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I. INTRODUCTION

An impurity model describes an atom or molecule embedded in some host or bath, with

which it can exchange electrons. This exchange of electrons allows the impurity to make

transitions between different quantum states, and leads to a non-trivial dynamics. There-

fore, despite the zero dimensional nature (which makes impurity problems computationally

much more tractable than fermionic lattice models), their numerical simulation remains a

challenging task. Methods such as exact diagonalization or numerical RG, which explicitly

treat a finite number of bath states, work well for single orbital models. However, because

the number of bath states must be increased proportional to the number or orbitals, the

computational effort grows exponentially with system size, and requires severe truncations

of the bath already for two orbitals. Monte Carlo methods have the advantage that the

bath is integrated out and thus the (infinite) size of the bath Hilbert space does not affect

the simulation. While restricted to finite temperature, Monte Carlo methods are thus the

method of choice for the solution of large multi-orbital or cluster impurity problems. Fur-

thermore, over the last few years, significant progress has been achieved (both in terms of

efficiency and flexibility) with the development of diagrammatic Monte Carlo techniques.

These notes provide an overview over two recently developed methods – a weak-coupling

approach, which scales favorably with system size and allows the efficient simulation of large

impurity clusters, and a strong-coupling approach, which can handle impurity models with

strong interactions.
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For simplicity, we will focus on the single orbital Anderson impurity model defined by

the Hamiltonian H = H0 + HU + Hbath + Hmix with

H0 = −(µ − U/2)(n↑ + n↓), (1)

HU = U(n↑n↓ − (n↑ + n↓)/2), (2)

Hbath =
∑

σ,p

εpa
†
p,σap,σ, (3)

Hmix =
∑

σ,p

(V σ
p d†

σap,σ + h.c.). (4)

Here, H0 + HU ≡ Hloc describes the impurity with creation operators d†
σ, Hbath a non-

interacting bath of electrons (labeled by quantum numbers p) with creation operators a†
p,σ,

and Hmix controls the exchange of electrons between the impurity and the bath. The tran-

sition amplitudes V σ
p are called hybridizations.

The partition function Z is given by

Z = Tr
[

e−βH
]

, (5)

with β the inverse temperature, and Tr = TrdTra the trace over all the impurity and

bath states. By “solving the impurity model” we essentially mean computing the impurity

Green’s function (0 < τ < β)

g(τ) =
1

Z
Tr

[

e−(β−τ)Hde−τHd†
]

. (6)

which we choose to be positive.

Diagrammatic Monte Carlo simulation relies on an expansion of the partition function

into a series of diagrams and the stochastic sampling of (collections) of these diagrams. We

represent the partition function as a sum (or, more precisely, integral) of configurations c

with weight wc,

Z =
∑

c

wc, (7)

and implement a random walk c1 → c2 → c3 → . . . in configuration space in such a way that

each configuration can be reached from any other in a finite number of steps (ergodicity)

and that detailed balance is satisfied,

|w1|p(c1 → c2) = |w2|p(c2 → c1). (8)
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This assures that each configuration is visited with a probability proportional to |wc| and

one can thus obtain an estimate for the Green’s function from a finite number N of mea-

surements:

g ≈
∑N

i=1 |wci
|signci

gci
∑N

i=1 |wci
|signci

=
〈sign · g〉
〈sign〉 . (9)

The error on this estimate decreases like 1/
√

N . If the average sign of the configurations is

small and decreases exponentially with decreasing temperature, the algorithm suffers from

a sign problem.

The first step in the diagrammatic expansion is to rewrite the partition function as a time

ordered exponential using some interaction representation. We split the Hamiltonian into

two parts, H = H1 + H2 and define the time dependent operators in the interaction picture

as O(τ) = eτH1Oe−τH1. We furthermore introduce the operator A(β) = eβH1e−βH and

write the partition function as Z = Tr[e−βH1A(β)]. The operator A(β) satisfies dA/dβ =

eβH1(H1 − H)e−βH = −H2(β)A(β) and can be expressed as A(β) = T exp[−
∫ β

0
dτH2(τ)].

