cluster, processed and read out by one-qubit measurements only.

R. Raussendorf and H.-J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

Cluster states - creation

- 1. Prepare product state $\bigotimes_{a\in\mathcal{C}} \frac{|0\rangle_a + |1\rangle_a}{\sqrt{2}}$ on d-dimensional qubit lattice \mathcal{C} .
- 2. Apply the Ising interaction for a fixed time T (conditional phase of π accumulated).

Cluster states - simple examples

$$|\psi\rangle_2 = |0\rangle_1|+\rangle_2 + |1\rangle_1|-\rangle_2$$

Bell state

$$|\psi\rangle_3 = |+\rangle_1|0\rangle_2|+\rangle_3 + |-\rangle_1|1\rangle_2|-\rangle_3$$

GHZ-state

$$\begin{array}{l} |\psi\rangle_4 = |0\rangle_1|+\rangle_2|0\rangle_3|+\rangle_4+|0\rangle_1|-\rangle_2|1\rangle_3|-\rangle_4+\\ + |1\rangle_1|-\rangle_2|0\rangle_3|+\rangle_4+|1\rangle_1|+\rangle_2|1\rangle_3|-\rangle_4 \end{array}$$

Number of terms exponential in number of qubits!

Cluster states - definition

A cluster state $|\phi\rangle_{\mathcal{C}}$ on a cluster \mathcal{C} is the single common eigenstate of the stabilizer operators $\{K_a\}$,

$$K_a |\phi\rangle_{\mathcal{C}} = |\phi\rangle_{\mathcal{C}}, \quad \forall \, a, \tag{1}$$

where

$$K_a = X_a \bigotimes_{b \in N(a)} Z_b, \quad \forall a \in \mathcal{C}, \tag{2}$$

and $b \in N(a)$ if a,b are spatial next neighbors in C.

Graph states and local complementation

- Graph states are a straightforward generalization of cluster states.
- Cluster states are graph states corresponding to lattice graphs.

Graph states and local complementation

- For a given graph state, there exist local unitary equivalent graph states corresponding to different graphs.
- The equivalent graph states can be reached by a graph transformation, namely *local complementation*.

How local complementation works:

- ullet Pick a vertex v in the graph.
- Find all its neighbors $\{u_i\}$.
- Invert all edges (u_i, u_j) .

Part II:

Classical simulation of the $QC_{\mathcal{C}}$ on tree-like graph states via tensor networks

Requirements for classical simulation

Predict probabilities for outcomes of complete measurements.

$$p = |\langle local state | quantum resource \rangle|^2$$

• Predict probabilities for outcomes of partial measurements (subset of qubits traced over).

Tensor networks

a) quantum state

b) state overlap <B|A>

tensor networks

$$|\psi\rangle = \sum_{abc} \left(\sum_{jkl} A_{ajk}^{(1)} A_{bjl}^{(2)} A_{ckl}^{(3)} \right) |a\rangle_1 |b\rangle_2 |c\rangle_3$$

Tensor networks

$$A_{ijklm}$$
, $i,j,k,l,m = 1...d$
rank r dimension

Number of components in A:

$$|A| = d^r. (3)$$

• The rank of A(v) equals the vertex degree deg(v).

Tensor networks

Task: Contract edges in the network graph.

This changes the degree of the remaining vertices.

$${}_{1}\langle a| \otimes {}_{2}\langle b| \otimes {}_{3}\langle c|\psi\rangle = \left(\sum_{jkl} A^{(1)}_{ajk} A^{(2)}_{bjl} A^{(3)}_{ckl}\right) = \left(\sum_{kl} \tilde{A}^{(1)}_{abkl} A^{(3)}_{ckl}\right)$$

with
$$\tilde{A}_{abkl}^{(1)} = \sum_{j} A_{ajk}^{(1)} A_{bjl}^{(2)}$$
.

Graphs close to a tree

High vertex degrees in the contraction of edges in G can be avoided for tree-like graphs.

• The deviation of a graph from a tree is formalized by the *treewidth*.

tree:
$$treewidth = 1$$

$$treewidth = min(m,n)$$

• MBQC can be efficiently simulated for graph states on *tree* graphs and graphs close to trees.

Graphs close to a tree

Theorem 1 (Markov & Shi, 05): Consider a n-vertex graph G of tree width T. Then, a one-way quantum computation on $|G\rangle$ can be simulated in time $O(n) \exp(O(T))$.

Tensor networks and entanglement

ullet Problem: Local complementation on a graph G leaves the computational power of the corresponding graph state $|G\rangle$ invariant but changes the treewidth of G.

• Remedy: rank width.

Tensor networks and entanglement

Theorem 2 (SDV05, VdN06): Be χ the rank width of an n-qubit graph state $|G\rangle$. The complexity of classical MQC simulation on $|G\rangle$ is Poly $(n) \exp(\chi)$.

Theorem 3 (VdN06): χ is an entanglement monotone.

- Entanglement is necessary for hardness of the classical simulation.
- Is entanglement also sufficient?

Part III:

Classical simulation of MQC on planar code states

Goals of Part III

- MQC with the planar code state can be efficiently simulated classically, by mapping to the *planar* Ising model.
- What about entanglement in these states?
- MQC with a universal 2D cluster state can also mapped to the Ising model: planar + magnetic field.

S. Bravyi and R. Raussendorf, PRA 76, 022304 (2007).

Definition of the planar code state

- Qubits live on the edges.
- The planar code state is a stabilizer state. Stabilizer operators associated with the sites and plaquettes of the lattice.

Why consider a planar code state?

• Planar code states and cluster states are closely related.

 \bullet $|K\rangle$ obeys entropy area law.

