

Jouvence, Quantum Materials 2018

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

Standard DFT has unfortunately some shortcomings

F. Bruneval

A pervasive problem

Optical absorption

FIG. 1. Single-particle Hartree-Fock and local density approximation eigenvalue spectra (eV) for the SiH_4 molecule.

Jouvence, Quantum Materials 2018

Gap re-normalization by a (metallic) substrate

FIG. 1 (color online). Schematic energy level diagram indicating polarization shifts in the frontier energy levels (ionization and affinity) of a molecule upon adsorption on a metal surface.

Benzene deposited on copper, gold, graphite

Neaton, Hybertsen, Louie PRL (2006)

Jouvence, Quantum Materials 2018

How do go beyond within the DFT framework?

Not easy to find improvement within DFT framework There is no such thing as a perturbative expansion Perdew's Jacob's ladder does not help for the band gap

FIG. 1. Jacob's ladder of density functional approximations to the exchange-correlation energy.

Need to change the overall framework!

F. Bruneval

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

Historically older than the DFT (from the 40-50's)! Big names: Feynman, Schwinger, Hubbard, Hedin, Lundqvist

Jouvence, Quantum Materials 2018

Exact ground state wavefunction: |N,0
angle

Creation, annihilation operator:
$$\Psi^{\intercal}(\mathbf{r}t)$$
, $\Psi(\mathbf{r}t)$

1
$$\Psi^{\dagger}(\mathbf{r}t)|N,0\rangle$$
 is a (N+1) electron wavefunction
not necessarily in the ground state
2 $\Psi^{\dagger}(\mathbf{r}'t')|N,0\rangle$ is another (N+1) electron wavefunction

Let's compare the two of them!

F. Bruneval

$$= i G^{e}(\mathbf{r}t,\mathbf{r}'t') \quad \text{for} \quad t > t'$$

Mesures how an extra electron propagates from (r't') to (rt).

Jouvence, Quantum Materials 2018

$$\langle N, 0 | \Psi^{\dagger}(\mathbf{r}'t') \Psi(\mathbf{r}t) | N, 0 \rangle$$

$$= i G^h(\mathbf{r}'t',\mathbf{r}t)$$
 for $t' > t$

Mesures how a missing electron (= a hole) propagates from (rt) to (r't').

Jouvence, Quantum Materials 2018

Final expression for the Green's function

$$i G(\mathbf{r}t, \mathbf{r}'t') = \langle N, \mathbf{0} | T [\Psi(\mathbf{r}t) \Psi^{\dagger}(\mathbf{r}'t')] | N, \mathbf{0} \rangle$$

time-ordering operator

$$G(\mathbf{r}t,\mathbf{r}'t') = G^{e}(\mathbf{r}t,\mathbf{r}'t') -G^{h}(\mathbf{r}'t',\mathbf{r}t)$$

Compact expression that describes both the propagation of an extra electron and an extra hole

F. Bruneval

$$iG(\mathbf{r},\mathbf{r}',t-t') = \langle N,0|T[\Psi(\mathbf{r}t)\Psi^{+}(\mathbf{r}'t')]|N,0\rangle$$
Closure relation
$$\sum_{M,i} |M,i\rangle\langle M,i|$$
Lehman representation:
$$G(\mathbf{r},\mathbf{r}',\omega) = \sum_{i} \frac{f_{i}(\mathbf{r})f_{i}^{*}(\mathbf{r}')}{\omega - \epsilon_{i} \pm i\eta}$$
where
$$\epsilon_{i} = \begin{cases} E(N+1,i) - E(N,0) \\ E(N,0) - E(N-1,i) \end{cases}$$
Exact excitation energies!
Bruneval
Exact guartum Materials 2018

Related to photoemission spectroscopy

Energy conservation: before after $hv + E(N,0) = E_{kin} + E(N-1,i)$

Quasiparticle energy:

$$\epsilon_i = E(N,0) - E(N-1,i) = E_{kin} - hv$$

F. Bruneval

And inverse photoemission spectroscopy

Energy conservation: before after $E_{kin} + E(N,0) = hv + E(N+1,i)$

Quasiparticle energy:

$$\epsilon_i = E(N+1,i) - E(N,0) = E_{kin} - hv$$

F. Bruneval

Exact realization of the Lehman decomposition

Jouvence, Quantum Materials 2018

Satellites in reality?

