Sherbrooke, May 26 -June 72008

cifar

The Worm Algorithm

M. Boninsegni

University of Alberta

Credit

Nikolay Prokof'ev, U. Massachusetts

Boris Svistunov, U. Massachusetts

Igor Tupitsyn, UBC

Lode Pollet, ETH Zurich

Matthias Troyer, ETH Zurich

Additional reading material at http://montecarlo.csi.cuny.edu/umass/

Outline of the lectures

- Motivation and general ideas
- A simple case study: the Ising model
- Quantum many-body problems

1. Discrete space and continuous time: lattice bosons
2. Continuous space and discrete time: condensed Helium
3. Long-ranged interactions: Diagrammatic Monte Carlo
4. Applications

Monte Carlo basics

Goal of most Monte Carlo simulation of condensed matter: study of equilibrium statistical properties (no time dependence yet)

- Evaluation of thermal averages

Multi-dimensional sums/integrals : typical dimension is $d \times N$
Not factorizable due to particle interactions
Straightforward grid integration impossible

- Strategy: turn calculation into "synthetic" measurement

Generate on a computer a statistically representative sample of manyparticle configurations, drawn from the physical probability distribution (Gibbs)

Compute desired thermal expectation value as statistical average

Monte Carlo basics (cont'd)

(M. Troyer's notes)

Statistically representative set of configurations must be generated sequentially for any non-trivial system.

Efficiency considerations important

Random walk through configuration space
Metropolis Algorithm (N. Metropolis et al., 1953)
Key : Efficient Sampling Small auto-correlation time
(unbiased statistics: configurations should quickly lose memory of progenitors)

Monte Carlo basics (cont'd)

- Detailed Balance

A random walk is guaranteed to sample asymptotically the desired distribution $P(c)$ of configurations if the following conditions are satisfied:

1) Ergodicity: rules that govern random walk must allow each physical configuration to be visited ("paths from anywhere to anywhere")
2) Detailed balance: if $W(c \rightarrow d)$ is the probability of making transition between any two configurations, then it must be

$$
\frac{W(c \rightarrow d)}{W(d \rightarrow c)}=\frac{P(d)}{P(c)}
$$

- Sampling strategy

Elementary move
Simple (single-particle), fast but long auto-correlation time (ergodicity ?)
Complex (many particles), shorter auto-correlation time but slower
or... both simple and with short auto-correlation time ?

Simple case: spin-1/2 Ising model

Classical lattice spin model : $E(c)=-J \sum_{\langle i j\rangle} s_{i} s_{j}, \quad s_{i}= \pm 1$ $c \equiv\left\{s_{1} s_{2} \ldots s_{N}\right\}$ generic configuration
$Z=\sum_{c} \prod_{\langle i j\rangle} \exp \left(K s_{i} s_{j}\right) \quad$ Partition function $(K=J / T)$

- Equilibrium phase diagram known analytically in 2D (Onsager, 1944)
- Second order ferromagnetic phase transition
- Regarded as test bench for MC simulation methods

$m(T)=\left(1-(\sinh (2 J / T))^{-4}\right)^{1 / 8}$

Monte Carlo simulation

Sampling of configurations

Local: Flip single spin in c, and accept with probability

$$
P=\min \left\{1, \exp \left[-2 K s \Sigma_{j} S_{j}\right]\right\}
$$

Efficient at $T \geq T_{\mathrm{c}}$
Suffers from critical slowing down as $T \rightarrow T_{\mathrm{c}}$
Physical reason: as system approaches critical temperature, correlations on very long distances set in, and large "islands" of ferromagnetically aligned spins appear.

