GW+EDMFT:

a diagrammatically controlled ab initio theory of strong correlation in real materials

Sangkook Choi, Patrick Semon, Byungkyun Kang, Andrey Kutepov, and Gabriel Kotliar

Contents

- 1. Introduction
- 2. GW+EDMFT
- 3. partial self-consistency within LQSGW+DMFT
- 4. LQSGW+DMFT code tutorial (NiO)

1. Introduction

Standard model of solids (Fermi liquid theory)

- Density Functional Theory (Kohn & Hohenberg 1964, Kohn & Sham 1965)
- $\Gamma \left[\rho\left(r\right)\right] = \Gamma_{univ} \left[\rho\left(r\right)\right] + \int dr V_{cryst}(r)\rho\left(r\right)$ $-\nabla^{2} / 2 + V_{KS}(r) \left[\rho\right] \psi_{kj} = \varepsilon_{kj} \psi_{kj}$ $\rho(r) = \sum_{\varepsilon_{kj} < 0} \psi_{kj} * (r) \psi_{kj}(r)$

Starting point for perturbation theory in the screened Coulomb interactions (Hedin 1965) GOWO

$$G^{-1} = G_{0KS}^{-1} + [$$

 This paradigm now enables material design and theoretical spectroscopy for weakly correlated electrons. It fails in a broad class of interesting materials. Correlated Electron Systems. Non perturbative problem. Need new starting point.

First-principles +DMFT: LDA+DMFT

- Many successful stories of LDA+DMFT including metal insulator transition in transition metal oxides
- Many new features including total energy, forces, exact double-counting energy
- Position of La-f, O-p

[1] K. Haule, T. Birol, and G. Kotliar, Phys. Rev. B 90, 075136 (2014).

[2]G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

GW and EDMFT

[1] P. Sun and G. Kotliar, Phys. Rev. B 66, 085120 (2002).
[2] S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett. 90, 086402 (2003)
[3]F. Nilsson, L. Boehnke, P. Werner, and F. Aryasetiawan, Phys. Rev. Materials 1, 043803 (2017).

GW+EDMFT: diagrammatically controlled ab initio theory

- a diagrammatical route to calculate on-site strong correlation and non-local correlation
- first-order non-trivial correction to DMFT or local correction to GW

[1] P. Sun and G. Kotliar, Phys. Rev. B 66, 085120 (2002).

[2] S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett. 90, 086402 (2003)

[3]F. Nilsson, L. Boehnke, P. Werner, and F. Aryasetiawan, Phys. Rev. Materials 1, 043803 (2017).

2. GW+EDMFT

[1] T. Ayral, S. Biermann, and P. Werner, Phys. Rev. B 87, 125149 (2013).

Hedin's equation

• Hedin's equation

$$\Sigma(1,2) = -\int d(34)G(1,3^{+})W(1,4)\Gamma(3,2,4), \quad (1)$$

$$G(1,2) = G_{0}(1,2) + \int d(34)G_{0}(1,3)\Sigma(3,4)G(4,2), \quad (2)$$

$$\Gamma(1,2,3) = \delta(1-2)\delta(2-3), + \int d(4567)\frac{\partial\Sigma(1,2)}{\partial G(4,5)}G(4,6)G(7,5)\Gamma(6,7,3), \quad (3)$$

$$\Pi(1,2) = \int d(34)G(1,3)\Gamma(3,4,2)G(4,1^+), \qquad (4)$$

$$W(1,2) = v(1,2) + \int d(34)v(1,3)\Pi(3,4)W(4,2).$$
(5)

• If $\Gamma(1,2,3) \approx \delta(1-2)\delta(2-3)$

$$\Sigma^{GW} = -G(1,2)W(1,2) \quad \Pi(1,2) = G(1,2)G(2,1^+)$$

[1]L. Hedin, Phys. Rev. 139, A796 (1965).