Jouvence, Quantum Materials 2018

Other properties of the Green's function

Get the electron density:

$$\rho(\mathbf{r}) = -i G(\mathbf{r}t^{-}, \mathbf{r}, t)$$

Galitskii-Migdal formula for the total energy:

$$E_{total} = \frac{1}{\pi} \int_{-\infty}^{\mu} d\omega \operatorname{Tr} \left[\left(\omega - h_0 \right) \operatorname{Im} G \left(\omega \right) \right]$$

Expectation value of any 1 particle operator (local or non-local)

$$\langle O \rangle = \lim_{t \to t'} Tr[OG]$$

Jouvence, Quantum Materials 2018

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

Equation of motion of Green's functions: Dyson equation

Let us start with a non-interacting Green's function G_0 corresponding to a hamiltonian h_0

$$\int dr_{2} \delta(r_{1} - r_{2}) [\omega - h_{0}(r_{2})] G_{0}(r_{2}, r_{3}, \omega) = \delta(r_{1} - r_{3})$$

In short:

$$[\omega - h_0]G_0 = 1$$
 or $G_0^{-1} = [\omega - h_0]$

Imagine h_0 is Hartree and $h_{\rm KS}$ is Kohn-Sham

$$\begin{split} [\omega - h_{\rm KS}]G_{\rm KS} = 1 \\ & [\omega - h_0 - v_{xc}]G_{\rm KS} = 1 \\ & [G_0^{-1} - v_{xc}]G_{\rm KS} = 1 \\ & [G_{\rm KS} = G_0 + G_0 v_{xc} G_{\rm KS} \\ & [G_{\rm KS} = G_0 + G_0 v_{xc} G_0 + G_0 v_{xc} G_0 v_{xc} G_0 + ... \\ & Jouvence, Quantum Materials 2018 \end{split}$$

A first contact with diagrams

Dyson equation connects the Green's functions arising from different approximations What about the **exact Green's function?**

F. Bruneval

Dyson equation for the exact Green's function

Imagine there exists an operator that generates the exact G

$$G(1,2) = G_0(1,2) + \int d(34)G_0(1,3)\Sigma(3,4)G(4,2)$$

This operator is the famous "self-energy":

- non-local in space
 time-dependent
 non-Hermitian

Everything else now deals with finding expressions for the self-energy!

F. Bruneval

A hierarchy of equations of motion

In fact there is an exact expression for the self-energy as a function of the **two**particle Green's function

$$\begin{bmatrix} G_0^{-1} - \Sigma \end{bmatrix} G = 1$$
$$\begin{bmatrix} G_0^{-1} - G_2 \end{bmatrix} G = 1$$

$$G_{2}(1,2;3,4) = \langle N, 0 | T[\Psi(1)\Psi(2)\Psi^{+}(3)\Psi^{+}(4)] | N, 0 \rangle$$

And try to guess the equation of motion for the two-particle Green's function?

 G_2 needs G_3 G_3 needs G_4 G_4 needs G_5

.

F. Bruneval

An expression for the self-energy

Trick due to Schwinger (1951):

- Introduce a small external potential *U* (that will be made equal to zero at the end)
- Calculate the variations of G with respect to U

$$G_{2}(1,3;2,3) = \frac{\delta G(1,2)}{\delta U(3)}$$

Obtain a perturbation theory with basic ingredients G and v 1st order is Hartree-Fock 2nd order is MP2

However MP2 diverges for metals!

Trick due to Hubbard+Hedin (late 1950's – early 1960's):

- Introduce the electrostatic response *V* to *U*
- Calculate the variations of G with respect to V

$$V(1) = U(1) - i \int d2 v(1,2) \delta G(2,2)$$

Obtain a new renormalized perturbation theory with basic ingredients G and W

 1^{st} order is GW

Shifting from *U* to *V*

 $\boldsymbol{U}(1) = \varepsilon \,\delta(\boldsymbol{r} - \boldsymbol{r}_1) \delta(t - t_1)$

Everything is functional of U

G[U]

 $\boldsymbol{U}(1) = \varepsilon \,\delta(\boldsymbol{r} - \boldsymbol{r}_1) \,\delta(t - t_1)$

 $V(1) = U(1) + \int d\mathbf{r} v(r_1 - r) \delta \rho(\mathbf{r})$

 ${\it V}$ also includes the electrostatic response Everything is functional of ${\it V}$

G[V]

Jouvence, Quantum Materials 2018

6 coupled equations:
$$1 = (\mathbf{r}_1 t_1 \sigma_1) \qquad 2 = (\mathbf{r}_2 t_2 \sigma_2)$$

►
$$G(1,2) = G_0(1,2) + \int d \, 34 \, G_0(1,3) \Sigma(3,4) \, G(4,2)$$
 Dyson equation
 $\Sigma(1,2) = i \int d34 \, G(1,3) \, W(1,4) \, \Gamma(4,2,3)$ self-energy
 $\Gamma(1,2,3) = \delta(1,2) \, \delta(1,3) + \int d \, 4567 \frac{\delta \, \Sigma(1,2)}{\delta \, G(4,5)} \, G(4,6) \, G(5,7) \, \Gamma(6,7,3)$ vertex
 $\chi_0(1,2) = -i \int d34 \, G(1,3) \, G(4,1) \, \Gamma(3,4,2)$ polarizability
 $\epsilon(1,2) = \delta(1,2) - \int d3 \, v(1,3) \, \chi_0(3,2)$ dielectric matrix
 $W(1,2) = \int d3 \, \epsilon^{-1}(1,3) \, v(3,2)$ screened Coulomb interaction

