
The Density Matrix Renormalization Group
• NRG/real space RG
• Particle in a box

– Problems with NRG

– Solutions
– DMRG for 1 ptle

• Interacting Systems
– Density Matrix idea
– DMRG finite system algorithm

– A few examples from spin chains

• QI perspective:  Entanglement and Schmidt Decomposition
• Matrix Product states and Diagrams

– Periodic BC algorithm



DMRG (continued)

• Efficiency
– Efficient H psi
– Wavefunction transformation

• Errors, extrapolation
• Two dimensions

– TV scan
– PEPS
– Finite size scaling with cylindrical BCs



Wilson’s numerical RG for a Kondo impurity

Free el. gas

Magnetic 
impurity

Standard Feynman diagrammatic 
perturbation approaches failed in 
the 60’s.

Successes:
• “Poor man’s scaling”, Anderson 
et. al. 1970
•Wilson’s NRG, 1975
•Andrei’s exact Bethe ansatz 
solution, 1982

=
Wilson’s logarithmic basis



site

<E>

Wilson’s numerical RG 

Treat short distance, 
high energy scales first

Diagonalize block, keep m lowest 
energy states

Add one site, diagonalize block 
Hamiltonian again, keeping m states

Key point:
Keep track of H through m x m operator and transformation matrices



Wilson’s approach applied in real space

site

<E>

This approach gave qualitatively
wrong results.

Wilson’s analysis:  try it on a particle 
in a box!

Any truncation yields “kinks” at larger 
scales.



DMRG Algorithm

Wilson’s algorithm

DMRG sweeps

•Diagonalization of entire system
•Construction of density matrix for block
•Transformation to new density matrix states
•Sweeps back and forth
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S=1 Heisenberg Chain
• Disordered, Haldane gap, finite ξ
• Good picture: Affleck-Kennedy-Lieb-Tasaki state

• AKLT is a matrix product state with m=2 !
• S=1 magnon excitations
• S=1/2 free end spins

Projection to S=1

Singlet valence bond



Convergence for S=1/2 chain
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Matrix Product States (Ostlund and Rommer, 1995)

• Insert density matrix/Schmidt eigenstates between all 
pairs of sites
Matrix Product State:

≈

Ψ(s1,s2,..sN) ≈ A1[s1] A2[s2] ... AN[sN]

Basic Unit: tensor/matrix Asij =
i j

s

A

2N N m2

DMRG Blocks = set of basis states:

i
=   { | i > }

|s1> |s2> |s3>



DMRG wavefunction:

Density Matrix:

Diagonalized form

DMRG versus MPS:  blocks and bases versus variational states

= w

New block:
|sn>

Operators:
Sz S-S+ +    ...    = Hblock

= ψ(l,s,t,r)ψ
ψ

ψ

J/2



Energy extrapolation
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12x6 square lattice Heisenberg

Probability of states thrown away
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Typical extrapolation of magnetization

Pinning AF fields applied to edges, cylindrical BCs
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High accuracy 
points indicate 
quadratic approach!

Pinning AF fields applied to edges, cylindrical BCs
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Square lattice: benchmark against QMC

• Cylindrical BCs: periodic in y, open in x
• Strong AF pinning fields on left and right edges
• 21 sweeps, up to m=3200 states, 80 hours

20 x 10

0.4



Improved finite size scaling: choosing aspect ratios to reduce 
finite size effects

• “Standard” measurements in QMC estimate M  using correlation 
functions and have large finite size effects 

• Can one choose a special aspect ratio to eliminate               term?
• What is behavior at large length scales?  Use finite system spin wave 

theory as a guide.

Long: 1D makes M small

Short: proximity to 
strong pinning makes 
M large

2

O(1/Ly)
O(1/Ly)

M
M



Square lattice
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Finite size spin wave theory

• Optimal choice                 eliminates linear term

• Even           has much smaller finite size effects 
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Tilted square lattice

• Tilted lattice has smaller DMRG errors for its width
• For this “32x8” obtain M = 0.3052(4)

0.45



Tilted square lattice

• Results are consistent with and with comparable 
accuracy to QMC!
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Results with Sz conservation turned off



Triangular Lattice

• Only one sublattice pinned, other two rotate in a cone
• Other two have z component -M/2
• Here only have L  = 3, 6, 9, ...

0.35

17.3 x 9 
lattice

Pinning 
fields

<S  >z

y



Triangular lattice, Scaled Data
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What is the best α for the triangular lattice?  With limited number 
of widths and finite size effects, could use analytic help...

If α is within range 1.5 - 2, width 9 data has a range of 0.195 - 0.22, 
consistent with GFMC and series expansions (but not SWT).



Preliminary Results--Triangular lattice
• Current result:  M = 0.205(15)
• Consistent with Series, GFMC
• SWT not nearly as accurate as for square lattice