In a second step, the time ordered exponential is expanded into a power series,

Z = Tr
[

e−βH1Te−
R β

0
dτH2(τ)

]

=
∞

∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτnTr
[

e−(β−τn)H1(−H2) . . . e−(τ2−τ1)H1(−H2)e
−τ1H1

]

, (10)

which is a representation of the partition function of the form (7), namely the sum of all

configurations c = {τ1, . . . , τn}, n = 0, 1, . . ., τi ∈ [0, β) with weight

wc = Tr
[

e−(β−τn)H1(−H2) . . . e−(τ2−τ1)H1(−H2)e
−τ1H1

]

dτn. (11)

In the following I will discuss in detail two complementary diagrammatic Monte Carlo

algorithms, namely

1. a weak-coupling approach, based on an expansion of Z in powers of the interaction U ,

and on an interaction representation in which the time evolution is determined by the

quadratic part H0 + Hbath + Hmix of the Hamiltonian,

2. a “strong-coupling” approach, based on an expansion of Z in powers of the impurity-

bath hybridization V , and an interaction representation in which the time evolution

is determined by the local part H0 + HU + Hbath of the Hamiltonian.
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FIG. 1: An artists rendering of the weak- and strong-coupling diagrammatic algorithms. Top:

partition function. The black, red, blue and cyan colors correspond to HU , H0, Hbath and Hmix,

respectively. Middle: weak-coupling diagram. Bottom: “strong-coupling” diagram. Thick hori-

zontal lines represent a trace, thin lines connecting dots a determinant.

II. WEAK-COUPLING APPROACH

The first diagrammatic impurity solver, proposed by Rubtsov et al. three years ago

[1], is based on an expansion in H2 = HU . Here, I will discuss a variant of the weak

coupling approach, worked out very recently by Gull et al. [2], which combines the weak-

coupling expansion with an auxiliary field decomposition. This “continuous-time auxiliary

field mehtod” is an adaptation of an algorithm by Rombouts et al. [3] for lattice models

(which to my knowledge is the first diagrammatic Monte Carlo algorithm for fermions) and

in some respects similar to the well-known Hirsch-Fye algorithm [4].

A. Monte Carlo configurations

Following Rombouts and collaborators, we define H2 = HU − K/β and H1 = H − H2 =

H0 + Hbath + Hmix + K/β, with K some arbitrary (positive) constant. Equation (10) then

gives the expression for the partition function after expansion in H2, and (11) the weight of
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a configuration of n “interaction vertices”. At this stage, we expand our configuration space

by decoupling each interaction vertex using the decoupling formula proposed in Ref. [3],

−H2 = K/β − U(n↑n↓ − (n↑ + n↓)/2) =
K

2β

∑

s=−1,1

eγs(n↑−n↓), (12)

cosh(γ) = 1 + (βU)/(2K). (13)

This formula can easily be verified by checking the four states |0〉, | ↑〉, | ↓〉, and | ↑↓〉. The

configuration space is now the collection of all possible spin configurations on the imaginary

time interval [0, β): c = {{τ1, s1}, . . . , {τn, sn}}, n = 0, 1, . . ., τi ∈ [0, β), si = ±1. These

configurations have weight

wc = Tr
[

e−(β−τn)H1eγsn(n↑−n↓) . . . e−(τ2−τ1)H1eγs1(n↑−n↓)e−τ1H1

](Kdτ

2β

)n

. (14)

All the operators in the trace are quadratic in c and a, so we can first separate the spin

components and then proceed to the analytical calculation of the trace. Introducing Hσ
1 =

−µ(nσ −U/2) +
∑

p εpa
†
p,σap,σ +

∑

p(Vσ,pc
†
σap,σ + h.c.), which is the Hamiltonian of the non-

interacting impurity model, the trace in Eq. (14) becomes (Z0,σ = Tr[e−βHσ
1 ])

Tr
[

. . .
]

= e−K
∏

σ

Tr
[

e−(β−τn)Hσ
1 eγsnσnσ . . . e−(τ2−τ1)Hσ

1 eγs1σnσe−τ1Hσ
1

]

. (15)