- Cluster update (Swendsen-Wang, 1987, Wolff, 1989)

Flip clusters of connected equal spins at same time Clusters are grown from a seed site, based on a sequential (non-Metropolis) probabilistic procedure, satisfying detailed balance
No critical slowing down at T_{c}
Not as efficient as single spin flip at high T
Physical reason: cluster algorithms owe their efficiency to the proximity to criticality

Worm Algorithm for Ising model

N. Prokof'ev, B. Svistunov and I. Tupitsyn (1991)

$$
Z=\sum_{s_{1} \ldots s_{N}} \prod_{\langle i j\rangle} e^{K s_{i} s_{j}}=\sum_{s_{1} \ldots s_{N}} \prod_{\langle i j\rangle}\left[\cosh (K)\left(1+\tanh (K) s_{i} s_{j}\right)\right]
$$

i.e.
$\left.Z=\cosh (K)^{2 N} \sum_{s_{1} \ldots s_{N}} \prod_{b o n d s} \sum_{n_{b}=0}^{1}[\tanh (K)]^{n_{b}} s_{i}^{n_{b}} s_{j}^{n_{b}}\right] \propto \sum_{\left\{n_{b}\right\}} \tanh (K)^{\sum n_{b}} \sum_{s_{1} \ldots s_{N} \text { bonds }} \prod_{i} s_{j}^{n_{b}} s_{j}^{n_{b}}$
$n_{b}=0,1$: power associated to bond $\langle i j\rangle$

$$
\sum_{s_{1} \ldots s_{N}} \prod_{\langle i j\rangle} s_{i}^{n} s_{j}^{n} \equiv \prod_{i} \sum_{s_{i}} s_{i}^{p_{i}}, \quad p_{i} \quad \text { total power associated to site i }
$$

For a spin- $1 / 2$ system one has $\sum_{s} s^{p}=2$ if p is even, zero otherwise

$$
\text { Hence, } Z=2^{N} \sum_{\left\{n_{b}\right\}}[\tanh (K)]^{\sum n_{b}} \quad \text { (closed loops) }
$$

Closed loops? What loops?

Number of times each site occurs in the product must be even
Sum of all occupied bonds involving that site must be even
(no bond can be invoked twice)
Consequently, bonds connecting sites necessarily must form closed loops (not necessarily connected)

Examples

Enter "Ira" and "Masha"

Consider the 2-point spatial correlation function

$$
g(i-m)=Z^{-1} \sum_{s_{1} \ldots s_{N}} s_{i} s_{m} e^{K \sum_{\langle j l\rangle} s_{j} s_{l}}=Z^{-1} G(i-m)
$$

Identical procedure adopted for Z expresses G as a sum over open loops, with the same weights used for the expansion of Z. The presence of two additional spins (i and m) gives rise to the two "dangling ends"

Examples

Monte Carlo evaluation of $g(i-m)$

- Generate on a computer a set of loops corresponding to drawing with a pencil along bonds of a square lattice, without ever detaching the tip of the pencil from the sheet. Each bond is penciled only once at the most, and there are two dangling ends (Ira and Masha)
- Let the probability with which generic loop occurs be proportional to $[\tanh (K)]^{N_{b}}$
- When Ira and Masha are at a distance $i-m$, contribute +1 to $G(i-m)$

When $i=m$ (closed loop), then contribute +1 to $G(0) \equiv Z$

- Accumulate statistics and evaluate $g(i-m)$ as $G(i-m) / G(0)$
- Other quantities can be computed as well. For example, Average energy: $-J \tanh (K)\left[d N+\left\langle N_{b}\right\rangle / \sinh ^{2}(K)\right]$,
(N_{b} total number of penciled bonds)
Magnetic susceptibility $\chi=(1 / T) \Sigma_{i} g(i)$

Structure of Ising Worm code

Simple "draw-and-erase" procedure

yup... that's it !

How well does it work?

No critical slowing down near critical temperature
Allows to simulate the model efficiently at all temperatures
All correlation functions available on-the-fly
Same conclusion established for a rather wide variety of other lattice models (e.g., $x-y$) and/or universality classes

By now regarded as general algorithm of statistical mechanics
Local moves only
Basic idea easily extended to quantum-mechanical systems

Worm Algorithm and Quantum Many-Body Physics

Worm Algorithm is currently one of the most powerful methodology to study thermodynamic properties of quantum-mechanical systems comprising many interacting particles

Essentially exact for Bose systems (goes far beyond previously existing continuum methodology)

It does not solve/alleviate the infamous "sign" problem

General Monte Carlo methodology for fermions still lacking

It does not represent a step forward toward the computation of timedependent properties with Monte Carlo