GW loop

$$\Sigma(\mathbf{k}, i\omega_n) = -\int_0^\beta d\tau \sum_{\mathbf{R}} G(\mathbf{R}, \tau) \cdot W(\mathbf{R}, \tau) e^{i(\mathbf{k} \cdot \mathbf{R} - \omega_n \tau)}$$
$$P(\mathbf{k}, i\omega_n) = \int_0^\beta d\tau \sum_{\mathbf{R}} G(\mathbf{R}, \tau) \cdot G(-\mathbf{R}, -\tau) e^{i(\mathbf{k} \cdot \mathbf{R} - \omega_n \tau)}$$

$$G^{-1}(\mathbf{k}, i\omega_n) = G_0^{-1}(\mathbf{k}, i\omega_n) - \Sigma(\mathbf{k}, i\omega_n)$$
$$W^{-1}(\mathbf{k}, i\omega_n) = V^{-1}(\mathbf{k}) - P(\mathbf{k}, i\omega_n)$$

G: Green's functionΣ: electron self-energyP: polarizabilityW: screened Coulomb interaction

 \mathcal{G} : fermionic Weiss field \mathcal{U} : bosonic Weiss field G_{imp} : impurity Green's function P_{imp} : impurity polarizability χ_{imp} : impurity susceptiblity Σ_{DC} : double-counted self-energy P_{DC} : double-counted polarizability Extended Dynamical Mean Field Theory for U-V Hamiltonian

- DMFT formalism for models with spatially non-local interactions
- Model Hamiltonian example: U-V Hubbard model

$$H = -t \sum_{\langle ij \rangle \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + \text{H.c.}) - \mu \sum_{i} n_{i} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} + V \sum_{\langle ij \rangle} n_{i} n_{j},$$

Actions formulation

$$S[c^*,c] = \int_0^\beta d\tau \bigg\{ \sum_{ij\sigma} c^*_{i\sigma}(\tau) [(\partial_\tau - \mu)\delta_{ij} + t_{ij}] c_{j\sigma}(\tau) \\ + U \sum_i n_{i\uparrow}(\tau) n_{i\downarrow}(\tau) + \frac{1}{2} \sum_{ij} v^{nl}_{ij} n_i(\tau) n_j(\tau) \bigg\}.$$

• Rewriting the action using the identity $n_i n_i = 2n_{i\uparrow}n_{i\downarrow} + n_i$

$$S[c^*,c] = \int_0^\beta d\tau \bigg\{ \sum_{ij\sigma} c^*_{i\sigma}(\tau) \left[(\partial_\tau - \tilde{\mu}) \,\delta_{ij} + t_{ij} \right] c_{j\sigma}(\tau) + \frac{1}{2} \sum_{ij} v_{ij} n_i(\tau) n_j(\tau) \bigg\}.$$

where $v_{ij} = U\delta_{ij} + V\delta_{\langle ij \rangle}$ and $\tilde{\mu} = \mu + U/2$

[1] Q. Si and J. L. Smith, Phys. Rev. Lett. 77, 3391 (1996).

[2] H. Kajueter, Ph.D. thesis, Rutgers University, New Brunswick,(1996).

[3]R. Chitra and G. Kotliar, Phys. Rev. Lett. 84, 3678 (2000).

[4] T. Ayral, S. Biermann, and P. Werner, Phys. Rev. B 87, 125149 (2013).

Extended Dynamical Mean Field Theory

• To map this problem onto single-site impurity model, we need to decouple spatially nonlocal interactions by using a Hubbard-stratonovich transformation for a real and ß-periodic field.

$$\exp\left(\frac{1}{2}\int_{0}^{\beta}d\tau \,b_{i}(\tau)A_{ij}b_{j}(\tau)\right)$$
$$=\int\frac{\mathcal{D}[x_{1}(\tau),x_{2}(\tau),\ldots]}{\sqrt{(2\pi)^{N}\det A}}\exp\left(\int_{0}^{\beta}d\tau\left\{-\frac{1}{2}x_{i}(\tau)[A^{-1}]_{ij}x_{j}(\tau)\mp x_{i}(\tau)b_{i}(\tau)\right\}\right)$$

• Then the action becomes

$$S[c^*,c,\phi] = \int_0^\beta d\tau \left\{ -\sum_{ij\sigma} c^*_{i\sigma}(\tau) \left[\left(G^H_0 \right)^{-1} \right]_{ij} c_{j\sigma}(\tau) \right\} + \int_0^\beta d\tau \right\}$$
$$\times \left\{ \frac{1}{2} \sum_{ij} \phi_i(\tau) [v^{-1}]_{ij} \phi_j(\tau) + i\alpha \sum_i \phi_i(\tau) n_i(\tau) \right\},$$

where $[G_0^{H-1}]_{ij} \equiv [(-\partial_{\tau} + \mu + \frac{U}{2})\delta_{ij} - t_{ij}]$. Bare fermionic and bosonic fields coupled by a local coupling The physically relavant case corresponds to $\alpha = 1$