Using the identity eγsσnσ = eγsσc†σcσ + cσc†σ = eγsσ − (eγsσ − 1)cσc†σ, the trace factors can be

expressed in terms of non-interacting impurity Green’s functions and evaluated using Wick’s

theorem. For example, at first order, we find

Tr
[

e−(β−τ1)Hσ
1 (eγsσ − (eγsσ − 1)cσc†σ)e

−τ1H1

]

= Z0,σ(eγsσ − g0σ(0+)(eγsσ − 1)). (16)

For n spins, this expression generalizes to

Tr
[

e−(β−τn)Hσ
1 eγsnσnσ . . . e−(τ2−τ1)Hσ

1 eγs1σnσe−τ1H1

]

= Z0,σ det N−1
σ ({si, τi}), (17)

where Nσ is a (n × n) matrix defined by the location of the decoupled interaction vertices,

the spin orientations and non-interaction Green’s function:

N−1
σ ({si, τi}) ≡ eΓσ − G0σ

(

eΓσ − I
)

. (18)

The notation is eΓσ ≡ diag(eγσs1 , . . . , eγσsn), (G0σ)i,j = g0σ(τi − τj) for i 6= j, (G0σ)i,i =

g0σ(0+). Combining Eqs. (14), (15), (17) and (18) we thus obtain the following weight for

configuration c = {{τ1, s1}, . . . , {τn, sn}}:

wc = e−K
(Kdτ

2β

)n ∏

σ

Z0σ det N−1
σ ({si, τi}). (19)



6

β

0

0

β

FIG. 2: Local update in the continuous-time auxiliary field method. The dashed line represents the

imaginary time interval [0, β). We increase the perturbation order by adding a spin with random

orientation at a random time. The perturbation order is decreased by removing a randomly chosen

spin.

B. Sampling procedure and detailed balance

For ergodicity it is sufficient to insert/remove spins with random orientation at random

times, because this allows in principle to generate all possible configuration. Furthermore,

the random walk in configuration space must satisfy the detailed balance condition (8).

Splitting the probability to move from configuration ci to configuration cj into a probability

to propose the move and a probability to accept it,

p(ci → cj) = pprop(ci → cj)p
acc(ci → cj), (20)

we arrive at the condition

pacc(ci → cj)

pacc(cj → ci)
=

pprop(cj → ci)

pprop(ci → cj)

|w(cj)|
|w(ci)|

. (21)

There is some flexibility in choosing the proposal probabilities. A reasonable choice for the

insertion/removal of a spin is the following (illustrated in Fig. 2):

• Insertion

Pick a random time in [0, β) and a random direction for the new spin:

pprop(n → n + 1) = (1/2)(dτ/β)

• Removal

Pick a random spin: pprop(n + 1 → n) = 1/(n + 1).
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For this choice, the ratio of acceptance probabilities becomes

pacc(n → n + 1)

pacc(n + 1 → n)
=

K

n + 1

∏

σ=↑,↓

| det(N
(n+1)
σ )−1|

| det(N
(n)
σ )−1|

, (22)

and the random walk can thus be implemented for example on the basis of the Metropolis

algorithm, ie the proposed move from n to n ± 1 is accepted with probability

min

[

1,
pacc(n → n ± 1)

pacc(n ± 1 → n)

]

. (23)

C. Determinant ratios and fast matrix updates

From Eq. (22) it follows that each update requires the calculation of a ratio of two

determinants. Computing the determinant of a matrix of size (n×n) is an O(n3) operation

(LU decomposition). The important thing to realize is that each insertion or removal of a

spin merely changes one row and one column of the matrix N−1
σ . We will now show that

it is therefore possible to evaluate the ratio in Eq. (22) in a time O(n2) (insertion) or O(1)

(removal).

