On measurement-based quantum computation with the toric code states

Robert Raussendorf
Perimeter Institute, moving to UBC in Jan 08

```
PITP Vancouver, Dec 2, 2007
```

Joint work with Sergey Bravyi, IBM; PRA 76, 022304 (2007).

Where does the power in quantum computation come from?

- A prerequisite for a speed-up in quantum computation is the hardness of its classical simulation.

Quantum compuation and statistical mechanics

－Characteristic state overlaps in measurement－based quantum computation can be related to the partition function of the Ising model．

Ising model

$Z_{\text {Ising }}$
planar＋magn．field
simulation $>=$ NP hard 1
planar，no magn．field simulation efficient

One－way QC
～〈local state｜quantum resource〉
｜cluster state〉
universal
｜planar code state〉
not universal

1：F．Barahona（1982）．

Talk outline

Part I: One-way quantum computer $\left(Q C_{\mathcal{C}}\right)$ and cluster states What is the one-way quantum computer?

Part II: Efficient classical simulation of MQC based on the tree-ness of graphs

The $Q C_{\mathcal{C}}$ on graph states of tree graphs can be efficiently simulated classically.

Part III: Efficient classical simulation of MQC based on planarity of graphs

The $Q C_{C}$ on the planar code state can be efficiently simulated classically.

Part I:

The one-way quantum computer and cluster states

The one-way quantum computer

measurement of $Z(\odot), X(\uparrow), \cos \alpha X+\sin \alpha Y(\nearrow)$

- Universal computational resource: cluster state.
- Information written onto the cluster, processed and read out by one-qubit measurements only.
R. Raussendorf and H.-J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).

Cluster states - creation

1. Prepare product state $\bigotimes_{a \in \mathcal{C}} \frac{|0\rangle_{a}+|1\rangle_{a}}{\sqrt{2}}$ on d-dimensional qubit lattice \mathcal{C}.
2. Apply the Ising interaction for a fixed time T (conditional phase of π accumulated).

Cluster states - simple examples

$$
|\psi\rangle_{2}=|0\rangle_{1}|+\rangle_{2}+|1\rangle_{1}|-\rangle_{2}
$$

Bell state

$|\psi\rangle_{3}=|+\rangle_{1}|0\rangle_{2}|+\rangle_{3}+|-\rangle_{1}|1\rangle_{2}|-\rangle_{3}$
GHZ-state

$$
\begin{aligned}
|\psi\rangle_{4}= & |0\rangle_{1}|+\rangle_{2}|0\rangle_{3}|+\rangle_{4}+|0\rangle_{1}|-\rangle_{2}|1\rangle_{3}|-\rangle_{4}+ \\
& +|1\rangle_{1}|-\rangle_{2}|0\rangle_{3}|+\rangle_{4}+|1\rangle_{1}|+\rangle_{2}|1\rangle_{3}|-\rangle_{4}
\end{aligned}
$$

Number of terms exponential in number of qubits!

Cluster states - definition

A cluster state $|\phi\rangle_{\mathcal{C}}$ on a cluster \mathcal{C} is the single common eigenstate of the stabilizer operators $\left\{K_{a}\right\}$,

$$
\begin{equation*}
K_{a}|\phi\rangle_{\mathcal{C}}=|\phi\rangle_{\mathcal{C}}, \quad \forall a \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{a}=X_{a} \bigotimes_{b \in N(a)} Z_{b}, \quad \forall a \in \mathcal{C} \tag{2}
\end{equation*}
$$

and $b \in N(a)$ if a, b are spatial next neighbors in \mathcal{C}.

Graph states and local complementation

- Graph states are a straightforward generalization of cluster states.
- Cluster states are graph states corresponding to lattice graphs.

Graph states and local complementation

- For a given graph state, there exist local unitary equivalent graph states corresponding to different graphs.
- The equivalent graph states can be reached by a graph transformation, namely local complementation.

How local complementation works:

- Pick a vertex v in the graph.
- Find all its neighbors $\left\{u_{i}\right\}$.

- Invert all edges $\left(u_{i}, u_{j}\right)$.

Part II:

Classical simulation of the $Q C_{\mathcal{C}}$ on tree-like graph states via tensor networks

Requirements for classical simulation

- Predict probabilities for outcomes of complete measurements.

$$
p=\mid\left.\langle\text { local state|quantum resource }\rangle\right|^{2}
$$

- Predict probabilities for outcomes of partial measurements (subset of qubits traced over).

