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Outline of the lecture

1. Monte Carlo integration
2. Generating random numbers
3. The Metropolis algorithm
4. Monte Carlo error analysis
5. Cluster updates and Wang-Landau sampling
6. The negative sign problem in quantum Monte Carlo



1. Monte Carlo Integration



Integrating a function
• Convert the integral to a discrete sum

• Higher order integrators:
• Trapezoidal rule:

• Simpson rule:
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High dimensional integrals
• Simpson rule with M points per dimension

• one dimension the error is O(M-4 )

• d dimensions we need N = Md points
the error is order O(M-4 ) = O(N-4/d )

• An order - n  scheme in 1 dimension
is order - n/d d in d dimensions!

• In a statistical mechanics model with N particles we have 
6N-dimensional integrals (3N positions and 3N momenta).

• Integration becomes extremely inefficient!



• What is the probability to win in Solitaire?
• Ulam’s answer: play it 100 times, count the number of wins and 

you have a pretty good estimate

Ulam: the Monte Carlo Method



Throwing stones into a pond

• How can we calculate π by throwing stones?
• Take a square surrounding the area we want to measure:

• Choose M pairs of random numbers ( x, y ) and count how 
many points ( x, y ) lie in the interesting area

π/4



Monte Carlo integration
• Consider an integral

• Instead of evaluating it at equally spaced points 
evaluate it at M points xi chosen randomly in Ω:

• The error is statistical:

• In d>8 dimensions Monte Carlo is better than Simpson!
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Sharply peaked functions

• In many cases a function is large only in a tiny region
• Lots of time wasted in regions where the function is small
• The sampling error is large since the variance is large



Sharply peaked functions

• In many cases a function is large only in a tiny region
• Lots of time wasted in regions where the function is small
• The sampling error is large since the variance is large

wasted effort



Importance sampling

• Choose points not uniformly but with probability p(x):

• The error is now determined by Var f/p
• Find p similar to f and such that p-distributed random numbers are 

easily available 
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2. Generating Random Numbers



Random numbers

http://www.idquantique.com/
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Random numbers
• Real random numbers are hard to obtain

• classical chaos (atmospheric noise)
• quantum mechanics
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Random numbers
• Real random numbers are hard to obtain

• classical chaos (atmospheric noise)
• quantum mechanics

• Commercial products: quantum random number generators
• based on photons and semi-transparent mirror
• 4 Mbit/s from a USB device, too slow for most MC simulations

http://www.idquantique.com/
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http://www.idquantique.com


Pseudo Random numbers
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Pseudo Random numbers

• Are generated by an algorithm

• Not random at all, but completely deterministic

• Look nearly random however when algorithm is not 
known and may be good enough for our purposes

• Never trust pseudo random numbers however!



Linear congruential generators
• are of the simple form xn+1=f(xn)
• A good choice is the GGL generator

with a = 16807, c = 0, m = 231-1
• quality depends sensitively on a,c,m

• Periodicity is a problem with such 32-bit generators
• The sequence repeats identically after 231-1 iterations
• With 500 million numbers per second that is just 4 seconds!
• Should not be used anymore!

xn +1 = (axn + c)modm



Lagged Fibonacci generators

• Good choices are 
• (607,273,+)
• (2281,1252,+)
• (9689,5502,+)
• (44497,23463,+)

• Seed blocks usually generated by linear congruential
• Has very long periods since large block of seeds
• A very fast generator: vectorizes and pipelines very well

xn = xn− p ⊗ xn− qmodm



More advanced generators
• As well-established generators fail new tests, better and 

better generators get developed
• Mersenne twister (Matsumoto & Nishimura, 1997)
• Well generator (Panneton and L'Ecuyer , 2004)

• Based on lagged Fibonacci generators,
improved with random bit shuffles

• Deep number theory enters the design
of these generators

Pierre L’Ecuyer
(Univ. de Montréal)
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Are these numbers really random?
• No!

• Are they random enough?
• Maybe?

