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Polaron = electron + lattice distortion (phonon cloud) surrounding it 

 very old problem: Landau, 1933

 very many models to study, e.g. 

 single polaron (one extra charge carrier in an insulator) vs. bi-polarons = bound state of two 
polarons, vs. many-polarons systems ( metals, superconductors)

 large polarons (continous approx) vs. small polarons (lattice model  different lattices with d=1,2,3, 
different couplings, etc.)

 coupling to acoustic or to optical phonon modes, or to both?

 and then: spin polarons, Jahn-Teller/orbital polarons, … 

 most famous/studied polaron  models: Frohlich (continuous model) and Holstein (lattice model). 

 Today: review of methods to study the single-polaron problem in the Holstein model, + some results 
and some physics. 



Model of interest: the Holstein Hamiltonian (1959)

The simplest lattice Hamiltonian describing electron-phonon (phonons = lattice vibrations) interactions:

Kinetic energy – describes how 
the electron hops on the lattice 

Each atom of the lattice is like a harmonic oscillator (quick reminder):

X0

 lattice 

Interaction: ni = # of electrons at the site



Eigenstates are linear combinations of states with the electron at different sites, surrounded by a 
lattice distortion (cloud of phonons). 

This composite object = electron dressed by surrounding cloud of phonons is called a polaron. 

Hamiltonian was proposed as simplified description of a polar crystal  1D sketch
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Asymptotic behavior:

 zero-coupling limit, g=0  eigenstates of given k:                          

with eigenenergies                                                         where, for example,    

(spin is irrelevant, N = number of unit cells,  infinity at the end, all k,q-sums over Brillouin zone)
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 weak coupling, g = “small”  low-energy eigenstates of known k:                          

with eigenenergies                                                                 (for k< kcross)

k

Ek

polaron band (infinitely 
long-lived quasiparticle)

low-k: wavefunction dominated 
by free electron contribution

high-k: wavefunction 
dominated by el+1ph 

contributions

The phonons can be 
quite far spatially from the 
electron  large polaron

polaron + one- phonon 
continuum (finite lifetimes)

Ω



 infinitely strong coupling, t=0 electron stays at a single site forever  ni=1 there, 0 elsewhere 

Recall coherent states:

polaron binding energy;
small polaron limit

only discrete eigenstates!

→



Ground-state energy: -2dt (half-bandwidth, at zero coupling)  -g2/Ω (infinite coupling)

 Effective coupling as their ratio λ = g2/(2dtΩ)  weak coupling λ<< 1, strong coupling λ >>1

3 energy scales: t, Ω, g  2 dimensionless parameters λ = g2/(2dtΩ), Ω/t (d is lattice dimension)

 very strong coupling, λ>>1 polaron energy is 

Question: how is the spectrum evolving between these two very different limits?

Again, must have a polaron+one-phonon continuum at EGS + Ω  details too nasty 



Quantity of interest: the Green’s function or propagator

 eigenenergies and eigenfunctions (1 electron, total momentum 
k, α is collection of other needed quantum numbers)

A(k,ω)

ω

η

Area is equal to Z

Z = quasiparticle weight  measures how similar is the true wavefunction to a non-interacting (free 
electron, no phonons) wavefunction

 = spectral weight,  is measured (inverse) angle-
resolved photoemission spectroscopy  (ARPES)



weak coupling                                                          Lang-Firsov  impurity limit

How does the spectral weight evolve between these two very different looking limits?

Ω



Most numerical approaches  focus on the evolution of the polaron band (low-energy properties)

 variational methods (Trugman and co-workers)

 truncate size of cloud (both spatial and how many phonons are allowed)  Lanczos

 advantages: continuous k (not a finite-size chain!); matrix elements are very simple to get, can be 
extremely accurate for discrete states (like the polaron band of interest)

 disadvantages: at large couplings, very many phonon combinations  huge dimension of 
variational  Hilbert space (gets worse in higher dimension). Also, no predictive powers for the 
continuum above the polaron band  nothing about high-energy properties. 



 Diagrammatic Quantum Monte Carlo (Prokof’ev, Svistunov and co-workers)

calculate Green’s function in imaginary time

Basically, use Metropolis algorithm to sample which diagrams to sum, and keep summing 
numerically until convergence is reached

 advantages: once code is written, it is fast (min. per data point) and very accurate for low-
energies (discrete eigenstates). In principle it can be used to generate whole G(k,w) but 
convergence for short-times is much more difficult, also one needs analytic continuation to switch 
to real frequencies  A. Mishchenko

 disadvantages: writing the code (for me, at least)



 Quantum Monte Carlo methods (Kornilovitch in Alexandrov group, Hohenadler in Fehske 
group, …)  write partition function as path integral, use Trotter to discretize it, then evaluate. 
Mostly low-energy properties are calculated/shown.

 Exact diagonalization = ED  finite system (still need to truncate Hilbert space)  can get 
whole spectrum and then build G(k,w)

 Cluster perturbation theory: ED finite system, then use perturbation in hopping to “sew” finite 
pieces together  infinite system. 

 advantage: can calculate G(k,w) for all k. 

 disadvantage: problems in higher dimension, and lower couplings (big phonon clouds)

 “Special” methods:

 DMRG (density matrix renormalization group, if d=1)

 DMFT (dynamic mean-field theory, if d infinity)

 …. (lots of work done in these 50 years, as you may imagine)

They’re all in very good agreement for low-energy properties, the difference is in efficiency 
and “generalizability” to higher dimensions, other models, etc.