Tensor networks

a) quantum state

b) state overlap <B|A>
tensor networks
$|\psi\rangle=\sum_{a b c}\left(\sum_{j k l} A_{a j k}^{(1)} A_{b j l}^{(2)} A_{c k l}^{(3)}\right)|a\rangle_{1}|b\rangle_{2}|c\rangle_{3}$

Tensor networks

$$
\underset{\underbrace{\mathrm{A}_{i j k l m}}_{\text {rank } r},}{i, j, k, l, m=1 \ldots d}
$$

Number of components in A :

$$
\begin{equation*}
|A|=d^{r} . \tag{3}
\end{equation*}
$$

- The rank of $A(v)$ equals the vertex degree $\operatorname{deg}(v)$.

Tensor networks

Task: Contract edges in the network graph.

This changes the degree of the remaining vertices.
${ }_{1}\langle a| \otimes{ }_{2}\langle b| \otimes{ }_{3}\langle c \mid \psi\rangle=\left(\sum_{j k l} A_{a j k}^{(1)} A_{b j l}^{(2)} A_{c k l}^{(3)}\right)=\left(\sum_{k l} \tilde{A}_{a b k l}^{(1)} A_{c k l}^{(3)}\right)$
with $\widetilde{A}_{a b k l}^{(1)}=\sum_{j} A_{a j k}^{(1)} A_{b j l}^{(2)}$.

Graphs close to a tree

High vertex degrees in the contraction of edges in G can be avoided for tree-like graphs.

- The deviation of a graph from a tree is formalized by the treewidth.

m by n grid:
treewidth $=\min (m, n)$
- MBQC can be efficiently simulated for graph states on tree graphs and graphs close to trees.

Graphs close to a tree

Theorem 1 (Markov \& Shi, 05): Consider a n-vertex graph G of tree width T. Then, a one-way quantum computation on $|G\rangle$ can be simulated in time $O(n) \exp (O(T))$.

Tensor networks and entanglement

- Problem: Local complementation on a graph G leaves the computational power of the corresponding graph state $|G\rangle$ invariant but changes the treewidth of G.
- Remedy: rank width.

Tensor networks and entanglement

Theorem 2 (SDV05, VdN06): Be χ the rank width of an n-qubit graph state $|G\rangle$. The complexity of classical MQC simulation on $|G\rangle$ is Poly $(n) \exp (\chi)$.

Theorem 3 (VdNO6): χ is an entanglement monotone.

- Entanglement is necessary for hardness of the classical simulation.
- Is entanglement also sufficient?

Part III:

Classical simulation of MQC on planar code states

Goals of Part III

- MQC with the planar code state can be efficiently simulated classically, by mapping to the planar Ising model.
- What about entanglement in these states?
- MQC with a universal 2D cluster state can also mapped to the Ising model: planar + magnetic field.
S. Bravyi and R. Raussendorf, PRA 76, 022304 (2007).

Definition of the planar code state

$|K\rangle$

- Qubits live on the edges.
- The planar code state is a stabilizer state. Stabilizer operators associated with the sites and plaquettes of the lattice.

Why consider a planar code state?

- Planar code states and cluster states are closely related.
- $|K\rangle$ obeys entropy area law.
- $|K\rangle$ shows topological order.

2D local FTQC

Combine cluster states and planar code states to obtain this:

- Fault-tolerant universal quantum computation in 2D local architecture.
- Threshold: 0.75×10^{-2} for each source in an error model with preparation, gate, storage and measurement errors.
R.Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007).

Our Results

Theorem 4A: Complete local measurements on a planar code state can be simulated efficiently classically.

Theorem 4B: Suppose that at each step j of MQC the sets of measured and unmeasured qubits E_{j}, \bar{E}_{j} are connected. Then, partial local measurements on a planar code state can be simulated efficiently classically.
S. Bravyi and R. Raussendorf, PRA 76, 022304 (2007).

Connection with Ising model

Task: compute overlap between $|K\rangle$ and local state $|\Psi\rangle=\bigotimes\left|\phi_{j k}\right\rangle$.
$|K\rangle$ written in the computational basis $\left\{\left|x_{1}, x_{2}, . ., x_{n}\right\rangle, x_{k}= \pm 1\right\}$:

$$
|K\rangle=\sum_{x \in \mathcal{L}_{0}}|x\rangle
$$

where $\mathcal{L}_{0}=\left\{x: B_{p}|x\rangle=|x\rangle, \forall p\right\}$. Then

$$
\langle\Psi \mid K\rangle=\wedge \sum_{x \in \mathcal{L}_{0}} \exp \left(\sum_{(j k)} \beta_{j k} x_{j k}\right)
$$

where $\exp \left(2 \beta_{i j}\right)=\left\langle\phi_{i j} \mid+1\right\rangle /\left\langle\phi_{i j} \mid-1\right\rangle$.