The objects which are stored and manipulated during the simulation are, besides the lists

of the times {τi} and spins {si}, the matrices Nσ = (eΓσ −G0σ(eΓσ − I))−1. Inserting a spin

adds a new row and column to N−1
σ . Following the notation of Refs. [2, 5], we define the

blocks (omitting the σ index)

(N (n+1))−1 =





(N (n))−1 Q

R S



 , N (n+1) =





P̃ Q̃

R̃ S̃



 , (24)

where Q, R, S denote (n× 1), (1× n), and (1× 1) matrices, respectively, which contain the

contribution of the added spin. The determinant ratio needed for the acceptance/rejection

probability is then given by

det(N (n+1))−1

det(N (n))−1
=

1

det S̃
= S − [R][N (n)Q]. (25)

As we store N (n), computing the acceptance/rejection probability of an insertion move is

an O(n2) operation. If the move is accepted, the new matrix N (n+1) is computed out of
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N (n), Q, R, and S, also in a time O(n2):

S̃ = (S − [R][N (n)Q])−1, (26)

Q̃ = −[N (n)Q]S̃, (27)

R̃ = −S̃[RN (n)], (28)

P̃ = N (n) + [N (n)Q]S̃[RN (n)]. (29)

It follows from Eq. (25) that the calculation of the determinant ratio for removing a spin is

O(1), since it is just element S̃, and from the above formulas we also immediately find the

definition of the reduced matrix:

N (n) = P̃ − [Q̃][R̃]

S̃
. (30)

D. Measurement of the Green’s function

To compute the contribution of a configuration c to the Green’s function measurement

(6), we insert a creation operator d† at time 0 and an annihilation operator d at time τ ,

gc
σ(τ) =

1

wc

Tr
[

e−(β−τn)H1eγsn(n↑−n↓) . . . e−(τk+1−τ)H1dσe−(τ−τk)H1 . . . eγs1(n↑−n↓)e−τ1H1d†
σ

](Kdτ

2β

)n

.

(31)

with wc given in Eq. (14). The same steps as in section IIA (Wick’s theorem) then lead to

the expression

gc
σ(τ) =

1

det N−1
σ det N−1

σ̄

det N−1
σ̄ det





(N
(n)
σ )−1 [g0σ(τi)]

−[g0σ(τ − τj)(e
Γσj − 1)] g0σ(τ)





= g0σ(τ) + [g0σ(τ − τj)(e
Γσj − 1)]N (n)

σ [g0σ(τi)]. (32)

The second equality follows from Eq. (25) and square brackets denote vectors of length n.

To avoid unnecessary and time consuming summations during the Monte Carlo simula-

tions, we only accumulate the quantity

Sσ(τ̃) ≡
n

∑

k=1

δ(τ̃ − τk)
n

∑

l=1

[

(eΓσ − I)Nσ

]

kl
g0σ(τl), (33)

binning the time points τ̃ on a fine grid. After the simulation is completed, the Green’s

function is computed as

gσ(τ) = g0σ(τ) +

∫ β

0

dτ̃g0σ(τ − τ̃)
〈

Sσ(τ̃)
〉

. (34)
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E. Expansion order and role of the parameter K

It follows from Eq. (11) that

〈−H2〉 =
1

β

∫ β

0

dτ〈−H(τ)〉

=
1

β

1

Z

∞
∑

n=0

n + 1

(n + 1)!

∫ β

0

dτ

∫ β

0

dτ1 . . .

∫ β

0

dτnTr
[

e−βH1T (−H2(τ))(−H2(τn)) . . . (−H2(τ1))
]

=
1

β

1

Z

∑

c

n(c)wc =
1

β
〈n〉, (35)

and because 〈−H2〉 = K/β − U〈n↑n↓ − (n↑ + n↓)/2〉 we therefore find that the average

perturbation order 〈n〉 is related to the parameter K and the potential energy by

〈n〉 = K − βU〈n↑n↓ − (n↑ + n↓)/2〉. (36)

Increasing K leads to a higher perturbation order (and thus slower matrix updates), but

through Eq. (13) also to a smaller value of γ and thus to less polarization of the auxiliary

spins. A K of the order 1 appears to work well [2]. We also learn from Eq. 36 that the

average perturbation order grows essentially proportional to U (as expected for a weak-

coupling method), and proportional to inverse temperature.

