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Success of DFT

BN nanotubes:
• Simulated: 

Rubio, Corkill and Cohen,PRB 49, 5081 (1994)
• Realised: 

Chopra et. al., Science 269, 966 (1995) 

GaSe nanotubes:
• Simulated: 

MC et al,PRB 58, R4277 (1998)
• Realised: 
      Gautam et al., J Am Chem Soc, 127, pp. 3658 (2005)
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Success of DFT

•Can predict structure: bond lengths, stability, ...
•Give good structure properties
-Lattice constants
-Phonon spectrum
-Formation energies

•Give good electronic properties
-Band structure (band gap problem)
-Ionization potentials
-Superconducting properties (phonon)
-Excitation energies (TDDFT)

•...
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Electron system

Ĥ = Ĥo + V̂ee

V̂ee =
1
2

∫
d3rd3r′Vee(r− r′)a†σ(r)a†σ′(r′)aσ′(r′)aσ(r)

tii′ =
∫

d3rψ∗
Ri

(r)
[

p̂2

2m
+ V (r)

]
ψRi′ (r)

a†σ(r) =
∑

i

ψ∗
Ri

(r)a†iσ aσ(r) =
∑

i

ψRi(r)aiσ

Uii′jj′ =
1
2

∫
d3rd3r′ψ∗

Ri
(r)ψRj (r)V (r− r′)ψ∗

Ri′
(r′)ψRj′ (r′)

Ĥo =
∫

d3ra†σ(r)
[

p̂2

2m
+ Vext(r)

]
aσ(r)

Ĥ =
∑

ii′

a†iσtii′ai′σ +
∑

ii′jj′

Uii′jj′a†iσa†i′σ′aj′σ′ajσ

Let us use a basis of localized states:

The electronic system can be written:
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Simplified Hubbard Model

Uii′jj′ =
1
2

∫
d3rd3r′ψ∗

Ri
(r)ψRj (r)V (r− r′)ψ∗

Ri′
(r′)ψRj′ (r′)

The            matrix elements are largest when i=j and i’=j’.Uii′jj′

Ĥ =
∑

ii′

a†iσtii′ai′σ +
∑

ii′

Uii′ii′a
†
iσa†i′σ′ai′σ′aiσ

If we also consider that only when i=i’ is most important, 
then we must have that            . σ != σ′

Ĥ =
∑

ii′ a†iσtii′ai′σ + U
∑

i a†iσa†i,−σai,−σaiσ

=
∑

ii′ a†iσtii′ai′σ + U
∑

i a†iσaiσa†i,−σai,−σ

=
∑

ii′ a†iσtii′ai′σ + U
∑

i n̂i↑n̂i↓
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Hubbard Model
Ĥo = −t

∑

<ij>

a†iσajσ + U
∑

i

n̂i↑n̂i↓

t! U

The total energy is minimized by making the kinetic term as small as 
possible through delocalization of the wave functions (Bloch states).

It is possible to define a Fermi energy which divide occupied and 
unoccupied states.

The total energy is minimized by making the Coulomb term as small as 
possible by avoiding double occupancy of each site. Localized state are 
preferable (Wannier) which are made by a linear combination of all k-
states.

At half-filling, each site is occupied by one electrons and we have a 
insulator: Mott insulator

t! U

EF
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Mott insulator and DFT
The Kohn-Sham equation:

where                               is obtained from LDA or GGA is like a mean-field solution.Vxc(r) =
∂Exc[n]
∂n(r)

Note that the potential is the same for both occupied and unoccupied states.

ĤDFT =
−!2

2m
∇2 + Vext(r) + VHartree(r) + Vxc(r)→

∑

ij

hija
†
iaj

Conclusion: LDA or GGA will not be able to reproduce a Mott insulator.