Connection with Ising model

Task: compute overlap between $|K\rangle$ and local state $|\Psi\rangle=\bigotimes\left|\phi_{j k}\right\rangle$.
$|K\rangle$ written in the computational basis $\left\{\left|x_{1}, x_{2}, . ., x_{n}\right\rangle, x_{k}= \pm 1\right\}$:

$$
|K\rangle=\sum_{x \in \mathcal{L}_{0}}|x\rangle
$$

where $\mathcal{L}_{0}=\left\{x: B_{p}|x\rangle=|x\rangle, \forall p\right\}$. Then

$$
\langle\Psi \mid K\rangle=\wedge \sum_{x \in \mathcal{L}_{0}} \exp \left(\sum_{(j k)} \beta_{j k} x_{j k}\right)
$$

where $\exp \left(2 \beta_{i j}\right)=\left\langle\phi_{i j} \mid+1\right\rangle /\left\langle\phi_{i j} \mid-1\right\rangle$.
Now solve the constraint $x \in \mathcal{L}_{0}$:

$$
x_{i j}=\sigma_{i} \sigma_{j}, \quad\left(\sigma_{k}= \pm 1 \text { for all sites } k\right)
$$

Connection with Ising model

Task: compute overlap between $|K\rangle$ and local state $|\Psi\rangle=\bigotimes\left|\phi_{j k}\right\rangle$. (ij)
$|K\rangle$ written in the computational basis $\left\{\left|x_{1}, x_{2}, . ., x_{n}\right\rangle, x_{k}= \pm 1\right\}$:

$$
|K\rangle=\sum_{x \in \mathcal{L}_{0}}|x\rangle
$$

where $\mathcal{L}_{0}=\left\{x: B_{p}|x\rangle=|x\rangle, \forall p\right\}$. Then

$$
\langle\Psi \mid K\rangle=\frac{\wedge}{2} \sum_{\{\sigma\}} \exp \left(\sum_{(j k)} \beta_{j k} \sigma_{i} \sigma_{j}\right)=: Z[\beta],
$$

where $\exp \left(2 \beta_{i j}\right)=\left\langle\phi_{i j} \mid+1\right\rangle /\left\langle\phi_{i j} \mid-1\right\rangle$.
$Z[\beta]$ is the partition function of the Ising model.

Connection with the circuit model

Compute partition function by transfer matrix method:

$$
\langle\Psi \mid K\rangle=\frac{\wedge}{2}\langle\hat{+}| T_{L+1}^{(z)} T_{L+1}^{(x)} T_{L}^{(z)} . . T_{2}^{(z)} T_{1}^{(x)} T_{1}^{(z)}|\hat{千}\rangle .
$$

$-\square-T_{l, p}^{(x)}=\exp \left(\beta_{h(l, p)} X_{p}\right), \quad \bullet: T_{l, p}^{(z)}=\exp \left(\gamma_{v(l, p)} Z_{p} Z_{p+1}\right)$

Mapping to non-interacting fermions

Map Pauli operators $X_{p}, Z_{p} \otimes Z_{p+1}$ to Majorana fermions c_{l}, with $\left\{c_{k}, c_{l}\right\}=2 \delta_{k l} I$ (Jordan-Wigner transformation):

$$
\begin{aligned}
c_{2 p} & =X_{1} X_{2} \ldots X_{p-1} Y_{p}, \\
c_{2 p-1} & =X_{1} X_{2} \ldots X_{p-1} Z_{p},
\end{aligned}
$$

Then,
$-\square-: T_{l, p}^{(x)}=\exp \left(i \beta c_{2 p-1} c_{2 p}\right), \quad{ }^{\bullet}: T_{l, p}^{(z)}=\exp \left(i \gamma c_{2 p} c_{2 p+1}\right)$
$T^{(x)}, T^{(z)}$ are quadratic in $\left\{c_{l}\right\} \rightarrow$ efficiently simulatable.

Entanglement in surface code states

- In surface code states bi-partite entanglement proportional to length of boundary between parties, thus large.
- Classical simulation nevertheless efficient.

Large entanglement not sufficient for hardness of classical simulation.

The 2D cluster state

- 2D cluster state $|\mathcal{C}\rangle$ is universal for MQC.
a)

2D cluster state
b)

corresp. Ising interaction graph

$$
\langle\Psi \mid \mathcal{C}\rangle \sim \sum_{\left\{\sigma_{j} \mid j \neq v_{0}\right\}} \exp \left(\sum_{(j k) \mid j, k \neq v_{0}} \beta_{j k} \sigma_{j} \sigma_{k}+\sum_{j \neq v_{0}} \beta_{j 0} \sigma_{j}\right)
$$

- Planar Ising model with magnetic fields.
(Barahona 82: \geq NP-hard)

Summary

- MQC on planar code state can be efficiently simulated classically, by mapping to the planar Ising model.
- MQC on a universal 2D cluster state also described by the Ising model, but interaction graph is non-planar.
- Large entanglement in the resource state is necessary but not sufficient for universal MQC \& hardness of classical simulation.
+ Base camp for exploring graph theory from a quantum information perspective.

Open problems

Find the missing links!