Worm Algorithm and Lattice Bosons

Bose Hubbard Model (BHM)

$$
\begin{aligned}
\hat{H} & =\hat{T}+\hat{V} \\
\hat{T} & =-t \sum_{\langle i j\rangle}\left(\hat{a}_{i}^{\dagger} \hat{a}_{j}+\text { h.c. }\right) ; \quad \hat{V}=U \sum_{i} \hat{n}_{i}^{2}-\sum_{i} h_{i} \hat{n}_{i} \quad \hat{n}_{i}=\hat{a}_{i}^{\dagger} \hat{a}_{i}
\end{aligned}
$$

h_{i} site-dependent external potential (e.g., disorder)
$U>0$ (what happens if $U<0$?)

- BHM subject of much current research especially in the context of cold atoms in optical lattices
- Useful minimal model and starting point for our discussion

- Methodology described this morning generally applicable to lattice bosons

Thermodynamics of BHM

- Calculation of thermal expectation values

$$
\langle\hat{\mathcal{O}}\rangle=\frac{\operatorname{Tr} \hat{\mathcal{O}} \hat{\rho}}{\operatorname{Tr} \hat{\rho}}, \quad \rho=e^{-\beta \hat{K}}
$$

$\hat{K}=\hat{H}-\mu \hat{N} "$ Grand Canonical" Hamiltonian
$\beta=1 / T$
$Z=\operatorname{Tr} \hat{\rho}=\sum_{c}\langle c| e^{-\beta \hat{K}}|c\rangle, \quad$ Grand partition function
$\left.\left.|c\rangle \equiv \mid n_{1} n\right) 2 \ldots n_{N}\right\rangle$ generic configuration (occupation number representation)
Matrix elements of $e^{-\beta \hat{K}}$ in $|c\rangle$ basis not known analytically
Direct evaluation of Z unfeasible
Numerics required

Interaction representation

With $\hat{\rho}(\tau)=e^{-\tau \hat{K}}$, it is

$$
\frac{\partial \hat{\rho}}{\partial \tau}=-\hat{K} \hat{\rho} \quad\left(B_{l o c h ' s ~ e q u a t i o n ~}\right)
$$

Set $\hat{\rho}(\tau)=e^{-\tau \hat{V}} \hat{G}(\tau)$, obtain

$$
\frac{\partial \hat{G}}{\partial \tau}=-\hat{T}_{I}(\tau) \hat{G}(\tau), \quad \hat{G}(0) \equiv 1
$$

with

$$
\hat{T}_{I}(\tau) \equiv e^{\tau \hat{V}} \hat{T} e^{-\tau \hat{V}}
$$

Solution by series expansion

Formal recursive solution of equation for $\hat{G}(\beta)$ yields series for Partition Function:

$$
\begin{aligned}
Z & =\sum_{n=0}^{\infty}(-1)^{n} \sum_{c, c^{\prime}, \ldots c^{(n-1)}} \int_{\tau=0}^{\beta} d \tau \ldots \int_{\tau^{(n)}=0}^{\tau^{(n-1)}} d \tau^{(n)} \\
& \times e^{-(\beta-\tau) V(c)}\langle c| \hat{T}\left|c^{\prime}\right\rangle e^{-\left(\tau-\tau^{\prime}\right) V\left(c^{\prime}\right)}\left\langle c^{\prime}\right| \hat{T}\left|c^{\prime \prime}\right\rangle \ldots \\
\ldots & \times e^{-\left(\tau^{(n-1)}-\tau^{(n)}\right) V\left(c^{(n-1)}\right)}\left\langle c^{(n-1)}\right| \hat{T}|c\rangle e^{-\tau^{(n)} V(c)}
\end{aligned}
$$

Kinks

Matrix element of kinetic energy operator only connects configurations differing at the most by the hopping of one particle to NN site

- particle
c'
c

lattice

$$
\langle c| \hat{T}\left|c^{\prime}\right\rangle=-t
$$

c'