 \bullet $|K\rangle$ shows topological order.

2D local FTQC

Combine cluster states and planar code states to obtain this:

- Fault-tolerant universal quantum computation in 2D local architecture.
- Threshold: 0.75×10^{-2} for each source in an error model with preparation, gate, storage and measurement errors.

R.Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007).

Our Results

Theorem 4A: Complete local measurements on a planar code state can be simulated efficiently classically.

Theorem 4B: Suppose that at each step j of MQC the sets of measured and unmeasured qubits E_j , \overline{E}_j are connected. Then, partial local measurements on a planar code state can be simulated efficiently classically.

S. Bravyi and R. Raussendorf, PRA 76, 022304 (2007).

Connection with Ising model

Task: compute overlap between $|K\rangle$ and local state $|\Psi\rangle = \bigotimes_{(ij)} |\phi_{jk}\rangle$.

 $|K\rangle$ written in the computational basis $\{|x_1, x_2, ..., x_n\rangle, x_k = \pm 1\}$:

$$|K\rangle = \sum_{x \in \mathcal{L}_0} |x\rangle;$$

where $\mathcal{L}_0 = \{x : B_p | x \rangle = |x\rangle, \forall p\}$. Then

$$\langle \Psi | K \rangle = \Lambda \sum_{x \in \mathcal{L}_0} \exp \left(\sum_{(jk)} \beta_{jk} x_{jk} \right),$$

where $\exp(2\beta_{ij}) = \langle \phi_{ij} | + 1 \rangle / \langle \phi_{ij} | - 1 \rangle$.

Connection with Ising model

Task: compute overlap between $|K\rangle$ and local state $|\Psi\rangle = \bigotimes_{(ij)} |\phi_{jk}\rangle$.

 $|K\rangle$ written in the computational basis $\{|x_1, x_2, ..., x_n\rangle, x_k = \pm 1\}$:

$$|K\rangle = \sum_{x \in \mathcal{L}_0} |x\rangle;$$

where $\mathcal{L}_0 = \{x : B_p | x \rangle = |x\rangle, \forall p\}$. Then

$$\langle \Psi | K \rangle = \Lambda \sum_{x \in \mathcal{L}_0} \exp \left(\sum_{(jk)} \beta_{jk} x_{jk} \right),$$

where $\exp(2\beta_{ij}) = \langle \phi_{ij} | + 1 \rangle / \langle \phi_{ij} | - 1 \rangle$.

Now solve the constraint $x \in \mathcal{L}_0$:

$$x_{ij} = \sigma_i \sigma_j$$
, $(\sigma_k = \pm 1 \text{ for all sites } k)$.

Connection with Ising model

Task: compute overlap between $|K\rangle$ and local state $|\Psi\rangle = \bigotimes_{(ij)} |\phi_{jk}\rangle$.

 $|K\rangle$ written in the computational basis $\{|x_1,x_2,..,x_n\rangle,x_k=\pm 1\}$:

$$|K\rangle = \sum_{x \in \mathcal{L}_0} |x\rangle;$$

where $\mathcal{L}_0 = \{x : B_p | x \rangle = |x\rangle, \forall p\}$. Then

$$\langle \Psi | K \rangle = \frac{\Lambda}{2} \sum_{\{\sigma\}} \exp \left(\sum_{(jk)} \beta_{jk} \sigma_i \sigma_j \right) =: Z[\beta],$$

where $\exp(2\beta_{ij}) = \langle \phi_{ij} | + 1 \rangle / \langle \phi_{ij} | - 1 \rangle$.

 $Z[\beta]$ is the partition function of the Ising model.

Connection with the circuit model

Compute partition function by transfer matrix method:

$$\langle \Psi | K \rangle = \frac{\Lambda}{2} \langle \hat{+} | T_{L+1}^{(z)} T_{L+1}^{(x)} T_L^{(z)} \dots T_2^{(z)} T_1^{(x)} T_1^{(z)} | \hat{+} \rangle.$$

Mapping to non-interacting fermions

Map Pauli operators X_p , $Z_p \otimes Z_{p+1}$ to Majorana fermions c_l , with $\{c_k, c_l\} = 2\delta_{kl}I$ (Jordan-Wigner transformation):

$$c_{2p} = X_1 X_2 ... X_{p-1} \frac{Y_p}{Y_p},$$

$$c_{2p-1} = X_1 X_2 ... X_{p-1} \frac{Z_p}{Z_p},$$

Then,

 $T^{(x)}$, $T^{(z)}$ are quadratic in $\{c_l\} \rightarrow$ efficiently simulatable.

Entanglement in surface code states

- In surface code states bi-partite entanglement proportional to length of boundary between parties, thus large.
- Classical simulation nevertheless efficient.

Large entanglement not sufficient for hardness of classical simulation.

The 2D cluster state

• 2D cluster state $|C\rangle$ is universal for MQC.

$$\langle \Psi | \mathcal{C} \rangle \sim \sum_{\{\sigma_j | j \neq v_0\}} \exp \left(\sum_{(jk) | j, k \neq v_0} \beta_{jk} \sigma_j \sigma_k + \sum_{j \neq v_0} \beta_{j0} \sigma_j \right)$$

Planar Ising model with magnetic fields.

(Barahona 82: ≥ NP-hard)

Summary

- MQC on planar code state can be efficiently simulated classically, by mapping to the planar Ising model.
- MQC on a universal 2D cluster state also described by the Ising model, but interaction graph is non-planar.
- Large entanglement in the resource state is necessary but not sufficient for universal MQC & hardness of classical simulation.
- + Base camp for exploring graph theory from a quantum information perspective.

Open problems

Find the missing links!