The Density Matrix Renormalization Group
NRG/real space RG

Particle in a box
— Problems with NRG

— Solutions
— DMRG for | ptle

Interacting Systems

— Density Matrix idea
— DMRG finite system algorithm

— A few examples from spin chains
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DMRG (continued)

* Efficiency

— Efficient H psi

— Wavefunction transformation
* Errors, extrapolation

* Two dimensions
— TV scan
— PEPS

— Finite size scaling with cylindrical BCs
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Wilson’s numerical RG for a Kondo impurity

Standard Feynman diagrammatic
/ Free el. gas perturbation approaches failed in

the 60’s.

Magnetic Successes:

impurity ‘ e “Poor man’s scaling”, Anderson
| et. al. 1970

eWilson’s NRG, 1975

e Andrei’s exact Bethe ansatz

solution, 1982

Wilson’s logarithmic basis




Wilson’s numerical RG
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Diagonalize block, keep m lowest
energy states

site
. Add one site, diagonalize block
Treat short distance, Hamiltonian again, keeping m states

high energy scales first

Key point:
Keep track of H through m x m operator and transformation matrices




Wilson’s approach applied in real space

Wilson’s analysis: try i1t on a particle
in a box!

NN

site
This approach gave qualitatively
wrong results.

Any truncation yields “kinks” at larger
scales.




DMRG Algorithm

E—o— Wilson’s algorithm

DMRG sweeps

*Diagonalization of entire system
eConstruction of density matrix for block
eTransformation to new density matrix states
eSweeps back and forth
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Matrix H(length,length); H = 2.0;
for(int 1 = 1; 1 < n; i++)
H(i,1+1) = H(+1,1) = -1.0;
Vector leftpsi(l), rightpsi(n-3), evals;
rightpsi = 1.0; leftpsi = 1.0;
// Finite System sweeps
for(int it = 1; it <= niter; it++)
{
for(int i = 1; 1 <= n-3; 1++)
{
leftpsi = leftpsi / Norm(leftpsi);
rightpsi = rightpsi / Norm(rightpsi);
Matrix Htil(4,4), 0(n,4); 0 = 0.0;
0.Column(l).SubVector(l,i) = leftpsi;
0(i+1,2) = 0(i+2,3) = 1.0;
0.Column(4).SubVector(i+3,n) = rightpsi;
Htil = 0.t(Q * H * 0;
EigenValues(Htil,evals,evecs);
Vector psitil(evecs.Column(l)), newpsi(n);
newpsi.SubVector(l,i) = leftpsi * psitil(l);
newpsi(i+l) = psitil(2);
newpsi(i+Z2) = psitil(3);
newpsi.SubVector(i+3,n) = rightpsi * psitil(4);
if(newpsi(i+l) < 90.0) newpsi *= -1.0;
cout << "@" << endl;
for(int j = 1; j <= n; j++)
cout << j SP newpsi(j) << endl;
if(i < n-3)
leftpsi = newpsi.SubVector(l,i+l),
rightpsi = newpsi.SubVector(i+4,n);







5=1 Heisenberg Chain
* Disordered, Haldane gap, finite ¢

* Good picture: Affleck-Kennedy-Lieb-Tasaki state

Singlet valence bond

e AKLT is a matrix product state with m=2 !
* S=| magnon excitations
* S=1/2 free end spins




Convergence for S=1/2 chain

2000 site S=1/2 Heisenberg chain

Absolute error in energy
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Comparison with Bethe Ansatz




Matrix Product States (Ostlund and Rommer, 1995)

* Insert density matrix/Schmidt eigenstates between all
pairs of sites

Matrix Product State:  W(s1,52,..5N) = Al[s1] A?[s2] ... AN[sn]

Basic Unit: tensor/matrix Asi l

DMRG Blocks = set of basis states:




DMRG versus MPS: blocks and bases versus variational states

DMRG wavefunction: =w(ls,t,r)
Density Matrix: f _é_@_(l)_

Diagonalized form

Sn>

New block: [}

Operators:




Energy extrapolation
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Typical extrapolation of magnetization




Typical extrapolation of magnetization

High accuracy
points indicate
quadratic approach!




Typical extrapolation of magnetization
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Cubic fit to well-converged measurements
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Square lattice: benchmark against QMC
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* Cylindrical BCs: periodic in y, open in x

* Strong AF pinning fields on left and right edges

* 2| sweeps, up to m=3200 states, 80 hours



Improved finite size scaling: choosing aspect ratios to reduce
finite size effects

I M | Short: proximity to
strong pinning makes
M large

Long: 1D makes M small

¢¢ b3 o . 2 . .
Standard” measurements in QMC estimate M~ using correlation
functions and have large finite size effects O(1/L,)

Can one choose a special aspect ratio to eliminate O(1/L,,) term!?

What is behavior at large length scales!? Use finite system spin wave
theory as a guide.




Square lattice
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Finite size spin wave theory
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* Optimal choice o = 1.764 eliminates linear term

e Even o = 1 has much smaller finite size effects




Tilted square lattice
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* For this “32x8” obtain M




Tilted square lattice

Sandvik QMC
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* Results are consistent with and with comparable

Qe accuracy to QMC!
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Pinning
fields
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Here only have L= 3, 6,9, ...
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* Only one sublattice pinned, other two rotate in a cone

* Other two have z component -M/2




Trlangular Iattlce Scaled Data
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What 1s the best a for the triangular lattice? With limited number
of widths and finite size effects, could use analytic help...

If o 1s within range 1.5 - 2, width 9 data has a range of 0.195 - 0.22,
consistent with GFMC and series expansions (but not SWT).




Preliminary Results--Triangular lattice

* Current result: M =0.205(15)
* Consistent with Series, GFMC
* SWT not nearly as accurate as for square lattice

Method Ref.
Series this work |«

ED 5,68

Eo/N M

—0.5502(4) [0.19(2)
—0.6103
—0.5604  [0.40
—0.5458(1) [0.205(10) |
—0.5466  |0.2497
0.266
0.2134

GFQMC 41
SWT+1/S 42
SWT+1/S 43

Coupled cluster |53
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