III. “STRONG COUPLING” APPROACH - EXPANSION IN HYBRIDIZATION

The second diagrammatic method, which is in many ways complementary to the weak-

coupling approach, is based on an expansion of the partition function in powers of the

impurity-bath hybridization V . It has been presented for the Anderson impurity model in

Ref. [6] and and generalized to arbitrary

A. Monte Carlo configurations

Here, we decompose the Hamiltonian as H2 = Hmix and H1 = H−H2 = H0+HU +Hbath.

Since H2 ≡ Hd†

2 + Hd
2 =

∑

σ,p V σ
p d†

σap,σ +
∑

σ,p′ V
σ∗
p′ dσa†

p,σ has two terms, corresponding to

electrons hopping from the bath to the impurity and from the impurity back to the bath,

only even perturbation orders contribute to Eq. (10). Furthermore, at perturbation order

2n only the (2n)!/(n!)2 terms corresponding to n creation operators d† and n annihilation
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operators d will contribute. We can therefore write the partition function as a sum over

configurations c = {τ1, . . . , τn; τ ′
1, . . . , τ

′
n}:

Z =
∞

∑

n=0

∫ β

0

dτ1 . . .

∫ β

τn−1

dτn

∫ β

0

dτ ′
1 . . .

∫ β

τ ′
n−1

dτ ′
nTr

[

e−βH1THd
2 (τn)Hd†

2 (τ ′
n) . . .Hd

2 (τ1)H
d†

2 (τ ′
1)

]

.

(37)

Since the time evolution of the Anderson model (given by H1) does not rotate the spin,

there is an additional constraint, namely that both for spin up and spin down, there is an

equal number of creation and annihilation operators. Taking this into account and writing

out the expressions for Hd
2 and Hd†

2 explicitly, we find

Z =
∑

{nσ}

∏

σ

∫ β

0

dτσ
1 . . .

∫ β

τσ
nσ−1

dτσ
nσ

∫ β

0

dτ ′σ
1 . . .

∫ β

τ ′σ
nσ−1

dτ ′σ
nσ

× Tr
[

e−βH1T
∏

σ

∑

p1,...,pnσ

∑

p′1,...,p′nσ

V σ
p1

V σ∗
p′1

...V σ
pnσ

V σ∗
p′nσ

dσ(τσ
nσ

)a†
σ,pnσ

(τσ
nσ

)aσ,p′nσ
(τ ′σ

nσ
)d†

σ(τ ′σ
nσ

) . . . dσ(τσ
1 )a†

σ,p1
(τσ

1 )aσ,p′1
(τ ′σ

1 )d†
σ(τ ′σ

1 )
]

. (38)

Now, because the d and a operate on different spaces and H1 does not mix the impurity and

bath states, we can separate the bath and the impurity and write

Z = Zbath

∑

{nσ}

∏

σ

∫ β

0

dτσ
1 . . .

∫ β

τσ
nσ−1

dτσ
nσ

∫ β

0

dτ ′σ
1 . . .

∫ β

τ ′σ
nσ−1

dτ ′σ
nσ

× Trd

[

e−βHlocT
∏

σ

dσ(τσ
nσ

)d†
σ(τ

′σ
nσ

) . . . dσ(τ
σ
1 )d†

σ(τ ′σ
1 )

]

× 1

Zbath
Tra

[

e−βHbathT
∏

σ

∑

p1,...,pnσ

∑

p′1,...,p′nσ

V σ
p1

V σ∗
p′1

...V σ
pnσ

V σ∗
p′nσ

a†
σ,pnσ

(τσ
nσ

)aσ,p′nσ
(τ ′σ

nσ
) . . . a†

σ,p1
(τσ

1 )aσ,p′1
(τ ′σ

1 )
]

, (39)

where Zbath = Trae
−βHbath , and Hloc = H0 + HU . Because the bath is non-interacting, there

is a Wick theorem for the bath and Tra[. . .] can again be expressed as the determinant of

some matrix, whose size is equal to the perturbation order. To find the elements of this

matrix, it is useful to consider the lowest perturbation order, nσ = 1, nσ̄ = 0. In this case

∑

p1

∑

p′1

V σ
p1

V σ∗
p′1

1

Zbath

Tra

[

e−βHbathTa†
σ,p1

(τσ
1 )aσ,p′1

(τ ′σ
1 )