•LDA/GGA functionals tend to over-delocalize electrons
•On-site U repulsion is not well accounted for
•The electrons see their own potential, self-interaction
•Because the solution is mean-field, there is no correlation among the electrons.
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NiO

With LSDA we have:
•the correct ground state (antiferromagnetic)
•the correct structure (cubic)
•crystal field splitting
•but energy gap is too small
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Main idea of LDA+U

To separate electrons into two subsystems: localized d 
of f electrons for which the Coulomb d-d interaction 
should be taken into account by a term:

1
2
U

∑

i !=j

ninj

in a model Hamiltonian and delocalized s and p 
electrons which could be described by using an 
orbital-independent one-electron potential (LDA).

∑

ii′

Uii′ii′a
†
iσa†i′σ′ai′σ′aiσ
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LDA+U
The new functional is:

ELDA+U[n] = ELDA[n] + EU [nσ
i ]− Edc[nσ

i ]

The             is called the “double counting” term. Because we add explicitly the 
Hubbard term, we have to remove the energy contribution of these orbitals 
included in the LDA functional in order to not count twice their contributions.

Edc[nσ
i ]

It is found that even if LDA/GGA functionals describe poorly the electronic 
properties of these localized orbitals, the total energy of the system that they give 
is quite good, i.e. the structural properties are adequately reproduced.

The             is approximated as mean-field value of the Hubbard term as in the DFT 
spirit. With               , the double counting term is                       where                 .

Edc[nσ
i ]

1
2
U

∑

i !=j

ninj UN(N − 1)/2 N =
∑

i

ni

Therefore:

ELDA+U[n] = ELDA[n] +
U

2

∑

i !=j

ninj − UN(N − 1)/2
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LDA+U (2)
We can obtain the orbital eigenvalue by taking the derivative of the total energy 
with respect to the occupation number of that orbital. For LDA+U, we get:

εi =
∂ELDA+U

∂ni
= εLDA

i + U
∑

j !=i

nj − U(N − 1)/2− UN/2

= εLDA
i + U(N − ni)− UN + U/2

= εLDA
i + U(

1
2
− ni)

This last expression shows that is the state is occupied, its energy is shifted -
U/2 and if it is not occupied, its energy is raised by U/2.

The LDA+U potential would be: V LDA+U(r) = V LDA + U(
1
2
− ni)Pi

The operator Pi is the projection operator on the localized orbital.

From this formulation of the potential we can see that if the state i is initially less 
than half occupied, the Hubbard potential is positive and tend to repulse 
electrons. On the other hand, if the occupation is more than half filled, the 
potential is attractive and encourage electrons to localized on this particular site.  
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Hubbard model and d and f electrons

Ĥ =
∑

ii′

a†iσtii′ai′σ +
∑

ii′jj′

Uii′jj′a†iσa†i′σ′aj′σ′ajσ

Let the indices i,i’,j and j’ represent the different m orbitals of a give l subspace.

ĤU =
∑

I,mm′m′′m′′′

Umm′′m′m′′′a†mσa†m′′σ′am′′′σ′am′σ

If            , then  σ != σ′

a†mσa†m′′−σam′′′−σam′σ = a†mσam′σa†m′′−σam′′′−σ = nσ
mm′n−σ

m′′m′′′

And the matrix element associated is:

Umm′′m′m′′′ =
1
2

∫
d3rd3r′ψ∗

m(r)ψm′(r)V (r− r′)ψ∗
m′′(r′)ψm′′′(r′)

=
1
2

< m, m′′|Vee|m′m′′′ >
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Hubbard model and d and f electrons (2)
If            , then we have two possibilities: σ′ = σ

a†mσa†m′′σam′′′σam′σ = a†mσam′σa†m′′σam′′′σ = nσ
mm′nσ

m′′m′′′

a†mσa†m′′σam′′′σam′σ = −a†mσam′′′σa†m′′σam′σ = −nσ
mm′′′nσ

m′′m′

and

On the second term, let’s interchange m’ and m’’’, such that the density operators 
are the same but then the matrix element will be: < m,m′′|Vee|m′′′m′ >

Together the Hubbard part is:

ĤU =
1
2

∑

{m},σ

{
< m, m′′|Vee|m′m′′′ > nσ

mm′n−σ
m′′m′′′

+ (< m, m′′|Vee|m′m′′′ > − < m, m′′|Vee|m′′′m′ >) nσ
mm′nσ

m′′m′′′ }

This is a rotational invariant formulation (rotation over the m subspace).
The previous formulation was not.  Also, this formulation includes exchange 
contribution, see the second term above.
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Relation between U, J and <Vee>

< m,m′′|Vee|m′,m′′′ >=
∫

d3rd3r′R∗
lm(r)Y ∗

lmRlm′(r)Y ∗
lm′V (r − r′)R∗

lm′′(r′)Y ∗
lm′′Rlm′′′(r′)Y ∗

lm′′′

V (r − r′) =
1
ε

1
|r − r′| =

1
ε

∞∑

l=0

4π

2l + 1
rl
<

rl+1
>

+l∑

m=−l

Ylm(r)Y ∗
lm(r′)

Using the expansion representation for the Coulomb interaction:

We can rewrite:

< m,m′′|Vee|m′,m′′′ >=
∞∑

l′=0

4π

2l + 1

+l∑

p=−l

< lm|Yl′n|lm′ >< lm′′|Y ∗
l′n|lm′′′ > F l

< lm|Yl′n|lm′ > Gaunt coefficients; F l screened Slater’s integrals

Because of the properties of the Gaunt coefficients, we only need F0, F2 and F4.

We identify U anf J with average of the Coulomb integral:

U =
1

(2l + 1)2
∑

m,m′

< mm′|Vee|mm′ >= F 0

J =
1

(2l)(2l + 1)

∑

m!=m′

< mm′|Vee|m′m >=
F 2 + F 4

14
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More issues

The static dielectric is not know generally. 

In practice, U is obtained from a constrained DFT calculation or used as a 
variable parameter.

We still need a third relation to assign U, J to the F’s. It is commonly to refer to 
the work of DeGroot et al (PRB 42, 5459 (1990)), who determine that the ratio 
F4/F2 for transition-metal oxides was between 0.62 and 0.63. Hence, the ratio 
F4/F2=0.625 is often used. 
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Double Counting term
Now that we include exchange contribution, the mean-field energy for the 
double counting term is:

Edc = UN(N − 1)/2− J/2(N↑(N↑ − 1) + N↓(N↓ − 1))

This is known as the full localized limit (FLL). Czyzyk and Sawatzky (PRB, 
49, 14211 (1994)) proposed an “around mean field” expression for the 
term which is slightly different. Both implementation are available in 
Abinit.
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PAW pseudopotentials

= + -

PAW
orbital

Plane
wave

All electron
spherical part

Pseudized
part

•The smooth part of the wave function, outside the core, is 
represented by plane waves

•Inside the core, the wave functions are atomic like
•Because the information of the atomic wave function is 
retained, it is suitable to introduce Hubbard-like terms 
that require localized orbitals.
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Discontinuity in functional

credit: from Matteo Cococcioni’s thesis



International Summer School on Numerical Methods for Correlated Systems in Condensed Matter
Introduction to DFT+U, Michel Côté, Université de Montréal

NiO revisited U=8 eV
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YBa2Cu3O6

LDA LDA+U U=8 eV
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Other DFT approaches to correlated systems 
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•GW approximation
Not strictly a DFT method but a perturbation of Kohn-
Sham eigenvalues.

•SIC: Self-Interaction Correction
Correct for the self-interaction of electrons in DFT, 
however, it is orbital dependent.

•Hybrid functional
Functionals that are based on not only based on 
density but also on orbitals.

•DFT+DMFT, Dynamical Mean Field Theory
More later in the school
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Implementation in Abinit

done by Bernard Amadon, CEA Bruyères-le-Châtel, France

ref: B. Amadon, F. Jollet and M. Torrent, PRB 77, 155104 (2008)

see also O. Bengone et al, PRB 62, 16392 (2000) for 
discussion of implementation in PAW formalism. 