Integrand of nth order term in Z expansion: trajectory in imaginary time with n "kinks"
time

kink
space

kink-antikink pair

Monte Carlo integration

Partition function Z infinite sum of multidimensional nested integrals of increasing order \Rightarrow integral over all many-particle paths featuring an arbitrary number of "kinks"

MC evaluation of contributions to Z translates into sampling paths with arbitrary numbers of kinks at varying consecutive ordered times

Weight of generic configuration proportional to:

$$
(\beta t)^{n} \exp \left\{-\int_{\tau=0}^{\beta} d \tau V[c(\tau)]\right\}
$$

Weight is positive for bosons
$c(\tau)$ piecewise many-particle path
$V[c(\tau)]$ constant between consecutive kinks

World Line (WL) representation of $\langle c| \rho^{(n)}|c\rangle$

Example: $\mathbf{3}$ particles in one dimension (4-site lattice)
Particles are all drawn with the same color because of indistinguishability
Dashed lines represent empty lattice sites
Line thickness proportional to number of particles on site
Contribution of order 7 (number of "kinks" occurring at different times)
Between one kink and the next system propagates "unperturbed" in imaginary time
Initial and final configurations are identical (in occupation terms)

World Line Monte Carlo

Sampling of many-particle paths restricted to the space of closed WLs
Limited number of updates (kink-antikink creation and removal, time shifts)
Slow convergence -- size limitation
Ergodicity problematic (impossible to change winding number on large lattices) Also generally impossible to change number of particles (add entire WLs at once)

Ira and Masha, again...

- Generalize configuration space to allow for a single WL that ends at $\tau_{\mathrm{I}}<\beta$ and resumes at $\tau_{\mathrm{M}}<\beta$, with $\tau_{\mathrm{I}}<\tau_{\mathrm{M}}$
- Formally equivalent to sampling configurations from a probability distribution proportional to the single particle Matsubara Green function

$$
g\left(I-M, \tau_{M}-\tau_{I}\right)=\frac{1}{Z}\left\langle-\hat{\mathcal{T}}\left[\hat{a}^{\dagger}\left(M, \tau_{M}\right) \hat{a}\left(I, \tau_{I}\right)\right]\right\rangle
$$

Worm engine

- Sampling of configuration occurs through simple set of local updates all involving I or M (other WLs are not touched)
- Identify two sectors: Z-sector (no open line, or "Worm", i.e., I and M have reconnected); G-sector (one Worm is present)
- Measurements taken in the G-sector contribute to g, those taken in Z-sector contribute to physical observables
- According to the Metropolis prescription, acceptance ratios for all the moves are proportional to the ratio of the value of the probability distribution to be sampled at the proposed over the current configurations

Updates (complementary pairs)

time shift:

Insert/delete
Ira and Masha:

$$
\mathrm{Z} \rightleftharpoons \mathrm{G}
$$

space shift
("hole" type):

- Two additional moves:

Insert Worm at random lattice site ($I=M$)
Remove Worm when its length is zero

- Together with the fact that I can advance past M, these two moves cause number of particles to fluctuate (grand canonical ensemble)

Canonical implementations possible

Superfluid density and winding number

- Study of superfluid response of many-body system can be performed by numerical simulation with periodic boundary conditions via the computation of the superfluid density as a function of T
- Superfluid density related to winding number W (Pollock and Ceperley, 1987) counts number of times single-particle paths "wrap" around PBC essentially impossible to create paths with non-zero winding without using Worms

$$
\rho_{S} \propto\left\langle W^{2}\right\rangle
$$

Remarks

- No time discretization or "time step errors"
- Lattice simulations with a number of particles of order 10^{6} standard (no unusual computational resources required)

Accurate finite-size scaling and determination of critical points possible
Realistic simulations of experimental systems realizable in Optical Lattices

- Extension to long-range interactions possible through Diagrammatic Monte Carlo (continuum part)
- Also possible to work with more than one worm (pairing)
- Grand Canonical
- Other extensions (multicomponent systems, flavor-changing interactions etc.) have been worked out
- Similar in spirit to Stochastic Series Expansion (SSE)

Application: Supersolid phase of hard core Hard core bosons on triangular lattice