Extended Dynamical Mean Field Theory

• By integrating out all sites but one in the action in the infinite dimension limit

$$S^{\text{EDMFT}} = -\int_0^\beta d\tau \, d\tau' \sum_\sigma c^*_\sigma(\tau) \mathcal{G}^{-1}(\tau - \tau') c_\sigma(\tau') + \frac{1}{2} \int_0^\beta d\tau \, d\tau' \phi(\tau) \mathcal{U}^{-1}(\tau - \tau') \phi(\tau') + i \int_0^\beta d\tau \phi(\tau) n(\tau),$$

Where
$$\mathcal{G}^{-1} = G_{imp}^{-1} + \Sigma_{imp}$$
 and $\mathcal{U}^{-1} = W_{imp}^{-1} + P_{imp}$
• by integrating out the ϕ field

$$S^{\text{EDMFT}} = -\int_0^\beta d\tau \, d\tau' \sum_\sigma c^*_\sigma(\tau) \mathcal{G}^{-1}(\tau - \tau') c_\sigma(\tau') + \frac{1}{2} \int_0^\beta d\tau \, d\tau' n(\tau) \mathcal{U}(\tau - \tau') n(\tau') - \frac{1}{2} \text{Tr} \ln \mathcal{U},$$

• Green's function to be computed within EDMFT

$$G_{imp} = -\langle Tc(\tau)c^*(0)\rangle$$
$$W_{imp} = \langle T\phi(\tau)\phi(0)\rangle$$

Extended Dynamical Mean Field Theory

 \bullet How to compute $W_{_{imp}}$

$$W_{imp} = 2\frac{\delta lnZ}{\delta \mathcal{U}^{-1}} = 2\frac{\delta lnZ}{\delta \mathcal{U}}\frac{\delta \mathcal{U}}{\delta \mathcal{U}^{-1}} = -2\mathcal{U}\frac{\delta lnZ}{\delta \mathcal{U}}\mathcal{U} = -\mathcal{U}\langle Tn(\tau)n(0)\rangle\mathcal{U} + \mathcal{U}$$
$$W_{imp} = \mathcal{U} - \mathcal{U}\chi_{imp}\mathcal{U}$$

EDMFT loop

- G: Green's function
- Σ : electron self-energy
- P: polarizability
- W: screened Coulomb interaction

- $\mathcal{G}:$ fermionic Weiss field
- \mathcal{U} : bosonic Weiss field
- G_{imp} : impurity Green's function
- P_{imp} : impurity polarizability
- χ_{imp} : impurity susceptiblity
- Σ_{DC} : double-counted self-energy
- P_{DC} : double-counted polarizability

GW+EDMFT as a electronic structure theory

- Within EDMFT, fermionic as well as bosonic self energy are local.
- a way to restore the non-local self energy by adding the first non-trivial non-local diagrammatic correction

$$\Sigma(\mathbf{k}, i\omega_n) = \Sigma_{GW}(\mathbf{k}, i\omega_n) + f_{\mathbf{k}} \left(\widetilde{\Sigma}_{imp}(i\omega_n) - \widetilde{\Sigma}_{DC}(i\omega_n) \right) f_{\mathbf{k}}^{\dagger}$$
$$P(\mathbf{k}, i\nu_n) = P_{GW}(\mathbf{k}, i\nu_n) + b_{\mathbf{k}} \left(\widetilde{P}_{imp}(i\nu_n) - \widetilde{P}_{DC}(i\nu_n) \right) b_{\mathbf{k}}^{\dagger}$$

A new Notation from now on

 $A \rightarrow \langle \mathbf{r} | A | \mathbf{r}' \rangle$ $f = \langle \mathbf{r} | c_f \rangle \rightarrow$ a orthonormal basis set for correlated orbitals

 $b = \langle \mathbf{r} | c_b \rangle \rightarrow$ a orthonormal product basis set composed of correlated orbitals $\widetilde{A} \rightarrow \langle c_f | A | c'_f \rangle$ for a fermionic quantity and $\langle c_b | A | c'_b \rangle$ for a bosonic quantity

^[1]P. Sun and G. Kotliar, Phys. Rev. B 66, 085120 (2002).

^[2]S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett. 90, 086402 (2003).

^[3]P. Sun and G. Kotliar, Phys. Rev. Lett. 92, 196402 (2004).

