The Density Matrix Renormalization Group

- NRG/real space RG
- Particle in a box
- Problems with NRG
- Solutions
- DMRG for I ptle
- Interacting Systems
- Density Matrix idea
- DMRG finite system algorithm
- A few examples from spin chains
- Ql perspective: Entanglement and Schmidt Decomposition
- Matrix Product states and Diagrams
- Periodic BC algorithm

DMRG (continued)

- Efficiency
- Efficient H psi
- Wavefunction transformation
- Errors, extrapolation
- Two dimensions
- TV scan
- PEPS
- Finite size scaling with cylindrical BCs

Wilson's numerical RG for a Kondo impurity

Standard Feynman diagrammatic perturbation approaches failed in the 60 's.

Successes:

- "Poor man's scaling", Anderson et. al. 1970
-Wilson's NRG, 1975
- Andrei's exact Bethe ansatz solution, 1982

Wilson's logarithmic basis

Wilson's numerical RG

Treat short distance, high energy scales first

Diagonalize block, keep m lowest energy states

Add one site, diagonalize block Hamiltonian again, keeping m states

Key point:
Keep track of H through m x m operator and transformation matrices

Wilson's approach applied in real space

Wilson's analysis: try it on a particle in a box!

Any truncation yields "kinks" at larger scales.

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

- Diagonalization of entire system
- Construction of density matrix for block
- Transformation to new density matrix states
- Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

- Diagonalization of entire system
- Construction of density matrix for block
-Transformation to new density matrix states
-Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

-Diagonalization of entire system

- Construction of density matrix for block
-Transformation to new density matrix states
-Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

-Diagonalization of entire system - Construction of density matrix for block

- Transformation to new density matrix states
-Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

-Diagonalization of entire system

- Construction of density matrix for block
-Transformation to new density matrix states
-Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

-Diagonalization of entire system

- Construction of density matrix for block
- Transformation to new density matrix states
- Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

- Diagonalization of entire system
- Construction of density matrix for block
-Transformation to new density matrix states
-Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

-Diagonalization of entire system

- Construction of density matrix for block
-Transformation to new density matrix states
-Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

-Diagonalization of entire system - Construction of density matrix for block

- Transformation to new density matrix states
-Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

-Diagonalization of entire system

- Construction of density matrix for block
-Transformation to new density matrix states
-Sweeps back and forth

DMRG Algorithm

Wilson's algorithm

DMRG sweeps

-Diagonalization of entire system

- Construction of density matrix for block
- Transformation to new density matrix states
- Sweeps back and forth

```
    Matrix H(length, length); H = 2.0;
    for(int i = 1; i < n; i++)
    H(i,i+1) = H(i+1,i) = -1.0;
    Vector leftpsi(1), rightpsi(n-3), evals;
    rightpsi = 1.0; leftpsi = 1.0;
// Finite System sweeps
    for(int it = 1; it <= niter; it++)
        {
    for(int i = 1; i <= n-3; i++)
        {
        leftpsi = leftpsi / Norm(leftpsi);
        rightpsi = rightpsi / Norm(rightpsi);
        Matrix Htil(4,4), 0(n,4); 0 = 0.0;
        0.Column(1).SubVector(1,i) = leftpsi;
        O(i+1,2) = O(i+2,3) = 1.0;
    0.Column(4).SubVector(i+3,n) = rightpsi;
    Htil = 0.t() * H * 0;
    EigenValues(Htil,evals,evecs);
    Vector psitil(evecs.Column(1)), newpsi(n);
    newpsi.SubVector(1,i) = leftpsi * psitil(1);
    newpsi(i+1) = psitil(2);
    newpsi(i+2) = psitil(3);
    newpsi.SubVector(i+3,n) = rightpsi * psitil(4);
    if(newpsi(i+1) < 0.0) newpsi *= -1.0;
    cout << "@" << endl;
    for(int j = 1; j <= n; j++)
        cout << j SP newpsi(j) << endl;
if(i < n-3)
            leftpsi = newpsi.SubVector(1,i+1),
            rightpsi = newpsi.SubVector(i+4,n);
}
```