• Statistical tests for distribution and correlations

• Are these tests enough?
• No! Your calculation could depend in a subtle way on hidden 

correlations!

• What is the ultimate test?
• Run your simulation with various random number generators and 

compare the results



Marsaglia’s diehard tests

• Birthday spacings: Choose random points on a large interval. The spacings 
between the points should be asymptotically Poisson distributed. The name is 
based on the birthday paradox. 

• Overlapping permutations: Analyze sequences of five consecutive random 
numbers. The 120 possible orderings should occur with statistically equal 
probability.

• Ranks of matrices: Select some number of bits from some number of random 
numbers to form a matrix over {0,1}, then determine the rank of the matrix. Count 
the ranks.

• Monkey tests: Treat sequences of some number of bits as "words". Count the 
overlapping words in a stream. The number of "words" that don't appear should 
follow a known distribution. The name is based on the infinite monkey theorem.

• Count the 1s: Count the 1 bits in each of either successive or chosen bytes. 
Convert the counts to "letters", and count the occurrences of five-letter "words".

• Parking lot test: Randomly place unit circles in a 100 x 100 square. If the circle 
overlaps an existing one, try again. After 12,000 tries, the number of successfully 
"parked" circles should follow a certain normal distribution.

http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Poisson_distribution
http://en.wikipedia.org/wiki/Birthday_paradox
http://en.wikipedia.org/wiki/Birthday_paradox
http://en.wikipedia.org/wiki/Rank_%28linear_algebra%29
http://en.wikipedia.org/wiki/Rank_%28linear_algebra%29
http://en.wikipedia.org/wiki/Infinite_monkey_theorem
http://en.wikipedia.org/wiki/Infinite_monkey_theorem
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution


Marsaglia’s diehard tests (cont.)

• Minimum distance test: Randomly place 8,000 points in a 10,000 x 10,000 
square, then find the minimum distance between the pairs. The square of this 
distance should be exponentially distributed with a certain mean.

• Random spheres test: Randomly choose 4,000 points in a cube of edge 1,000. 
Center a sphere on each point, whose radius is the minimum distance to another 
point. The smallest sphere's volume should be exponentially distributed with a 
certain mean.

• The squeeze test: Multiply 231 by random floats on [0,1) until you reach 1. 
Repeat this 100,000 times. The number of floats needed to reach 1 should follow a 
certain distribution.

• Overlapping sums test: Generate a long sequence of random floats on [0,1). 
Add sequences of 100 consecutive floats. The sums should be normally distributed 
with characteristic mean and sigma.

• Runs test: Generate a long sequence of random floats on [0,1). Count ascending 
and descending runs. The counts should follow a certain distribution.

• The craps test: Play 200,000 games of craps, counting the wins and the number 
of throws per game. Each count should follow a certain distribution.

http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Exponential_distribution
http://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test
http://en.wikipedia.org/wiki/Wald-Wolfowitz_runs_test
http://en.wikipedia.org/wiki/Craps
http://en.wikipedia.org/wiki/Craps


Non-uniform random numbers

• we found ways to generate pseudo random numbers u in 
the interval [0,1[

• How do we get other uniform distributions?
• uniform x in [a,b[:     x = a+(b-a) u

• Other distributions:
• Inversion of integrated distribution 
• Rejection method



Non-uniform distributions

• How can we get a random number x distributed with f(x) in 
the interval [a,b[ from a uniform random number u?

• Look at probabilities:

• This method is feasible if the integral can be inverted easily
• exponential distribution f(x)=λ exp(-λx)
• can be obtained from uniform by x=-1/λ ln(1-u)

P[x < y] = f (t)dt =: F(y) ≡
a

y

∫ P[u < F(y)]

⇒ x = F−1(u)



Normally distributed numbers
• The normal distribution

• cannot easily be integrated in one dimension but can be 
easily integrated in 2 dimensions!