Σ(k,ω) =                   +                                 +                           +….

For Holstein polaron,  we need to sum to orders well above g2/Ω2 to get convergence. 

n 1 2 3 4 5 6 7 8

Σ, exact 1 2 10 74 706 8162 110410 1708394

Σ, SCBA 1 1 2 5 14 42 132 429

Traditional approach: find a subclass of diagrams that can be summed, ignore the rest

 self-consistent Born approximation (SCBA) – sums only non-crossed diagrams (much fewer)

Analytic approaches (other than perturbation theory)  calculate self-energy 



First: MA(0) – simplest (least accurate) version

Replace each                       in the self-energy diagrams by

 one can sum all the resulting self-energy diagrams:

 result is EXACT both for g=0 and for t=0 

 trivial to evaluate

New proposal: the MA(n) hierarchy of approximations:

Idea:  keep ALL self-energy diagrams, but approximate each such that the summation can be 
carried out analytically. (Alternative explanation: generate the infinite hierarchy of coupled 
equations of motion for the propagator, keep all of them instead of factorizing and truncating, but 
simplify coefficients so that an analytical solution can be found).

 There are good reasons why this should work well at low energies  (ask!)

 This approx. obeys exactly multiple sum rules for the spectral weight (at least 6)



2D results for ground-state properties







3D Polaron dispersion

L. -C. Ku, S. A. Trugman and S. Bonca, Phys. Rev. B 65, 174306 (2002).



A(k,ω) in 1D, Ω =0.4 t

G. De Filippis et al, PRB 72, 014307 (2005)

MA becomes exact for small, large λ

λ = 0.5 λ = 1

λ = 2



MA(0) is remarkably good, especially considering how simple it is. Higher d is equally trivial 
as d=1. However, it is an approximation, and it does have its problems:

 self-energy is momentum independent
 the accuracy worsens if Ω/t  0
 doesn’t see the polaron+one phonon continuum where it should be

EGS + Ω – continuum must always start above this energy

1D, Ω =0.5t, λ =0.25



Problems easy to fix  improve the approximation: 

MA(n) keep free propagators of frequency ω – mΩ, m < n exactly in the self-energy 
diagrams; all propagators with more phonons (lower energy) are momentum averaged

MA(1) – G0(k-q,ω−Ω) contributions exact, lines with 2 or more phonons are momentum 
averaged.

MA(2) – G0(k-q,ω−Ω), G0(k-q,ω−2Ω) contributions exact, lines with 3 or more phonons 
are momentum averaged, etc. 

Still can sum all diagrams in the self-energy, calculation still numerically trivial



(models with g(q) coupling have a k-dependent self-energy from level MA(0))

details in PRB 76, 165109 (2007) 



1D, Ω=0.5t

λ = 0.6

λ = 1.1

1D, Ω=0.1t

Sum rules:

MA(0) exact up to n=5 and accurate above; MA(1) exact up to n=7 and more accurate 
above; MA(2) exact up to n=9 and yet more accurate above, … 



1D, Ω =0.5t, λ =0.25



1D, k=0, Ω=0.5t

MA(0) MA(2)



Our answer to how spectral weight evolves as λ increases from weak to strong coupling





Example: coupling to breathing-mode phonon (phonons live on different sublattice than the electron)

Numerics: Bayo Lau, M. Berciu and G. A. Sawatzky, PRB  76, 174305 (2007) 

Generalizations:

 Lucian: multiple phonon modes and/or multiple free-electron bands (but Holstein coupling)

 Glen: el-ph coupling which depends on phonon momentum

 bipolarons (well advanced)

 future: finite-T, other quantities (optical 
conductivity), higher concentrations, models 
with g(k,q), …. 



Why should this be a reasonable thing to do?

(i) Real-space argument: MA(0) means 

i
j

i
j

At low energies ω ~ EGS < -2dt  free electron Greens’ functions decrease exponentially 
with distance |i-j|  MA(0) keeps the most important (diagonal) contribution. The 
approximation becomes better the more phonons are present, since the lower ω – n Ω is, 
the faster the decay.  

 Expect ground-state properties to be described quite accurately.



(ii) Spectral weight sum rules (see PRB 74, 245104 (2006) for details)

 can be calculated exactly

MA(0) satisfies exactly the first 6 sum rules, and with good accuracy all the higher ones.

Note: it is not enough to only satisfy a few sum rules, even if exactly. ALL must be satisfied as well 
as possible.

Examples: 1. SCBA satisfies exactly the first 4 sum rules, but is very wrong for higher order sum 
rules  fails miserably to predict strong coupling behavior (proof coming up in a minute).

2. Compare these two spectral weights:

0 w0-w0



found correctly if n=0 diagram kept correctly  dominates if t >> g, λ  0

found correctly if we sum correct no. of 
diagrams  dominates if g >>t, λ >>1

Since G(k,w) is a sum of diagrams, keeping the correct no. of diagrams is extremely important! 