MB and N.V. Prokof'ev, PRL 95, 237204 (2005)
Goal: search and characterization of Supersolid phase

Application: two-component lattice model with flavor-changing interaction

MB and N.V. Prokof'ev, PRB 77, 092502 (2008)

Boson $t-J$ model
Hamiltonian of system of isotopic mixture of hard core bosons Interaction allows mixing of species
Rich phase diagram

L. Pollet, C. Kollath, K. Van Houcke and M.Troyer

End of first part

Next: continuum

but first: coffee (lot of it)

Continuous-space Worm Algorithm

- Goal: obtaining accurate thermodynamics for many-particle systems

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i\langle j} v\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- Feynman's Space-time formulation of quantum statistical mechanics Statistical Mechanics: A set of Lectures, Addison-Wesley (1972)
- Thermal averages of physical operators at finite temperature $T=1 / \beta$

$$
\langle\hat{\mathcal{O}}\rangle=\frac{\operatorname{Tr}(\hat{\mathcal{O}} \hat{\rho})}{\operatorname{Tr} \hat{\rho}}=\frac{\int d R \mathcal{O}(R) \rho(R, R, \beta)}{\int d R \rho(R, R, \beta)}
$$

$\rho(R, R, \beta)=\langle R| e^{-\beta \hat{K}}|R\rangle$ many-body density matrix
$|R\rangle \equiv\left|\mathbf{r}_{1} \ldots \mathbf{r}_{N}\right\rangle$ system configuration
$\hat{K}=\hat{H}-\mu \hat{N}$ grand canonical Hamiltonian
$Z=\int d R \rho(R, R, \beta)$ grand partition function

Path Integrals

- Same basic strategy as on lattice:

Many-body density matrix not known for any non-trivial many-body system Obtained through path integration (A.-M. Tremblay's notes)

$$
Z=\int \mathcal{D} R(u) \exp [-S[R(u)]]
$$

(uћ imaginary time)
Integration over all possible continuous, β-periodic many-particle paths with
$S[R(u)]=\int_{0}^{\beta} d u\left\{\sum_{i=1}^{N} \frac{m}{2 \hbar^{2}}\left(\frac{d \mathbf{r}_{i}}{d u}\right)^{2}+V(R(u))\right\}$ "Euclidean Action"

- Action associated to path balance between kinetic (path curvature) and potential energy (depends on interactions) along path

Smooth, straight paths have generally higher probability
Paths of high potential energy have low probability

Quantum Statistics

Example 4 particles in 1d

Exchanges occur only through PBC
x

- Paths are β-periodic, i.e., $R(\beta)=R(0)$

However, individual particle positions can undergo exchanges
Crucial ingredient of the physics of ensembles of indistinguishable particles Underlie phenomena such as BEC and Superfluidity

- Ascribing physical content to paths is tempting but dangerous

Least action path: solution of Newton's EOM with reversed potential
However: imaginary-time formalism useful for studying tunneling (instanton)

Monte Carlo strategy

- Sample many-particle paths $R(u)$ through configuration space, based on the probability distribution proportional to $\exp [-S(R(u))]$-- Metropolis algorithm
- Evaluate thermal expectation values as statistical averages of quantities of interest computed along paths

First important difference with lattice calculation:
No continuous time (yet)
Action integral must be discretized \rightarrow time step error inevitable
Reason: no expansion for kinetic energy exists in the continuum (no kinks)

Discretization: $R(u) \equiv\left\{R_{0}, R_{1}, \ldots, R_{M-1}\right\}, R_{M} \equiv P R_{0}$
(P permutation of particle labels)
$M \tau=\beta, \tau$ is the time step
Simplest approximate action (we can do better but it is not needed now):

$$
S[R(u)] \approx \sum_{i=1}^{N} \sum_{l=0}^{P-1} \frac{m\left(\mathbf{r}_{i l}-\mathbf{r}_{i l+1}\right)^{2}}{2 \tau \hbar^{2}}+\tau \sum_{l} V\left(R_{l}\right)
$$

(Note: in the absence of interaction any discretized form is exact)