• We can obtain  two normally distributed numbers from 
two uniform ones (Box-Muller method)

f (x) = 1
2π
exp −x 2( )

n1 = −2 ln(1 − u1) sinu2
n2 = −2 ln(1 − u1) cosu2



Rejection method (von Neumann)

• Look for a simple distribution h that bounds f: f(x) < λh(x)
• Choose an h-distributed number x

• Choose a uniform random number number 0 ≤ u < 1

• Accept x if u < f(x)/ λh(x), 
otherwise reject x and get a new pair (x,u)

• Needs a good guess h to be efficient, numerical inversion of integral 
might be faster if no suitable h can be found

f / h
reject

accept
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Rejection method (von Neumann)

• Look for a simple distribution h that bounds f: f(x) < λh(x)
• Choose an h-distributed number x

• Choose a uniform random number number 0 ≤ u < 1

• Accept x if u < f(x)/ λh(x), 
otherwise reject x and get a new pair (x,u)

• Needs a good guess h to be efficient, numerical inversion of integral 
might be faster if no suitable h can be found

f / h
reject

accept
x

u



3. The Metropolis Algorithm



• Evaluate phase space integral by importance sampling

• Pick configurations with the correct Boltzmann weight

• But how do we create configurations with that distribution?
The key problem in statistical mechanics!

Monte Carlo for classical systems
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Z
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exp(−βE(c))

Z
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• Metropolis Algorithm for Monte Carlo
• Simplex Method for Linear Programming
• Krylov Subspace Iteration Methods
• The Decompositional Approach to Matrix

Computations
• The Fortran Optimizing Compiler
• QR Algorithm for Computing Eigenvalues
• Quicksort Algorithm for Sorting
• Fast Fourier Transform
• Integer Relation Detection
• Fast Multipole Method
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The Metropolis Algorithm (1953)



The Metropolis Algorithm (1953)



• Instead of drawing independent samples ci we build a Markov chain

• Transition probabilities Wx,y for transition x → y need to satisfy:

• Normalization: 

• Ergodicity: any configuration reachable from any other

• Balance: the distribution should be stationary

• Detailed balance is sufficient but not necessary for balance

Markov chain Monte Carlo

€ 

c1→ c2 → ...→ ci → ci+1→ ...

€ 

∀x,y ∃n :  W n( )x,y
≠ 0

€ 

Wx,y
y
∑ = 1

€ 

0 =
d
dt
p(x) = p(y)Wy,x

y
∑ − p(x)Wx,y

y
∑ ⇒ p(x) = p(y)Wy,x

y
∑

€ 

Wx,y

Wy,x

=
p(y)
p(x)



• Teller’s proposal was to use rejection sampling:

• Propose a change with an a-priori proposal rate Ax,y

• Accept the proposal with a probability Px,y

• The total transition rate is Wx,y =Ax,y Px,y

• The choice

satisfies detailed balance and was first proposed by 
Metropolis et al

The Metropolis algorithm

€ 

Px,y= min 1,
Ay,x p(y)
Ax,y p(x)

 

 
 

 

 
 



1. Pick a random spin and propose to flip it

2. Accept the flip with probability

3. Perform a measurement independent of whether the 
proposed flip was accepted or rejected!

Metropolis algorithm for the Ising model

P =min 1,e−(Enew −Eold )/T 
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1. Pick a random spin and propose to flip it

2. Accept the flip with probability

3. Perform a measurement independent of whether the 
proposed flip was accepted or rejected!

Metropolis algorithm for the Ising model

P =min 1,e−(Enew −Eold )/T 



Equilibration

• Starting from a random initial configuration it takes a while to reach 
the equilibrium distribution

• The desired equilibrium distribution is a left eigenvector with 
eigenvalue 1 (this is just the balance condition)

• Convergence is controlled by the second largest eigenvalue

• We need to run the simulation for a while to equilibrate and only 
then start measuring

€ 

p(x, t) = p(x) +O(exp(−λ2t))€ 

p(x) = p(y)Wy,x
y
∑



4. Monte Carlo Error Analysis



Monte Carlo error analysis
• The simple formula 

is valid only for independent samples

• The Metropolis algorithm gives us correlated samples!
The number of independent samples is reduced