Jouvence, Quantum Materials 2018

Not enough: Hartree-Fock is known to perform poorly for solids

F. Bruneval

Hartree-Fock approximation for band gaps

F. Bruneval

6 coupled equations:

$$G(1,2) = G_0(1,2) + \int d34 G_0(1,3) \Sigma(3,4) G(4,2)$$
 Dyson equation

$$\Sigma(1,2) = i \int d34 G(1,3) W(1,4) \Gamma(4,2,3)$$
 self-energy

$$\Gamma(1,2,3) = \delta(1,2) \delta(1,3) + \int d \, 4567 \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(4,6) G(5,7) \Gamma(6,7,3)$$

$$\chi_0(1,2) = -i \int d34 G(1,3) G(4,1) \Gamma(3,4,2)$$

$$\epsilon(1,2) = \delta(1,2) - \int d3 v(1,3) \chi_0(3,2)$$

$$W(1,2) = \int d3 \epsilon^{-1}(1,3) v(3,2)$$
 screened Coulomb interaction

Jouvence, Quantum Materials 2018

6 coupled equations:

$$G(1,2) = G_0(1,2) + \int d34 G_0(1,3) \Sigma(3,4) G(4,2)$$
Dyson equation

$$\Sigma(1,2) = i \int d34 G(1,3) W(1,4) \Gamma(4,2,3)$$
self-energy

$$\Gamma(1,2,3) = \delta(1,2) \delta(1,3) + \int d 4567 \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(4,6) G(5,7) \Gamma(6,7,3) + \int d 4567 \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(4,6) G(5,7) \Gamma(6,7,3) + \int d 34 G(1,3) G(4,1) \Gamma(3,4,2)$$

$$\varepsilon(1,2) = -i \int d34 G(1,3) G(4,1) \Gamma(3,4,2)$$

$$\varepsilon(1,2) = \delta(1,2) - \int d3v(1,3) \chi_0(3,2)$$
Screened Coulomb interaction

Jouvence, Quantum Materials 2018

6 coupled equations:

$$G(1,2) = G_{0}(1,2) + \int d34 G_{0}(1,3) \Sigma(3,4) G(4,2)$$
 Dyson equation

$$\Sigma(1,2) = i \int d34 G(1,2) W(1,4) F(4,2,3)$$
 self-energy

$$\Gamma(1,2,3) = \delta(1,2) \delta(1,3) + \int d 4567 \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(4,6) G(5,7) F(6,7,3) + \int d 4567 \frac{\delta \Sigma(1,2)}{\delta G(4,5)} G(4,6) G(5,7) F(6,7,3) + \int d 34 G(1,3) G(2,1) F(3,4,2)$$

$$\chi_{0}(1,2) = -i \int d34 G(1,3) G(2,1) F(3,4,2)$$

$$\varepsilon(1,2) = \delta(1,2) - \int d3v(1,3) \chi_{0}(3,2)$$

$$W(1,2) = \int d3 \varepsilon^{-1}(1,3) v(3,2)$$
 screened Coulomb interaction

Jouvence, Quantum Materials 2018

 $\Sigma(1,2) = iG(1,2)W(1,2)$

GW approximation

$$\chi_0(1,2) = -iG(1,2)G(2,1)$$

RPA approximation

 $\epsilon(1,2) = \delta(1,2) - \int d3 v(1,3) \chi_0(3,2)$

 $W(1,2) = \int d 3 \varepsilon^{-1}(1,3) v(3,2)$

Jouvence, Quantum Materials 2018

Let us play with diagrams

 $\chi_0(1,2) = -iG(1,2)G(2,1)$

 $\Sigma(1,2) = i G(1,2) W(1,2)$

$$\varepsilon(1,2) = \delta(1,2) - \int d3 v(1,3) \chi_0(3,2)$$

W(1,2) = $\int d3 \varepsilon^{-1}(1,3) v(3,2)$

$$W = v + v\chi_0 W$$

= v + v\chi_0 v + v\chi_0 v\chi_0 v + ...