Discrete Action

Probability with which a discrete path $R(u)$ is sampled

$$
P \propto \exp [-S[R(u)]]=\prod_{i=1}^{N} \prod_{l=0}^{M-1} \rho_{\circ}\left(\mathbf{r}_{i l}, \mathbf{r}_{i l+1}, \tau\right) \times \prod_{l=0}^{M-1} e^{-\tau V\left(R_{l}\right)}
$$

where

$$
\rho_{\circ}\left(\mathbf{r}, \mathbf{r}^{\prime}, \tau\right)=\left(2 \pi \hbar^{2} \tau / m\right)^{-1 / d} \exp \left[-\frac{m\left(\mathbf{r}-\mathbf{r}^{\prime}\right)^{2}}{2 \hbar^{2} \tau}\right]
$$

is the density matrix of a free particle, and

$$
V(R)=U(R, \tau)-\mu N
$$

In the simplest version, U is the total potential energy, does not depend on τ (In some approximations, it does)

Path Integral Monte Carlo (PIMC)

- In principle exact numerical tool to compute thermodynamics of Bose systems D. Ceperley, Rev. Mod. Phys. 67, 295 (1995)

No adjustable parameter, approximation, a priori input
Works directly on microscopic Hamiltonian
Direct computation of $\varrho_{\mathrm{s}}(T)$ (superfluid density)

- Sampling

Occurs through elementary move that modifies portions of single-particle paths Permutations are sampled by explicit construction of permutation cycles

PIMC (cont'd)

- Sampling issues

In the presence of repulsive, hard core potentials, any such sampling of permutations is bound to become inefficient (high likelihood of rejection)

Avoid hard cores through periodic boundary conditions -- yields a vanishing contribution

- Problems:

Occurrence of nonzero winding requires macroscopic permutation cycles (length $\sim N^{1 / d}$) Effort required to sample macroscopic permutation cycles scales exponentially with N No simulation of superfluid transition in bulk systems with more than ~ 100 particles
Extrapolation to thermodynamic limit $(N \rightarrow \infty)$ often problematic
Ambiguous interpretation of results (no superfluidity or ergodicity problem ?)

- Size matters:

Some problems cannot even be properly formulated if only a few particles can be simulated (example: superfluid layer in solid helium at grain boundary)

Even for finite-size systems, however (e.g., quantum droplets), efficient sampling of permutations can be crucial to capture the physics

Ira and Masha go to the continuum

MB, N.V. Prokof'ev and B.V. Svistunov, PRL 96, 07060I (2006)
MB, N.V. Prokof'ev and B.V. Svistunov, PRE 74, 03670I (2006)

- Generalize configuration space, from that of the partition function to that of the Matsubara Green function

$$
G\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t\right)=\frac{g\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t\right)}{Z}=-\left\langle\hat{\mathcal{I}}\left[\hat{\psi}\left(\mathbf{r}_{1}, t\right) \hat{\psi}^{\dagger}\left(\mathbf{r}_{2}, 0\right)\right]\right\rangle
$$

- One open path with two dangling ends (worm)

Analogously to lattice methodology, Z- and G-sectors are identified Sampling of many-particle paths occurs through simple set of complementary moves, only involving the worm

Z

(open/close update)

Z

(insert/remove update)

G

swap update (self-complementary)

Remarks

- Configurations with open WL contribute to the Matsubara Green function All non-trivial topological path modifications occur in G-sector
- Swap moves enjoy relatively high acceptance, even with hard core potentials
- When Ira and Masha reconnect, a Z-sector configuration is obtained, and most observables computed -- large permutation cycles automatically occur
- Reconnection is one of the attempted moves (no need to wait for it !)
- Number of particles fluctuate (again, canonical implementations possible)

Can I and M get "stuck" far away from each other?