• The autocorrelation time is defined by

€ 

ΔA =
Var A
M

€ 

ΔA =
Var A
M

1+ 2τA( )

€ 

τA =
Ai+ t Ai − A 2( )

t=1

∞

∑
Var A



Binning analysis
• Take averages of consecutive measurements: averages become less 

correlated and naive error estimates converge to real error

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16
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Seeing convergence in ALPS
• Look at the ALPS output in the first hands-on session

• 48 x 48 Ising model at the critical point

• local updates:

• cluster updates:



Correlated quantities

• How do we calculate the errors of functions of correlated 
measurements?

• specific heat

• Binder cumulant ratio

• The naïve way of assuming uncorrelated errors is wrong!
• It is not even enough to calculate all crosscorrelations due 

to nonlinearities except if the errors are tiny!

€ 

cV =
E 2 − E 2

T 2

€ 

U =
m4

m2 2
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Splitting the time series
Simplest idea: split the time series and evaluate for each segment

X

Y
X1 X2 X3 ... XM

Y1 Y2 Y3 ... YM

U=f(X,Y)
U1 U2 U3 ... UM

Problem: can be unstable and noisy for nonlinear functions such as X/Y
€ 

U ≈U =
1
M

Ui
i=1

M

∑

€ 

ΔU ≈
1

M(M −1)
Ui −U ( )2

i−1

M

∑
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ALPS.Alea library
• The ALPS class library implements reliable error analysis

• Adding a measurement:

alps::RealObservable mag;
…
mag << new_value;

• Evaluating measurements

std::cout << mag.mean() << “ +/- “ << mag.error();
std::cout “Autocorrelation time: “ << mag.tau();

• Correlated quantities?
• Such as in Binder cumulant ratios

• ALPS library uses jackknife analysis to get correct errors

alps::RealObsEvaluator binder = mag4/(mag2*mag2);
std::cout << binder.mean() << “ +/- “ << binder.error();

€ 

m4 m2 2



5. Critical slowing down, 
cluster updates and 

Wang-Landau sampling



Autocorrelation effects

• The Metropolis algorithm creates a Markov chain

• successive configurations are correlated, leading to an 
increased statistical error

• Critical slowing down at second order phase transition

• Exponential tunneling problem at first order phase transition

c1→ c2 → ...→ ci → ci+1→ ...

ΔA = A − A( )2 =
Var A

M
(1+ 2τA )

τ ∝L2

τ ∝exp(Ld−1)



• Energy of configurations in Ising model
• – J if parallel: 
• + J if anti-parallel:

• Probability for flip
• Anti-parallel: flipping lowers energy, always accepted 

• Parallel:

no change with probability                 !!!

From local to cluster updates

€ 

ΔE = −2J⇒ P =min 1,e−2ΔE /T( ) =1

€ 

ΔE = +2J⇒ P =min 1,e−2ΔE /T( ) = exp(−2βJ)

€ 

1− exp(−2βJ)



• Energy of configurations in Ising model
• – J if parallel: 
• + J if anti-parallel:

• Probability for flip
• Anti-parallel: flipping lowers energy, always accepted 

• Parallel:

no change with probability                 !!!

From local to cluster updates

€ 

ΔE = −2J⇒ P =min 1,e−2ΔE /T( ) =1

€ 

ΔE = +2J⇒ P =min 1,e−2ΔE /T( ) = exp(−2βJ)

€ 

1− exp(−2βJ)

Alternative: flip both! 

€ 

P = exp(−2J /T)
P =1− exp(−2J /T)



• No critical slowing down (Swendsen and Wang, 1987) !!! 
• Ask for each spin: “do we want to flip it against its neighbor?”

• antiparallel: yes

• parallel: costs energy

• Accept with             

• Otherwise: also flip neighbor!