Infinite summation over bubble (or ring) diagrams

Jouvence, Quantum Materials 2018

Interaction between electrons in vacuum:

$$v(\mathbf{r},\mathbf{r}') = \frac{1}{4\pi\varepsilon_0} \frac{e^2}{|\mathbf{r}-\mathbf{r}'|}$$

Interaction between electrons in a homogeneous polarizable medium:

Dynamically screened interaction between electrons in a general medium:

$$W(\mathbf{r},\mathbf{r}',\omega) = \frac{e^2}{4\pi\varepsilon_0} \int d\mathbf{r}'' \frac{\varepsilon^{-1}(\mathbf{r},\mathbf{r}'',\omega)}{|\mathbf{r}''-\mathbf{r}'|}$$

Jouvence, Quantum Materials 2018

W is frequency dependent

W can measured directly by Inelastic X-ray Scattering

Zero below the band gap

H-C Weissker et al. PRB (2010)

F. Bruneval

Summary

F. Bruneval
Summary: DFT vs Green's function

F. Bruneval

GW viewed as a "super" Hartree-Fock

F. Bruneval

GW approximation gets good band gap

Jouvence, Quantum Materials 2018

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

Historical recap of GW calculations

- 1965: Hedin's calculations for the homogeneous electron gas Phys Rev **2201 citations**
- 1967: Lundqvist's calculations for the homogeneous electron gas Physik der Kondensierte Materie **299 citations**
- 1982: Strinati, Mattausch, Hanke for real semiconductors but within tight-binding PRB **154 citations**
- 1985: Hybertsen, Louie for real semiconductors with ab initio LDA PRL 711 citations & PRB 1737 citations
- 1986: Godby, Sham, Schlüter for real semiconductors to get accurate local potential

PRL 544 citations & PRB 803 citations

- ~2001: First publicly available *GW* code through the ABINIT project
- 2003: Arnaud, Alouani for extension to Projector Augmented Wave PRB 102 citations
- 2006: Shishkin, Kresse for extension to Projector Augmented Wave (again) PRB 256 citations

GW approximation in practice

• For periodic solids: Abinit, BerkeleyGW, VASP, Yambo based on plane-waves (with pseudo or PAW)

• For finite systems: MOLGW, Fiesta, FHI-AIMS

based on localized orbitals (Gaussians or Slater or other)

Jouvence, Quantum Materials 2018

.Jar cim

Workflow of a typical GW calculation

F. Bruneval

Workflow of a typical GW calculation

F. Bruneval

From Kohn-Sham DFT

Remember

$$[\omega - h_{\rm KS}]G_{\rm KS} = 1$$

which means

$$G_{\rm KS}(\boldsymbol{r},\boldsymbol{r}',\omega) = \sum_{i} \frac{\phi_{i}^{\rm KS}(\boldsymbol{r})\phi_{i}^{\rm KS*}(\boldsymbol{r}')}{\omega - \epsilon_{i}^{\rm KS} \pm i\eta}$$

F. Bruneval

From the RPA equation

$$\chi_0(1,2) = -iG_{\rm KS}(1,2)G_{\rm KS}(2,1)$$

which translates into

$$\chi_{0}(\boldsymbol{r_{1}}, \boldsymbol{r_{2}}, \omega) = \sum_{\substack{i \text{ occ} \\ j \text{ virt}}} \phi_{i}(\boldsymbol{r_{1}}) \phi_{i}^{*}(\boldsymbol{r_{2}}) \phi_{j}(\boldsymbol{r_{2}}) \phi_{j}^{*}(\boldsymbol{r_{1}}) \\ \times \left[\frac{1}{\omega - (\epsilon_{j} - \epsilon_{i}) - i \eta} - \frac{1}{\omega - (\epsilon_{i} - \epsilon_{j}) + i \eta} \right]$$

This is the Alder-Wiser formula or the SOS formula

It involves empty states!

Then

$$W = v + v \chi_0 W$$

 $W = (1 - v \chi_0)^{-1} v$

geometric series

F. Bruneval

Dealing with two-point functions in reciprocal space

Remember 1-point functions are

$$\phi_{k}(\mathbf{r}) = \frac{1}{\sqrt{\Omega}} \sum_{kG} c_{k}(G) e^{i(\mathbf{k}+G) \cdot \mathbf{r}}$$

1 vector of coefficients per k-point in the Brillouin zone

Then 2-point functions are

$$W(r_{1}, r_{2}) = \frac{1}{\Omega} \sum_{q G G'} e^{i(q+G).r_{1}} W_{GG'}(q) e^{-i(q+G').r_{2}}$$

a matrix of coefficients per q-point in the BZ due to translational symmetry:

$$W(r_1, r_2) = W(r_1 + R, r_2 + R)$$

Jouvence, Quantum Materials 2018

W in plane-waves and frequency space

(1)
$$\chi_{0}(\boldsymbol{r}_{1},\boldsymbol{r}_{2},\omega) = \sum_{\substack{i \text{ occ} \\ j \text{ virt}}} \phi_{i}(\boldsymbol{r}_{1})\phi_{i}^{*}(\boldsymbol{r}_{2})\phi_{j}(\boldsymbol{r}_{2})\phi_{j}^{*}(\boldsymbol{r}_{1})$$
$$\times \left[\frac{1}{\omega - (\epsilon_{j} - \epsilon_{i}) - i\eta} - \frac{1}{\omega - (\epsilon_{i} - \epsilon_{j}) + i\eta}\right]$$
(2)