GW+EDMFT loop

$$\begin{split} \Sigma(\mathbf{k}, i\omega_n) &= \Sigma_{GW}(\mathbf{k}, i\omega_n) + f_{\mathbf{k}} \left(\widetilde{\Sigma}_{imp}(i\omega_n) - \widetilde{\Sigma}_{DC}(i\omega_n) \right) f_{\mathbf{k}}^{\dagger} \\ P(\mathbf{k}, i\nu_n) &= P_{GW}(\mathbf{k}, i\nu_n) + b_{\mathbf{k}} \left(\widetilde{P}_{imp}(i\nu_n) - \widetilde{P}_{DC}(i\nu_n) \right) b_{\mathbf{k}}^{\dagger} \\ \widetilde{\Sigma}_{imp} &= \widetilde{\mathcal{G}}^{-1} - \widetilde{G}_{imp}^{-1} \\ \widetilde{W}_{imp} &= \widetilde{\mathcal{U}} - \widetilde{\mathcal{U}} \widetilde{\chi}_{imp} \widetilde{\mathcal{U}} \\ \widetilde{P}_{imp} &= \widetilde{\mathcal{U}}^{-1} - \widetilde{W}_{imp}^{-1} \\ \widetilde{\mathcal{G}}^{-1} &= \widetilde{G}_{loc}^{-1} + \widetilde{\Sigma}_{imp} \\ \widetilde{\mathcal{U}}^{-1} &= \widetilde{W}_{loc}^{-1} + \widetilde{P}_{imp} \end{split}$$

G: Green's functionΣ: electron self-energyP: polarizabilityW: screened Coulomb interaction

- \mathcal{G} : fermionic Weiss field
- \mathcal{U} : bosonic Weiss field
- G_{imp} : impurity Green's function
- P_{imp} : impurity polarizability
- χ_{imp} : impurity susceptiblity
- Σ_{DC} : double-counted self-energy
- P_{DC} : double-counted polarizability

3. partial self-consistency within LQSGW+DMFT

GW+EDMFT loop

$$\begin{split} \Sigma(\mathbf{k}, i\omega_n) &= \Sigma_{GW}(\mathbf{k}, i\omega_n) + f_{\mathbf{k}} \left(\widetilde{\Sigma}_{imp}(i\omega_n) - \widetilde{\Sigma}_{DC}(i\omega_n) \right) f_{\mathbf{k}}^{\dagger} \\ P(\mathbf{k}, i\nu_n) &= P_{GW}(\mathbf{k}, i\nu_n) + b_{\mathbf{k}} \left(\widetilde{P}_{imp}(i\nu_n) - \widetilde{P}_{DC}(i\nu_n) \right) b_{\mathbf{k}}^{\dagger} \\ \widetilde{\Sigma}_{imp} &= \widetilde{\mathcal{G}}^{-1} - \widetilde{G}_{imp}^{-1} \\ \widetilde{W}_{imp} &= \widetilde{\mathcal{U}} - \widetilde{\mathcal{U}} \widetilde{\chi}_{imp} \widetilde{\mathcal{U}} \\ \widetilde{P}_{imp} &= \widetilde{\mathcal{U}}^{-1} - \widetilde{W}_{imp}^{-1} \\ \widetilde{\mathcal{G}}_{loc}^{-1} &= \widetilde{G}_{loc}^{-1} + \widetilde{\Sigma}_{imp} \\ \widetilde{\mathcal{U}}^{-1} &= \widetilde{W}_{loc}^{-1} + \widetilde{P}_{imp} \end{split}$$

G: Green's functionΣ: electron self-energyP: polarizabilityW: screened Coulomb interaction

- \mathcal{G} : fermionic Weiss field
- \mathcal{U} : bosonic Weiss field
- G_{imp} : impurity Green's function
- P_{imp} : impurity polarizability
- χ_{imp} : impurity susceptiblity
- Σ_{DC} : double-counted self-energy
- P_{DC} : double-counted polarizability

Various simplified approaches to GW+EDMFT

- fixing Bosonic quantities at the GW level
- U from constrained random phase approximation (cRPA) [1] and its extension [2]
- One-shot DMFT approach: G_{MF} is fixed
- For the construction of G_{MF}: one-shot GW [6,7], Screened Exchange [3], QSGW [4] and LQSGW [2], non-local QSGW and LQSGW [5]

*) Multitier-GW+EDMFT [8] approach has been proposed: full GW+EDMFT approach in the low-energy regions

[1] F. Aryasetiawan et al., Phys. Rev. B 70, 195104 (2004). [2] S. Choi, et al., Npj Quantum Materials 1, 16001 (2016).
[3] A. van Roekeghem, et al., Phys. Rev. Lett. 113, 266403 (2014). [4] L. Sponza et al., Phys. Rev. B 95, 041112 (2017).
[5] J. M. Tomczak, J. Phys.: Conf. Ser. 592, 012055 (2015). [6] J. M. Tomczak et al., Phys. Rev. B 90, 165138 (2014).
[7] C. Taranto et al., Phys. Rev. B 88, 165119 (2013). [8] F. Nilsson et al., Phys. Rev. Materials 1, 043803 (2017).