S=I Heisenberg Chain

- Disordered, Haldane gap, finite ξ
- Good picture:Affleck-Kennedy-Lieb-Tasaki state

- AKLT is a matrix product state with $\mathrm{m}=2$!
- $S=1$ magnon excitations
- $S=I / 2$ free end spins

Convergence for $S=1 / 2$ chain

2000 site $S=1 / 2$ Heisenberg chain

Comparison with Bethe Ansatz

Matrix Product States (Ostund and Rommer, 1995)

- Insert density matrix/Schmidt eigenstates between all pairs of sites
Matrix Product State: $\quad \Psi\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, . . \mathrm{s}_{\mathrm{N}}\right) \approx \mathrm{A}^{1}\left[\mathrm{~s}_{1}\right] \mathrm{A}^{2}\left[\mathrm{~s}_{2}\right] \ldots \mathrm{A}^{\mathrm{N}}\left[\mathrm{s}_{\mathrm{N}}\right]$
2^{N}

$\mathrm{N} \mathrm{m}^{2}$

Basic Unit: tensor/matrix

$$
A^{s}{ }_{i j}=\overbrace{i-(A)}^{s}
$$

DMRG Blocks $=$ set of basis states:

DMRG versus MPS: blocks and bases versus variational states
DMRG wavefunction:

New block:

Operators:

Energy extrapolation

Probability of states thrown away

Typical extrapolation of magnetization

Pinning AF fields applied to edges, cylindrical BCs

Typical extrapolation of magnetization

High accuracy points indicate quadratic approach!

Pinning AF fields applied to edges, cylindrical BCs

Typical extrapolation of magnetization

Pinning AF fields applied to edges, cylindrical BCs

Cubic fit to well-converged measurements

Square lattice: benchmark against QMC

20×10

- Cylindrical BCs: periodic in y, open in x
- Strong AF pinning fields on left and right edges
- 21 sweeps, up to $m=3200$ states, 80 hours

Improved finite size scaling: choosing aspect ratios to reduce finite size effects

Long: 1D makes M small

Short: proximity to strong pinning makes M large

- "Standard" measurements in QMC estimate M^{2} using correlation functions and have large finite size effects $O\left(1 / L_{y}\right)$
- Can one choose a special aspect ratio to eliminate $O\left(1 / L_{y}\right)$ term?
- What is behavior at large length scales? Use finite system spin wave theory as a guide.

Square lattice

Finite size spin wave theory

- Optimal choice $\alpha=1.764$ eliminates linear term
- Even $\alpha=1$ has much smaller finite size effects

Tilted square lattice

$\uparrow 0.45$

- Tilted lattice has smaller DMRG errors for its width
- For this " 32×8 " obtain $M=0.3052(4)$

Tilted square lattice

Sandvik QMC

- Results are consistent with and with comparable accuracy to QMC!

Results with Sz conservation turned off

Triangular Lattice

- Only one sublattice pinned, other two rotate in a cone
- Other two have z component -M/2
- Here only have $L_{y}=3,6,9, \ldots$

Triangular lattice, Scaled Data

What is the best α for the triangular lattice? With limited number of widths and finite size effects, could use analytic help...

If α is within range 1.5-2, width 9 data has a range of $0.195-0.22$, consistent with GFMC and series expansions (but not SWT).

Preliminary Results--Triangular lattice

- Current result: $M=0.205$ (I5)
- Consistent with Series, GFMC
- SWT not nearly as accurate as for square lattice

Method	Ref.	N	E_{0} / N	M
Series	this work	∞	$-0.5502(4)$	$0.19(2)$
ED	5,68	12	-0.6103	
		36	-0.5604	0.40
GFQMC	41	∞	$-0.5458(1)$	$0.205(10)$
SWT+1/S	42	∞	-0.5466	0.2497
SWT $+1 / \mathrm{S}$	43	∞		0.266
Coupled cluster	53	∞		0.2134