]

=
∑

p1

|V σ
p1
|2

e−εp1
β + 1







e−εp1
(β−(τσ

1 −τ ′σ
1 )) τσ

1 > τ ′σ
1

−e−εp1
(τ ′σ

1 −τσ
1 ) τσ

1 < τ ′σ
1

. (40)
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Note that Zbath =
∏

σ

∏

p(e
−εpβ + 1). Introducing the β-antiperiodic hybridization function

Fσ(τ) =
∑

p

|Vp|2
e−εpβ + 1







e−εp(β−τ) τ > 0

−e−εp(−τ) τ < 0
, Fσ(−iωn) =

∑

p

|V σ
p |2

iωn − εp

, (41)

which is related to the non-interacting Green’s function G0σ of section II by Fσ(−iωn) =

iωn + µ− U/2 −G0σ(iωn)−1, the first order result becomes Fσ(τσ
1 − τ ′σ

1 ). For higher orders,

one obtains

1

Zbath
Tra

[

e−βHbathT
∏

σ

∑

p1,...,pnσ

∑

p′1,...,p′nσ

V σ
p1

V σ∗
p′1

...V σ
pnσ

V σ∗
p′nσ

a†
σ,pnσ

(τσ
nσ

)aσ,p′nσ
(τ ′σ

nσ
) . . . a†

σ,p1
(τσ

1 )aσ,p′1
(τ ′σ

1 )
]

=
∏

σ

det M−1
σ , (42)

where M−1
σ is a (nσ × nσ) matrix with elements

M−1
σ (i, j) = Fσ(τσ

i − τ ′σ
j ). (43)

In the hybridization expansion method, the configuration space consists of all sequences c =

{τ ↑
1 , . . . , τ ↑

n↑
; τ ′↑

1 , . . . , τ ′↑
n↑
|τ ↓

1 , . . . , τ ↓
n↓

; τ ′↓
1 , . . . , τ ′↓

n↓
}, of n↑ creation and annihilation operators

for spin up (n↑ = 0, 1, . . .), and n↓ creation and annihilation operators for spin down (n↓ =

0, 1, . . .). The weight of this configuration is

wc = ZbathTrd

[

e−βHlocT
∏

σ

dσ(τσ
nσ

)d†
σ(τ

′σ
nσ

) . . . dσ(τ
σ
1 )d†

σ(τ
′σ
1 )

]

×
∏

σ

det M−1
σ (τσ

1 , . . . , τσ
nσ

; τ ′σ
1 , . . . , τ ′σ

nσ
)(dτ)2nσ . (44)

The trace factor represents the contribution of the impurity, which fluctuates between dif-

ferent quantum states, as electrons hop in and out. The determinants resum all the bath

evolutions which are compatible with the given sequence of transitions.

To evaluate the trace factor, we use the eigenbasis of Hloc, which is |0〉 (energy E0 = 0),

|↑〉, |↓〉 (energy E1 = −µ) and |↑↓〉 (energy E2 = U − 2µ). In this basis, the time evolution

operator e−τHloc = diag(e−τE0 , e−τE1, e−τE1, e−τE2) is diagonal while the operators dσ and d†
σ

will produce transitions between eigenstates with amplitude ±1.

Because the time evolution does not flip the spin, the creation and annihilation operators

for given spin have to alternate. This allows us to separate the operators for spin up from

those for spin down and to depict the time evolution by a collection of segments (each
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segment representing a time interval in which an electron of spin up or down resides on

the impurity). At each time, the eigenstate of the impurity follows immediately from the

segment representation and we can easily compute the trace factor as

Trd

[

e−βHlocT
∏

σ

dσ(τσ
nσ

)d†
σ(τ

′σ
nσ

) . . . dσ(τ
σ
1 )d†

σ(τ
′σ
1 )

]

= exp
[

µ(l↑ + l↓) − Uloverlap

]

, (45)

with lσ the total “length” of the segments for spin σ and loverlap the total length of the

overlap between up and down segments.