- Statistics of spatial distances between I and M given by one-body density matrix

Decaying exponentially in a non-BEC
Going to a constant in a BEC (but high acceptance probability of reconnection)

Diagrammatic Monte Carlo: a trick to deal with long-range interactions

- In MC, updates require the calculation of (omit β for simplicity for a few slides)

$$
\exp \left[-\sum_{j \neq i} v\left(r_{i j}\right)\right]
$$

Scales as the number of particles
For rapidly decaying potentials, much time spent computing small quantities

- Pair potential with repulsive core and long-range attractive tail e.g., Lennard-Jones

$$
v(r)=v_{H C}(r)-v_{L R}(r)
$$

both functions are non-negative

Diagrammatic Monte Carlo (cont'd)

- Trick: treat short-range part explicitly, long-range one is sampled
- Simply re-write $\exp \left[v_{L R}(r)\right]=\left[1+\left(\exp \left[v_{L R}(r)\right]-1\right)\right]$

Sum of positive contributions
Can be treated probabilistically
Each particle interacts on average with few nearest neighbors and few linked distant particles. Links are created and removed dynamically Overall scaling is linear with N

- Switch "on" and "off" interaction between pairs of particles interaction switched on with probability proportional to $\left(\exp \left[v_{L R}(r)\right]-1\right)$ with probability proportional to 1 , particles do not interact

${ }^{4} \mathrm{He}$ in two dimensions, $T=0.6 \mathrm{~K}$

Application: Superfluid transition in ${ }^{4} \mathrm{He}$

Superfluid transition in ${ }^{4} \mathbf{H e}$ (cont'd)

Superfluid transition in ${ }^{4} \mathrm{He}$ (cont'd)

Superfluid transition in ${ }^{4} \mathbf{H e}$ (cont'd)

Application: Search for BEC in solid ${ }^{4} \mathrm{He}$

MB, N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. 96, I0530I (2006)

Exponential decay of one-body density matrix seen at low T, large r for perfect hcp ${ }^{4} \mathrm{He}$ crystal

Absence of BEC

Independent of pressure

Absence of SF

No long permutation cycles

Application: vacancies in solid ${ }^{4} \mathrm{He}$

MB, A. Kuklov, L. Pollet, N. Prokof'ev, B. Svistunov and M.Troyer, PRL 97, 08040I (2006)
Activation energy for vacancies and interstitials can be obtained straightforwardly from exponential decay of Matsubara Green function

$G(\mathbf{k}=0, \tau) \sim \mathrm{e}^{-\tau \tau \Delta}$, long τ
too large for thermal activation at $T<1 \mathrm{~K}$

Consistent with no vacancies (nor interstitials) in solid He

Application: superfluidity at grain boundaries in solid ${ }^{4} \mathrm{He}$

L. Pollet, MB, A. Kuklov, N. Prokof'ev, B. Svistunov and M.Troyer, Phys. Rev. Lett. 98, I3530I (2007).

By direct simulation, evidence is obtained that a grain boundary in direct contact with a superfluid at the melting pressure is thermodynamically stable.

Superfluid behavior of a generic GB at temperatures of the order of 0.5 K is observed. Indeed, a generic GB is found to be superfluid, although insulating GBs exist as well, for particular relative orientations of the crystallites

Simulations performed on systems including as many as $\mathbf{1 3 0 0 0}$ particles (that many are needed)

Application: superfluidity in the core of a screw dislocation in solid ${ }^{4} \mathrm{He}$

 MB, A. Kuklov, L. Pollet, N. Prokof'ev, B. Svistunov and M. Troyer, Phys. Rev. Lett. 99, 03530I (2007).

Simulations of single screw dislocation inside hcp ${ }^{4} \mathrm{He}$ crystal show evidence of spatially modulated Luttinger liquid (1d supersolid ?)

Other applications

- Phase diagram of dipolar systems
(H.-P. Buchler et al., PRL 98, 060404 (2007))
- Superfluid properties of para-hydrogen clusters
(F. Mezzacapo and MB, PRL 97, 045301 (2006); PRL 100, 145301 (2008))
- Momentum distribution of liquid para-hydrogen (MB, (2008))

Open issues

- Sign problem (neither improved not worsened by WA)
- Continuous time (is there any way of avoiding the time step error in continuos space?)
- Can run into problems whenever multi-particle updates are needed (e.g., at first order phase transitions)
- Dynamical information (linear response theory and analytic continuation)

lunch...?