$$\epsilon(1,2) = \delta(1,2) - \int d3 v(1,3) \chi_0(3,2)$$

$$W(1,2) = \int d3 \varepsilon^{-1}(1,3) v(3,2)$$

(1)
$$\chi_{0GG'}(\boldsymbol{q},\omega) = \sum_{\substack{k \\ i \text{ occ} \\ j \text{ virt}}} \langle j \boldsymbol{k} - \boldsymbol{q} | e^{-i(\boldsymbol{q}+\boldsymbol{G}).\boldsymbol{r}_{1}} | i \boldsymbol{k} \rangle \langle i \boldsymbol{k} | e^{i(\boldsymbol{q}+\boldsymbol{G}').\boldsymbol{r}_{2}} | j \boldsymbol{k} - \boldsymbol{q} \rangle \qquad \text{nband} \\ \text{ecuteps} \\ \times \left[\frac{1}{\omega - (\boldsymbol{\epsilon}_{j} - \boldsymbol{\epsilon}_{i}) - i \eta} - \frac{1}{\omega - (\boldsymbol{\epsilon}_{i} - \boldsymbol{\epsilon}_{j}) + i \eta} \right]^{\boldsymbol{q}} \text{ the same regular grid} \\ \text{ (2)} \\ \text{ (3)} \quad \varepsilon_{GG'}(\boldsymbol{q},\omega) = \delta_{G,G'} - \sum_{G''} v_{GG''}(\boldsymbol{q}) \chi_{0G''G'}(\boldsymbol{q},\omega) \quad \checkmark \quad v_{GG''}(\boldsymbol{q}) = \frac{4\pi}{|\boldsymbol{q}+\boldsymbol{G}|^{2}} \delta_{G,G''} \\ W_{GG'}(\boldsymbol{q},\omega) = \varepsilon_{GG'}^{-1}(\boldsymbol{q},\boldsymbol{G}') v_{G'}(\boldsymbol{q}) \quad \checkmark \quad \text{matrix inversion} \end{cases}$$

F. Bruneval

(3)

Self energy evaluation in GW

Correlation part of the GW self energy requires a convolution in frequency:

How do we perform the convolution? How do we treat the frequency dependence in *W*?

F. Bruneval

Analytic structure of $W(\omega)$

• Time ordered response function:

Plasmon-Pole Models in GW

Correlation part of the GW self energy requires a convolution in frequency:

$$\Sigma_{c}(\omega) = \frac{i}{2\pi} \int_{-\infty}^{+\infty} d\omega' G(\omega + \omega') W_{p}(\omega')$$
Generalized Plasmon-Pole Model:

$$\varepsilon^{-1}(\omega') - 1 = 2 \frac{\Omega^{2}}{2\omega} \left[\frac{1}{\omega' - \omega + i\eta} - \frac{1}{\omega' + \omega - i\eta} \right]$$
Amplitude of the pole Position of the pole small real number
2 parameters need two constraints:
- Hybertsen-Louie (HL): $\varepsilon^{-1}(0)$ and f sum rule $\int_{0}^{+\infty} \omega \operatorname{Im} \varepsilon^{-1}(\omega) = -\frac{\pi}{2} \omega_{p}^{2}$
F. Bruneval $\varepsilon^{-1}(i\omega)_{0}$ ppmfrq num Materials 2018

GW obtained as a first-order perturbation

$$G = G_{0} + G_{0} \Sigma G$$

$$G_{KS} = G_{0} + G_{0} v_{xc} G_{KS}$$

$$G^{-1} = G_{KS}^{-1} - (\Sigma - v_{xc})$$

Jouvence, Quantum Materials 2018

Linearization of the energy dependance

$$\mathbf{\epsilon}_{i}^{GW} - \mathbf{\epsilon}_{i}^{KS} = \left\langle \mathbf{\phi}_{i}^{KS} \middle| \left[\Sigma \left(\mathbf{\epsilon}_{i}^{GW} \right) - \mathbf{v}_{xc} \right] \middle| \mathbf{\phi}_{i}^{KS} \right\rangle$$

Not yet known

Taylor expansion:

$$\Sigma(\epsilon_i^{GW}) = \Sigma(\epsilon_i^{KS}) + (\epsilon_i^{GW} - \epsilon_i^{KS}) \frac{\partial \Sigma}{\partial \epsilon} + \dots$$

Final result:

$$\epsilon_{i}^{GW} = \epsilon_{i}^{KS} + Z_{i} \langle \phi_{i}^{KS} | [\Sigma(\epsilon_{i}^{KS}) - v_{xc}] | \phi_{i}^{KS} \rangle$$

where

$$Z_i = 1/\left(1 - \langle i | \frac{\partial \Sigma}{\partial \epsilon} | i \rangle\right)$$