LQSGW+DMFT validation on La2CuO4

- LDA+DMFT and LQSGW+DMFT opens a paramagnetic Mott gap
- LQSGW predict a metal in non-magnetic calculation and an insulator in spin-polarized calculation.
 But its gap is too big (3.4 eV vs ~2 eV)
- LDA predict a metallic phase
- better O-p and La-f position within LQSGW+DMFT

[1]S. Choi, A. Kutepov, K. Haule, M. van Schilfgaarde, and G. Kotliar, Npj Quantum Materials 1, 16001 (2016).

Choice of local orbitals

- U and Σ_{DC} are self-consistently determined
- Identical Mott gap regardless of the choice of orbitals
- The position of Lower Hubbard band is sensitive to the choice

LQSGW+DMFT validation on NiO

 a proper choice of static U gives similar spectral function to Exp and full LQSGW+DMFT Linearized Quasiparticle Self-consistent GW (LQSGW)

• Why LQSGW, not one-shot GW or Full GW?

• G_0W_0 : band narrowing (consistent with exp)

• GW: band widening. Worse than G₀W₀

[1]B. Holm and U. von Barth, Phys. Rev. B 57, 2108 (1998).

Oneshot GW

	$G_0 W_0(0)$	$G_0 W_0(0.25)$
Si	1.26	1.75
Ge	0.63	1.00
SiC	3.08	3.74
AlN	4.81	5.79
С	5.62	6.34
GaAs	1.21	1.83
GaP	2.42	2.97
GaN	2.75	3.67
ZnO	2.02	3.32
ZnSe	2.28	3.06
MoS_2	1.39	1.69
TiO ₂	3.27	3.96
HfO_2	5.67	6.63
SiO ₂	8.36	9.39
MgO	6.71	8.02
LiF	13.13	14.43

• Starting point dependent (PBE vs PBE0)

[1]W. Chen and A. Pasquarello, Phys. Rev. B 90, 165133 (2014).

Projector (f_k) construction by using Wannier functions

• From tight-binding model

$$|n\mathbf{k}\rangle = \frac{1}{\sqrt{N_{\mathbf{k}}}} \sum_{\mathbf{R},\tau} U_{n\tau}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{R}} |\tau\mathbf{R}\rangle$$
$$|\tau\mathbf{R}\rangle = \frac{1}{\sqrt{N_{\mathbf{k}}}} \sum_{\mathbf{k},n} U_{n\tau}^{*}(\mathbf{k}) e^{-i\mathbf{k}\cdot\mathbf{R}} |n\mathbf{k}\rangle$$

• One way to construct orthonormal basis set of $|\tau \mathbf{R}\rangle$ from $|n\mathbf{k}\rangle$, or to determine $U_{n\tau}(\mathbf{k})$ \rightarrow by minimizing total spread

$$\Omega = \sum_{\tau \mathbf{R}} \langle \mathbf{r}^2 - \langle \mathbf{r} \rangle_{\tau \mathbf{R}}^2 \rangle_{\tau \mathbf{R}} \text{ , where } \langle A \rangle_{\tau \mathbf{R}} = \langle \mathbf{R} \tau | A | \mathbf{R} \tau \rangle$$

 \rightarrow Under the constraint that it preserves band eigenvalues $E_{n\mathbf{k}}$ in the inner (frozen) window

- Our default choice of inner (frozen) window: $E_{F^{\pm}}$ 10eV
- then a projector to correlated orbitals

$$f_k = \langle \mathbf{r} | \tau \mathbf{k} \rangle = \sum_n U_{n\tau}^*(\mathbf{k}) \langle \mathbf{r} | n \mathbf{k} \rangle$$

Product basis (b_k) construction by using Wannier functions

• With products of Wannier functions for correlated orbitals

$$B_{\tau,\tau'}(\mathbf{r}) = W_{\mathbf{R}=\mathbf{0}\tau}(\mathbf{r})W^*_{\mathbf{R}=\mathbf{0}\tau'}(\mathbf{r})$$