• Repeat for all flipped spins => cluster updates

Swendsen-Wang Cluster-Updates
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P =1− exp(−2βJ)
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• Repeat for all flipped spins => cluster updates
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• Repeat for all flipped spins => cluster updates

Swendsen-Wang Cluster-Updates

€ 

P = exp(−2βJ)

€ 

P =1− exp(−2βJ)

√

√

√

√

√

√ √

√√

√

√

√

√

Shall we flip neighbor?



• No critical slowing down (Swendsen and Wang, 1987) !!! 
• Ask for each spin: “do we want to flip it against its neighbor?”

• antiparallel: yes

• parallel: costs energy

• Accept with             

• Otherwise: also flip neighbor!

• Repeat for all flipped spins => cluster updates

Swendsen-Wang Cluster-Updates

€ 

P = exp(−2βJ)

€ 

P =1− exp(−2βJ)

√

√

√

√

√

√ √

√√

√

√

√

√ Done building cluster
Flip all spins in cluster
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• Tunneling problem at a first order phase transition is solved 
by changing the ensemble to create a flat energy landscape
• Multicanonical sampling (Berg and Neuhaus, Phys. Rev. Lett. 1992)
• Wang-Landau sampling (Wang and Landau, Phys. Rev. Lett. 2001)
• Quantum version (MT, Wessel and Alet, Phys. Rev. Lett. 2003)
• Optimized ensembles (Trebst, Huse and MT, Phys. Rev. E 2004)
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• Wang-Landau sampling (Wang and Landau, Phys. Rev. Lett. 2001)
• Quantum version (MT, Wessel and Alet, Phys. Rev. Lett. 2003)
• Optimized ensembles (Trebst, Huse and MT, Phys. Rev. E 2004)

First order phase transitions

? ?
liquid solid
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canonical weight

First-order phase transition

nw(E) = exp(−βE) g(E)

T=Tc

Exponentially suppressed tunneling out of metastable 
states.

10-state Potts model
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Flat-histogram sampling

“flat-histogram” weight

nw(E) = 1/g(E) · g(E)

How do we obtain the weights?

energy

Flat-histogram MC algorithms
➥ Multicanonical recursions

➥ Wang-Landau algorithm
  B. A. Berg and T. Neuhaus  (1992)

  F. Wang and D.P. Landau  (2001)

➥ Quantum version
M. Troyer, S. Wessel and F. Alet  (2003)
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1

•  Simulate using Metropolis algorithm 

g̃(E) = g̃(E) · f
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•  Iteratively improve ensemble during simulation

The Wang-Landau algorithm
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Calculating the density of states

w(E) =
1

g̃(E)

1

g̃(E) = 1

1

•  Start with “any” ensemble

p(E1 → E2) = min
(

1,
w(E2)
w(E1)

)
= min

(
1,

g̃(E1)
g̃(E2)

)

1

•  Simulate using Metropolis algorithm 

g̃(E) = g̃(E) · f

1

•  Iteratively improve ensemble during simulation

•  Reduce modification factor  f  when histogram is flat.

The Wang-Landau algorithm
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6. The negative sign problem in 
quantum Monte Carlo



• Not as easy as classical Monte Carlo

• Calculating the eigenvalues Ec is equivalent to solving the problem

• Need to find a mapping of the quantum partition function 
to a classical problem

• “Negative sign” problem if some pc < 0

Quantum Monte Carlo

€ 

Z = e−Ec / kBT
c
∑

€ 

Z = Tre−βH ≡ pc
c
∑
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• Feynman (1953) lays foundation for quantum Monte Carlo
• Map quantum system to classical world lines

Quantum Monte Carlo

“im
ag

in
ar

y t
im

e”

quantum mechanical

world lines
space

classical

particles

Use Metropolis algorithm to update world lines



• In mapping of quantum to classical system

• there is a “sign problem” if some of the pi < 0
• Appears e.g. in simulation of electrons when two electrons exchange 

places (Pauli principle) 

The negative sign problem

Z = Tre−βH
=

∑

i

pi

|i1>

|i2>

|i3>

|i4>

|i1>



• Sample with respect to absolute values of the weights 

• Exponentially growing cancellation in the sign

• Exponential growth of errors

• NP-hard problem (no general solution) [Troyer and Wiese, PRL 2005]