F. Bruneval

Jouvence, Quantum Materials 2018

nomegasrd

Typical GW output in ABINIT

F. Bruneval

Full quasiparticle solution

F. Bruneval

- I. Introduction: going beyond DFT
- II. Introduction of the Green's function
- III. Exact Hedin's equations and the *GW* approximation
- IV. Calculating the GW self-energy in practice
- V. Applications

GW approximation gets good band gap

Jouvence, Quantum Materials 2018

Spectral function

F. Bruneval

Excitation lifetime

Hole self-energy:

$$\begin{split} \mathsf{Im}\{\langle i|\Sigma(\epsilon_i)|i\rangle\} &= -\sum_{j \in \mathbf{G}'} M_{ij}(\mathbf{q} + \mathbf{G}) M_{ij}^*(\mathbf{q} + \mathbf{G}') \\ &\times \mathsf{Im}(W - v)_{\mathbf{G}\mathbf{G}'}(\mathbf{q}, \epsilon_j - \epsilon_i) \\ &\times \theta(\mu - \epsilon_j)\theta(\epsilon_j - \epsilon_i) \end{split}$$

Jouvence, Quantum Materials 2018

Exact realization of the Lehman decomposition

Clusters de sodium

What is the best starting point for $G_{o}W_{o}$?

Journal of Chemical Theory and Computation

Ionization of small molecules

Table 1. G_0W_0 HOMO Energy of the 34 Molecules	Employing Different Starting Points with the cc-pVQZ Basis Set ^a
---	---

	GW@										
starting point	HF	LDA	PBE	PBE0	B3LYP	HSE06	BH&HLYP	CAM-B3LYP	tuned CAM-B3LYP	CCSD(T)	exp
LiH	-8.20	-7.24	-7.07	-7.66	-7.53	-7.47	-7.91	-8.03	-8.07	-7.94	
Li ₂	-5.36	-5.13	-5.12	-5.29	-5.23	-5.19	-5.30	-5.32	-5.38	-5.17	
LiF	-11.62	-10.61	-10.37	-10.93	-10.82	-10.89	-11.29	-11.49	-11.45	-11.51	
Na ₂	-4.98	-4.91	-4.89	-4.97	-4.96	-4.91	-4.97	-4.98	-5.01	-4.82	
NaCl	-9.36	-8.56	-8.43	-8.82	-8.77	-8.70	-9.06	-9.15	-9.22	-9.13	-9.80
СО	-14.97	-13.63	-13.55	-14.00	-13.92	-13.92	-14.36	-14.26	-14.11	-14.05	
CO ₂	-14.38	-13.45	-13.32	-13.68	-13.57	-13.59	-13.91	-13.91	-13.82	-13.78	
CS	-13.08	-10.97	-10.93	-11.43	-11.31	-11.33	-11.79	-11.69	-11.55	-11.45	
C_2H_2	-11.65	-11.10	-11.08	-11.27	-11.23	-11.21	-11.40	-11.41	-11.41	-11.42	-11.49
C_2H_4	-10.85	-10.39	-10.37	-10.53	-10.52	-10.48	-10.65	-10.67	-10.66	-10.69	-10.68
CH_4	-14.86	-14.07	-14.03	-14.30	-14.27	-14.23	-14.52	-14.53	-14.48	-14.40	-14.40^{44}
CH ₃ Cl	-11.74	-11.02	-10.98	-11.21	-11.18	-11.15	-11.41	-11.43	-11.41	-11.41	-11.29
CH ₃ OH	-11.69	-10.70	-10.64	-10.97	-10.89	-10.88	-11.20	-11.22	-11.17	-11.08	-10.96
CH-SH	-9.81	-918	-917	-936	_935	-9 30	-9.53	-9.55	_9 53	_9 49	

Hybrids perform better, preferably with a large content of EXX ~ 50 %

F. Bruneval

Jouvence, Quantum Materials 2018

Article

Defect calculation within GW approximation

Up to 215 atoms

Cubic silicon carbide

Jouvence, Quantum Materials 2018

Photoluminescence of V_{si}

F. Bruneval

3d metal band structure

Nickel

F. Bruneval

Band Offset at the interface between two semiconductors

GW correction with respect to LDA

R. Shaltaf PRL (2008).

F. Bruneval

Summary

- The GW approximation solves the band gap problem!
- The calculations are extremely heavy, so that we resort to many additional technical approximations: method named $G_0 W_0$
- The complexity comes from
 - Dependence upon empty states
 - Non-local operators
 - Dynamic operators that requires freq. convolutions

Reviews - Links

Reviews:

- L. Hedin, Phys. Rev. 139 A796 (1965).
- L. Hedin and S. Lunqdvist, in Sòlid State Physics, Vol. 23 (Academic, New York, 1969), p. 1.
- F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61 237 (1998).
- W.G. Aulbur, L. Jonsson, and J.W. Wilkins, Sol. State Phys. 54 1 (2000).
- G. Strinati, Riv. Nuovo Cimento **11** 1 (1988).