B. Sampling procedure and detailed balance

For ergodicity, it is sufficient to insert and remove pairs of creation and annihilation

operators (segments or anti-segments) for spin up and down. One possible strategy for

inserting a segment is the following: we pick a random time in [0, β) for the creation operator.

If it falls on an existing segment, the impurity is already occupied and the move is rejected.

If it falls on an empty space, we compute lmax, the length from this position to the next (in

the direction of increasing τ) segment. If there are no segments, lmax = β. The position of

the new annihilation operator is then chosen randomly in this interval of length lmax (see

Fig. 3). If we propose to remove a randomly chosen segment for this spin, then the proposal

probabilities are

pprop(nσ → nσ + 1) =
dτ

β

dτ

lmax

, (46)

pprop(nσ + 1 → nσ) =
1

nσ + 1
, (47)

and the ratio of acceptance probabilities therefore becomes

pacc(nσ → nσ + 1)

pacc(nσ + 1 → nσ)
=

βlmax

nσ + 1
eµlnew−Uδloverlap

| det(M
(nσ+1)
σ )−1|

| det(M
(nσ)
σ )−1|

. (48)

Here, lnew is the length of the new segment, and δloverlap the change in the overlap. Again,

we compute the ratio of determinants using the fast update formulas discussed in section II.

C. Measurement of the Green’s function

The strategy proposed in Ref. [6] is to create configurations which contribute to the

Green’s function measurement by decoupling the bath from a given pair of creation and
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overlap

0 β

0 βδ

l

l

l

max

new

FIG. 3: Local update in the “segment” picture. The two segment configurations correspond to spin

up and spin down. Each segment depicts a time interval in which an electron of the corresponding

spin resides on the impurity (the end points are the locations of the operators d† and d). We

increase the perturbation order by adding a segment or anti-segment of random length for random

spin. The perturbation order is decreased by removing a randomly chosen segment.

annihilation operators in c. The idea is to write

g(τ) =
1

Z

∑

c

wd(τ)d†(0)
c =

1

Z

∑

c

w(τ,0)
c

w
d(τ)d†(0)
c

w
(τ,0)
c

, (49)

where w
d(τ)d†(0)
c denotes the weight of configuration c with and additional operator d†(0)

and d(τ) in the trace factor, and w
(τ,0)
c the complete weight corresponding to the enlarged

operator sequence (including enlarged hybridization determinants). Since the trace factors

of both weights are identical, and det M−1
c is a minor of det(M

(τ,0)
c )−1, we find

w
d(τ)d†(0)
c

w
(τ,0)
c

=
det M−1

c

det(M
(τ,0)
c )−1

= (M (τ,0)
c )j,i, (50)

with i and j denoting the row and column corresponding to the new operators d† and

d in the enlarged (M
(τ,0)
c )−1. To transform the sum over c into a sum over configurations

c̃ = {c, τi, τ
′
j}, the new operators must be free to be anywhere on the imaginary time interval,

which (due to translational invariance) yields a factor 1
β
∆(τ, τi − τ ′

j), with

∆(τ, τ ′) =







δ(τ − τ ′) τ ′ > 0

−δ(τ − τ ′ − β) τ ′ < 0
. (51)
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Hence, the measurement of the Green’s function becomes

g(τ) =
1

Z

∑

c̃

wc̃

∑

i,j

1

β
∆(τ, τi − τ ′

j)(Mc̃)j,i =
〈

∑

i,j

1

β
∆(τ, τi − τ ′

j)Mj,i

〉

. (52)

Note that if we let all the integrals run from 0 to β, there is a factor 1/(n!)2 in wc and

1/((n + 1)!)2 in wc̃, with n the size of Mc. Changing from a sum over c to a sum over

c̃ therefore adds a factor (n + 1)2 if we restrict the measurement to a specific pair of d†

and d. Equivalently, we can sum over all the (n + 1)2 pairs of operators in the enlarged

configuration.