 Orthonormalized product basis can be represented as a linear combination of the product C

$$\langle \mathbf{r} | c_b \rangle = \sum_{\tau, \tau'} X_{\tau, \tau'; b} B_{\tau, \tau'}(\mathbf{r})$$

• The coefficient X can be calculated by diagonalizing the overlap matrix of C

$$O_{\tau_1,\tau_2;\tau_3,\tau_4} = \langle B_{\tau_1,\tau_2} | B_{\tau_3,\tau_4} \rangle$$

$$\sum_{\tau_3,\tau_4} O_{\tau_1,\tau_2;\tau_3,\tau_4} D_{\tau_3,\tau_4;b} = F_b D_{\tau_1,\tau_2;b}$$

$$X_{\tau_1,\tau_2;b} = \frac{1}{\sqrt{F_b}} D_{\tau_1,\tau_2;b}$$

Wannier-interpolation of LQSGW bandstructure (H_{OP})

- The more localized orthonormal basis set \rightarrow the sparser H matrix in the R space
- With localized basis set, hopping energy are essentially 0 beyond a few neighbours.
- If the supercell defined by k-grid is larger than the hopping range, we can interpolate the bands at a arbitrary k point

$$H_{\tau,\tau'}(\mathbf{k}) = \sum_{n,m} \langle \tau \mathbf{k} | n \mathbf{k} \rangle H_{n,m}(\mathbf{k}) \langle m \mathbf{k} | \tau' \mathbf{k} \rangle$$
$$H_{\tau,\tau'}(\mathbf{R}) = \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{k}} H_{\tau,\tau'}(\mathbf{k}) e^{-i\mathbf{k} \cdot \mathbf{R}}$$
$$H_{\tau,\tau'}(\mathbf{k}') = \sum_{\mathbf{R}} H_{\tau,\tau'}(\mathbf{R}) e^{i\mathbf{k}' \cdot \mathbf{R}}$$

Coulomb interaction matrix from cRPA

Suppose that the band-structure of a given solid can be separated in to a narrow band near the Fermi level and the rest.

Divide the complete Hilbert space into the subspace for the correlated orbitals and the rsst

Aim: calculate the effective interaction between the correlated orbitals.

This interaction has to be bare with respect to the correlated orbitals but renormalized with respect to the rest

[1]F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, and A. I. Lichtenstein, Phys. Rev. B 70, 195104 (2004).

How to define P_{OP}^{low}

• How to pick bands in the correlated subspace:

- We pick the same number of bands as the number of correlated orbitals

- The orbital character of the selected bands are mostly from the correlated orbitals

$$\begin{split} P_{QP} &= P_{QP}^{low} + P_{QP}^{high} \\ P_{QP}^{low}(\mathbf{r}, \mathbf{r}', \mathbf{k}, i\omega_n) &= -N_s \sum_{\mathbf{k}'} \sum_{n}^{\text{in the space in the space}} \sum_{m}^{\text{occ}} \\ \psi_{n\mathbf{k}'}(\mathbf{r})\psi_{m\mathbf{k}'+\mathbf{k}}^*(\mathbf{r})\psi_{n\mathbf{k}'}^*(\mathbf{r}')\psi_{m\mathbf{k}'+\mathbf{k}}(\mathbf{r}')\frac{2(E_{n\mathbf{k}'} - E_{n\mathbf{k}'+\mathbf{k}})}{\omega_n^2 - (E_{n\mathbf{k}'} - E_{n\mathbf{k}'+\mathbf{k}})^2}, \\ W_r^{-1}(\mathbf{k}, i\omega_n) &= W^{-1}(\mathbf{k}, i\omega_n) + P_{QP}^{low}(\mathbf{k}, i\omega_n) \\ \mathcal{U}(i\omega_n) &= W_r(\mathbf{R} = 0, i\omega_n) \end{split}$$

Double counting energy

$$\begin{split} \widetilde{\Sigma}_{i,j}^{DC}(i\omega_n) &= -\sum_{k,l} 2\widetilde{G}_{k,l}(\tau = -\delta)\widetilde{U}_{i,j,k,l}(i\nu_n = 0) \\ &- \sum_{k,l} \int d\tau \widetilde{G}_{k,l}(\tau) \widetilde{W}_{loc,i,k,l,j}(\tau) e^{i\omega_n \tau}, \\ \widetilde{W}_{i,j,k,l}(i\nu_n) &= \widetilde{U}_{i,j,k,l}(i\nu_n) + \sum_{m,n,p,q} \widetilde{U}_{i,j,m,n}(i\nu_n) \widetilde{P}_{m,n,p,q}(i\omega_n) \widetilde{W}_{p,q,k,l}(i\omega_n) \\ \widetilde{P}_{i,j,k,l}(i\omega_n) &= 2 \int d\tau \widetilde{G}_{i,l}(\tau) \widetilde{G}_{j,k}(-\tau) e^{i\omega\tau} \end{split}$$