• F. Bruneval and M. Gatti, "Quasiparticle Self-Consistent GW Method for the Spectral Properties of Complex Materials", Top. Curr. Chem (2014) 347: 99–136

Codes:

- http://www.abinit.org
- http://www.berkeleygw.org/
- https://github.com/bruneval/molgw

Exercice: H₂ in minimal basis: GW@HF

Find the location of the poles of the self-energy

Szabo-Ostlung book chapter 3 teaches how to perform HF in this example:

Exercice: H₂ in minimal basis: GW@HF

Find the location of the poles of W

Diagonalize the RPA equation

$$\chi^{-1}(\omega) = \begin{pmatrix} \omega - (\epsilon_j - \epsilon_i) \\ f_i - f_j \\ \cdot \\ \cdot \\ \cdot \end{pmatrix} - \begin{pmatrix} (ij|\frac{1}{r}|kl) \\ \cdot \\ \cdot \\ \cdot \end{pmatrix}$$

 $|kl\rangle$

$$\Delta \epsilon = \epsilon_2 - \epsilon_1 = 1.248$$

$$v = (12|1/r|12) = 0.181 \qquad |12\rangle \qquad |21\rangle$$

$$\langle 12| \qquad \left(\frac{\omega - \Delta \epsilon}{2} \quad 0\right) - \left(\begin{array}{c} v & v \\ v & v \end{array}\right)$$

$$\langle 21| \qquad 0 \quad \frac{\omega + \Delta \epsilon}{-2} - \left(\begin{array}{c} v & v \\ v & v \end{array}\right)$$

$$\Omega = \pm \sqrt{\Delta \epsilon^2 + 4v \Delta \epsilon} = \pm 1.569$$

F. Bruneval

Exercice: H_2 in minimal basis: GW@HF

$$\Sigma_{c}(\omega) = \frac{i}{2\pi} \int_{-\infty}^{+\infty} d\omega' G(\omega + \omega') W_{p}(\omega')$$

$$G(\omega) = \sum_{i} \frac{\phi_{i}(\mathbf{r})\phi_{i}(\mathbf{r}')}{\omega - \epsilon_{i} \pm i\eta} \qquad W_{p}(\omega) = \sum_{s} \frac{L_{s}(\mathbf{r})R_{s}(\mathbf{r}')}{\omega - \Omega_{s} \pm i\eta}$$

$$\Sigma_{c}(\omega) = \frac{i}{2\pi} \sum_{i \in [1,2]} \sum_{s \in [1+2,2+1]} \int_{-\infty}^{+\infty} d\omega' \frac{\alpha}{\omega + \omega' - \epsilon_{i} \pm i\eta} \times \frac{\beta}{\omega' - \Omega \pm i\eta}$$
Integration in the $-\Omega \qquad \epsilon_{1} - \omega$

$$\varepsilon_{2} - \omega \Omega$$
Pole table: $-\Omega \qquad \epsilon_{1} - \Omega \qquad \epsilon_{2} + \Omega$

$$\Omega \qquad \epsilon_{1} - \Omega \qquad \omega$$
F. Bruneval Jouvence, Quantum Materials 2018

Exercice: H₂ in minimal basis: GW@HF

- < 1 | Σ_c | 1 >

- < 2 | Σ_c | 2 >

-1.0

0.0

ω (atomic units)

1.0

$$\epsilon_2 + \Omega = 2.239$$

 $\epsilon_1 - \Omega = -2.147$

40 Real part of the self-energy from MOLGW 20 Re $\Sigma_{\rm c}$ -20 -40∟ -3.0 -2.0

> $\epsilon_{HOMO}^{GW} = -16.23 \text{ eV}$ $\epsilon_{LUMO}^{GW} = \frac{18.74}{\text{Jouvence, Quantum Materials 2018}}$

2.0

3.0
Exercice: H₂ in minimal basis: GW@HF

Same conclusions hold for a many-state case:

Bulk silicon

Plasmon frequency ~ 17 eV Occupied states ~ -5 - 0 eVEmpty states ~ $+2 - \dots eV$