D. Generalization - Matrix formalism

It is obvious from the derivation in section IIIA that the hybridization expansion formal-

ism is applicable to general classes of impurity models. Because the trace factor in the weight

(44) is computed exactly, Hloc can contain essentially arbitrary interactions and degrees of

freedom (including spins, which cannot be treated using the weak-coupling method). For

example, the method has been used in Ref. [7] for a dynamical mean field investigation of

the Kondo lattice model, and in Ref. [8] for a study of the t − J model.

For multi-orbital impurity models with density-density interaction, the segment formalism

is still applicable: we have now a collection of segments for each flavor α (orbital, spin) and

the trace factor can still be computed from the length of the segments (chemical potential

contribution) and the overlaps between segments of different flavor (interaction terms).

If Hloc is not diagonal in the occupation number basis defined by the d†
α, the calculation

of Trd

[

e−βHlocT
∏

α dα(τα
nα

)d†
α(τ ′α

nα
) . . . dσ(τ

α
1 )d†

α(τ ′α
1 )

]

becomes more involved. We now have

to compute the trace explicitly in some basis of Hloc – preferably the eigenbasis, because

then the time evolution operators e−Hlocτ become diagonal. The operators dα and d†
α are

expressed as matrices in this eigenbasis, and the evaluation of the trace factor thus involves

the multiplication of matrices whose size is equal the size of the Hilbert space of Hloc. Since

the dimension of the Hilbert space grows exponentially with the number of flavors, the

calculation of the trace factor becomes the computational bottleneck of the simulation, and

the matrix formalism is therefore restricted to a relatively small number of flavors (. 10).

An important point, explained in the paper by Haule [8], is the use of conserved quantum

numbers (typically particle number for spin up and spin down, momentum, . . . ). If the eigen-
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states of Hloc are grouped according to these quantum numbers, the operator matrices will

acquire a sparse block structure, because for example d†
↑,q will connect the states correspond-

ing to quantum numbers m = {n↑, n↓, K} to those corresponding to m′ = {n↑+1, n↓, K +q}
(if they exist). Checking the compatibility of the operator sequence with a given starting

block furthermore allows one to find the (potentially) contributing quantum number sectors

without any matrix multiplications. The evaluation of the trace is thus reduced to a block

matrix multiplication of the form

∑

contr.m

Trm

[

. . . (O)m′′,m′(e−(τ ′−τ)Hloc)m′(O)m′,m(e−τHloc)m

]

. (53)

IV. COMPARISON BETWEEN THE TWO APPROACHES

The weak and “strong” coupling methods are in many ways complementary and their

respective strengths/weaknesses results from the scaling of the computational effort with

interaction strength and system size. For the Anderson impurity model considered in these

notes, the U dependence of the average perturbation order is shown in Fig. 4 (these are dy-

namical mean field theory calculations for a one-band Hubbard model, taken from Ref. [9]).

In the weak-coupling algorithms, where the average perturbation order is related to the

potential energy, one finds a roughly linear increase of the perturbation order with U . In

the hybridization-expansion method, the average perturbation order is related to the kinetic

energy, and decreases as the interaction strength increases. Thus, in single site models with

only density density interactions (where the evaluation of the trace factor in Eq. (44) is

cheap), the hybridization expansion method beats the weak coupling method in the strong

coupling regime.

For more complicated models, which require the matrix formalism discussed in section

IIID, the hybridization expansion method scales exponentially with system size, and can

only be applied to relatively small systems.10 Here, the weak-coupling approach – if appli-

cable – becomes the method of choice. Table I gives a summary of the different scalings

(assuming diagonal hybridization) and indicates which solver is appropriate for which type

of problem.
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FIG. 4: Average perturbation order for the weak-coupling and strong coupling (hybridization

expansion) algorithm. These results correspond to the DMFT solution of the one-band Hubbard

model with semi-circular density of states of bandwidth 4t, and temperature β = 1/T = 30. The

bath is therefore different for each data point.

solver scaling with β scaling with L use for

weak-coupling β3 L3 impurity clusters with density-density

interactions and hopping

hybridization expansion β3 L single site multi-orbital models with

(segment formulation) density-density interaction

hybridization expansion β exp(L) single site multi-orbital models with

(matrix formulation) general Uijkl

TABLE I: Scaling of the different impurity solvers with inverse temperature and system size.
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