LQSGW+DMFT loop

For the GW/LDA part of the GW+DMFT/LDA+DMFT scheme, the code FlapwMBPT was used. [1]A. L. Kutepov, V. S. Oudovenko, and G. Kotliar, Computer Physics Communications 219, 407 (2017). [2]A. Kutepov, S. Y. Savrasov, and G. Kotliar, Phys. Rev. B 80, 041103 (2009). [3]A. Kutepov, K. Haule, S. Y. Savrasov, and G. Kotliar, Phys. Rev. B 85, 155129 (2012).

LQSGW+DMFT loop

$$\begin{split} W_r^{-1}(\mathbf{k}, i\omega_n) &= W^{-1}(\mathbf{k}, i\omega_n) + P_{QP}^{low}(\mathbf{k}, i\omega_n) \\ \widetilde{\mathcal{U}}(i\omega_n) &= \widetilde{W}_r(\mathbf{R} = 0, i\omega_n) \end{split}$$
$$\tilde{\mathcal{L}}_{i,j}^{DC}(i\omega_n) &= -\sum_{k,l} 2\widetilde{G}_{k,l}(\tau = -\delta)\widetilde{U}_{i,j,k,l}(i\nu_n = 0) - \sum_{k,l} \int d\tau \widetilde{G}_{k,l}(\tau) \widetilde{W}_{loc,i,k,l,j}(\tau) e^{i\omega_n \tau} \end{split}$$

LQSGW+DMFT loop

- fixing Bosonic quantities at the GW level
- U from constrained random phase approximation (cRPA)
- One-shot DMFT approach: G_{MF} is fixed
- For the construction of G_{MF}: non-local LQSGW

CTQMC with dynamic interactions and GPU acceleration

CTQMC

$$S = -\sum_{ij} \iint c_i^{\dagger}(\tau) \mathcal{G}_{0,ij}^{-1}(\tau - \tau') c_i(\tau') d\tau d\tau' + \sum_{ijkl} \iint c_i^{\dagger}(\tau^+) c_j^{\dagger}(\tau'^+) \mathcal{U}_{ijkl}(\tau - \tau') c_k(\tau') d\tau d\tau'$$

• **Split** Impurity Model action $S = S_A + S_B$

• Expand
$$Z = \int D[c^{\dagger}, c] e^{-S_A - S_B} = \sum_n \int D[c^{\dagger}, c] e^{-S_A} (-S_B)^n$$

• Sample Z and get observables

$$\Rightarrow \int D[c^{\dagger}, c] e^{-S_A} \circ \quad \text{should be easy to evaluate !}$$

Split the action

$$S = -\sum_{ij} \iint c_i^{\dagger}(\tau) \mathcal{G}_{0,ij}^{-1}(\tau - \tau') c_i(\tau') d\tau d\tau' + \sum_{ijkl} \iint c_i^{\dagger}(\tau^+) c_j^{\dagger}(\tau'^+) \mathcal{U}_{ijkl}(\tau - \tau') c_k(\tau') d\tau d\tau'$$

•
$$\mathcal{G}_{0,ij}^{-1}(i\omega_n) = i\omega_n + \mu - \epsilon_{ij} - \Delta_{ij}(i\omega_n)$$

• $\mathcal{U}_{ijkl}(i\nu_n) = U_{ijkl}^{\infty} + U_{ijkl}(i\nu_n)$

$$\Rightarrow S_{\rm dyn} := \sum_{IJ} \iint Q_I^{\dagger}(\tau) F_{IJ}(\tau - \tau') Q_J(\tau') d\tau d\tau'$$

 $\Rightarrow S_{\text{hyb}} := \sum_{ij} \iint c_i^{\dagger}(\tau) \Delta_{ij}(\tau - \tau') c_j(\tau') d\tau d\tau'$

$$Q_I^{\dagger} := \sum_{il} c_i^{\dagger} c_l \langle i, l | I \rangle$$

$$U_{ijkl}(i\nu_n) = \sum_{IJ} \langle i, l | I \rangle F_{IJ}(i\nu_n) \langle J | k, j \rangle$$