Jouvence, Quantum Materials 2018

Green's function in frequency domain

$$iG(\mathbf{r}_{1}t_{1},\mathbf{r}_{2}t_{2}) = \theta(t_{1}-t_{2})\sum_{i \text{ virt}} \phi_{i}(\mathbf{r}_{1})\phi_{i}^{*}(\mathbf{r}_{2})e^{-i\epsilon_{i}(t_{1}-t_{2})}$$
$$-\theta(t_{2}-t_{1})\sum_{i \text{ occ}} \phi_{i}(\mathbf{r}_{2})\phi_{i}^{*}(\mathbf{r}_{1})e^{-i\epsilon_{i}(t_{2}-t_{1})}$$
$$G(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \int d(t_{1}-t_{2})e^{i\omega(t_{1}-t_{2})}G(\mathbf{r}_{1}t_{1},\mathbf{r}_{2}t_{2})$$
$$G(\mathbf{r}_{1},\mathbf{r}_{2},\omega) = \sum_{i} \frac{\phi_{i}(\mathbf{r}_{1})\phi_{i}^{*}(\mathbf{r}_{2})}{\omega-\epsilon_{i}\pm i\eta}$$

Jouvence, Quantum Materials 2018

F. Bruneval

Fock exchange from Green's functions

$$\Sigma_{x}(1,2) = iG(1,2)v(1^{+},2) \qquad \qquad \Sigma_{x}(r_{1},r_{2},\omega) = -\sum_{iocc} \frac{\phi_{i}(r_{1})\phi_{i}^{*}(r_{2})}{|r_{1}-r_{2}|}$$

F. Bruneval

Jouvence, Quantum Materials 2018

1) The multiple faces of the Dyson equation

$$\begin{bmatrix} \omega - h_{\rm KS} \end{bmatrix} G_{\rm KS} = 1$$

$$\begin{bmatrix} \omega - h_0 - v_{xc} \end{bmatrix} G_{\rm KS} = 1$$

$$\begin{bmatrix} G_0^{-1} - v_{xc} \end{bmatrix} G_{\rm KS} = 1$$

$$\begin{bmatrix} G_0^{-1} - v_{xc} \end{bmatrix} G_{\rm KS} = G_0 + G_0 v_{xc} G_{\rm KS}$$

$$\begin{bmatrix} G_{\rm KS} = G_0 + G_0 v_{xc} G_0 + G_0 v_{xc} G_0 v_{xc} G_0 + \dots \\ G_{\rm KS} = G_0 + G_0 v_{xc} G_0 + \dots \\ G_{\rm KS} = G_0^{-1} - v_{xc}$$

2) Combining the Dyson equations

$$G^{-1} = G_{0}^{-1} - \Sigma$$

$$G^{-1}_{KS} = G_{0}^{-1} - v_{xc}$$

$$G^{-1} = G_{KS}^{-1} - (\Sigma - v_{xc})$$

$$I = \begin{bmatrix} G_{KS}^{-1} - (\Sigma - v_{xc}) \end{bmatrix} G$$

$$I = \begin{bmatrix} \omega - h_{0} - \Sigma \end{bmatrix} G$$
Jouvence, Quantum Materials 2018

F. Bruneval

Derive the standard Adler-Wiser formula (1963):

Jouvence, Quantum Materials 2018

F. Bruneval

Exercise 5

Derive that the product in time becomes a convolution in frequency:

$$\Sigma(\mathbf{r}_{1},\mathbf{r}_{2},t_{1}-t_{2})=iG(\mathbf{r}_{1},\mathbf{r}_{2},t_{1}-t_{2})W(\mathbf{r}_{2},\mathbf{r}_{1},t_{2}-t_{1})$$

$$G(\mathbf{r}_{1},\mathbf{r}_{2},\omega)=\int d(t_{1}-t_{2})e^{i\omega(t_{1}-t_{2})}G(\mathbf{r}_{1},t_{1},\mathbf{r}_{2},t_{2})$$

$$G(\mathbf{r}_{1},\mathbf{r}_{2},t_{1}-t_{2})=\frac{1}{2\pi}\int d\omega e^{-i\omega(t_{1}-t_{2})}G(\mathbf{r}_{1},\mathbf{r}_{2},\omega)$$

$$\Sigma(\mathbf{r}_{1},\mathbf{r}_{2},\omega)=\frac{i}{2\pi}\int d\omega'G(\mathbf{r}_{1},\mathbf{r}_{2},\omega+\omega')W(\mathbf{r}_{2},\mathbf{r}_{1},\omega')$$

Jouvence, Quantum Materials 2018

Exercice 6: Feynman diagram drawing

a) Draw all the 1st order diagrams for the self-energy

- b) Draw all the 2nd order diagrams for the self-energy
- c) What is the difference between the proper and the improper self-energy

d) How self-consistency can simplify the expansion?

Self-energy diagram drawing rules:

1. Diagrams are combinations of arrows (Green's function) and horizontal lines (Coulomb interaction). Upward arrows are electrons, downward arrows are hole.

2. Diagrams should be connected.

3. Self-energy have an entry point and an exit point (possibly the same).

4. Each intersection should conserve the particle numbers.

5. A valid diagram cannot be cut (by removing an arrow) into another lower order self-energy.