The negative sign problem

€ 

A = Aipi
i
∑ pi

i
∑ =

Ai sgn pi pi
i
∑ pi

i
∑

sgn pi pi
i
∑ pi

i
∑

≡
A ⋅ sign p

sign p

〈sign〉 =

∑
i pi∑

i |pi|
= Z/Z|p| = e−βV (f−f|p|)

∆sign

〈sign〉
=

√

〈sign2〉 − 〈sign〉2√
M〈sign〉

≈
eβV (f−f|p|)

√
M



The origin of the sign problem



The origin of the sign problem

• We sample with the wrong distribution by ignoring the sign!



The origin of the sign problem

• We sample with the wrong distribution by ignoring the sign!

• We simulate bosons and expect to learn about fermions?
• will only work in insulators and superfluids



The origin of the sign problem

• We sample with the wrong distribution by ignoring the sign!

• We simulate bosons and expect to learn about fermions?
• will only work in insulators and superfluids

• We simulate a ferromagnet and expect to learn something 
useful about a frustrated antiferromagnet?



The origin of the sign problem

• We sample with the wrong distribution by ignoring the sign!

• We simulate bosons and expect to learn about fermions?
• will only work in insulators and superfluids

• We simulate a ferromagnet and expect to learn something 
useful about a frustrated antiferromagnet?

• We simulate a ferromagnet and expect to learn something 
about a spin glass?
• This is the idea behind the proof of NP-hardness
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Working around the sign problem
1. Simulate “bosonic” systems

• Bosonic atoms in optical lattices

• Helium-4 supersolids

• Nonfrustrated magnets

2. Simulate sign-problem free fermionic systems
• Attractive on-site interactions

• Half-filled Mott insulators

3. Restriction to quasi-1D systems
• Use the density matrix renormalization group method (DMRG)

4. Use approximate methods
• Dynamical mean field theory (DMFT)



7. Diverging Length Scales
and Finite Size Scaling
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• Typical length scale ξ divegres at phase transition at Tc
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Divergence of the correlation length ξ
• Typical length scale ξ divegres at phase transition at Tc

• To avoid system size effects we need to have  L >> ξ→∞

m ∝ (Tc − T)
β

ξ ∝| T − Tc |
−ν

ξL

€ 

T >> Tc

ξL
€ 

T ≈ Tc



Renormalization group and scaling
• As the length scale ξ diverges, “microscopic details” can be ignored

• Physics happens at “large” length scale ξ
• Microscopic length scale a of lattice can be ignored
• All models with same symmetry converge to the same fixed point

• Fixed point is scale free
• The only length scale ξ diverges
• Self-similarity and fractal behavior
• Power laws are scale free functions

disorderedordered
critical point

m ∝ (Tc − T)
β

ξ ∝| T − Tc |
−ν



• Infinite system

write M in terms of length scale ξ

• finite systems: L acts as cutoff to ξ

• We can obtain critical exponents β, ν from finite size effects

“Finite-size scaling”

ξL

€ 

€ 

ξ ∝ Tc −T( )−ν

€ 

M ∝ Tc −T( )β

€ 

⇒ M(T) = M(ξ)∝ξ−β /ν

€ 

M(T,L) = M(ξ,L) = M(ξ /L)∝
ξ−β /ν L >> ξ

L−β /ν L << ξ

 
 
 



• Quantum phase transition in a 2D Heisenberg antiferromagnet
• Susceptibility

• Structure factor of magnetization

• Scaling fits give z and η
• Additional dynamical critical exponent z

is only difference from classical FSS

A quantum antiferromagnet

S(Q) = L2m ∝L2−z−η

χs ∝L2−η

1

10

100

1000

10 100L/a

Staggered suscpetibility
Staggered structure
factor

2-η = 1.985 ± 0.025

2-z-η = 0.967 ± 0.005

€ 

ξτ ∝ξ
z