•
$$H_{\text{loc}} := \sum_{ij} c_i^{\dagger} (\epsilon_{ij} - \mu \delta_{ij}) c_j + \sum_{ijkl} c_i^{\dagger} c_j^{\dagger} U_{ijkl}^{\infty} c_k c_l \implies S_{\text{loc}} := \int \sum_i c_i^{\dagger} (\tau) \partial_{\tau} c_i(\tau) + H_{\text{loc}} [c^{\dagger}(\tau), c(\tau)] d\tau$$

 $S = S_{\text{loc}} + S_{\text{hyb}} + S_{\text{dyn}}$
Expand the partition function

$$\begin{split} \mathbf{S}_{\mathbf{hyb}} &:= \sum_{ij} \iint c_i^{\dagger}(\tau) \Delta_{ij}(\tau - \tau') c_j(\tau') d\tau d\tau' \\ \mathbf{S}_{\mathbf{dyp}} &:= \sum_{IJ} \iint Q_I^{\dagger}(\tau) F_{IJ}(\tau - \tau') Q_J(\tau') d\tau d\tau' \\ \bullet \ Z &= \int D[c, c^{\dagger}] e^{-S_{\mathbf{loc}} - S_{\mathbf{hyb}} - S_{\mathbf{dyp}}} = \sum_{nm} \frac{1}{n!m!} \int D[c, c^{\dagger}] e^{-S_{\mathbf{loc}}} (-S_{\mathbf{hyb}})^n (-S_{\mathbf{dyp}})^m \\ &= \sum_{nm} \frac{(-1)^{n+m}}{m!n!} \sum_{\substack{i_1 \cdots i_n \\ j_1 \cdots j_n}} \int_0^\beta d\tau_1 \cdots d\tau_n \int_0^\beta d\tau_1' \cdots d\tau_n' \sum_{\substack{I_1 \cdots I_m \\ I_1 \cdots I_m \\ I_1 \cdots I_m}} \int_0^\beta d\tilde{\tau}_1 \cdots d\tilde{\tau}_m \int_0^\beta d\tilde{\tau}_1' \cdots d\tilde{\tau}_m' \\ &\times \operatorname{Tr}[e^{-\beta H_{\mathbf{loc}}} T_\tau \prod_{r=1}^n c_{i_r}^{\dagger}(\tau_r) c_{j_r}(\tau_r') \prod_{s=1}^m Q_{I_s}^{\dagger}(\tilde{\tau}_s) Q_{J_s}(\tilde{\tau}_s')] \times \prod_{r=1}^n \Delta_{i_r j_r}(\tau_r - \tau_r') \times \prod_{s=1}^m F_{I_s J_s}(\tilde{\tau}_s - \tilde{\tau}_s') \\ &= \bigcup_{0} \operatorname{Tr}[e^{-\beta H_{\mathbf{loc}}} T_\tau \cdots]_{\beta} + \bigoplus_{c} \Delta_{c^{\dagger}} + \bigoplus_{c \to c^{\dagger}} F_{c^{\dagger}} + \bigoplus_{q \to 0} F_{c^{\dagger}} + \bigoplus_{r \to 0} F_{r^{\dagger}} + \cdots \\ &\to \operatorname{Det} \end{split}$$

•
$$\prod_{r=1}^{n} \Delta_{i_r j_r} (\tau_r - \tau'_r) \rightarrow \text{Det}[\Delta_{i_k j_l} (\tau_k - \tau'_l)]$$
crucial !

$$\prod_{s=1}^{m} F_{I_s J_s}(\tilde{\tau}_s - \tilde{\tau}'_s) \rightarrow \operatorname{Perm}[F_{I_k J_l}(\tilde{\tau}_k - \tilde{\tau}'_l)]$$

not convenient !

(*): Additional terms and conditions apply

Dress the expansion

•
$$Z = \sum_{nm} \frac{(-1)^m}{m!} \sum_{\substack{i_1 \cdots i_n \\ j_1 \cdots j_n}} \int_{>} d\tau_1 \cdots d\tau_n \int_{>} d\tau'_1 \cdots d\tau'_n \sum_{\substack{I_1 \cdots I_m \\ J_1 \cdots J_m}} \int d\tilde{\tau}_1 \cdots d\tilde{\tau}_m \int d\tilde{\tau}'_1 \cdots d\tilde{\tau}'_m$$
$$\times \operatorname{Tr}[e^{-\beta H_{\text{loc}}} T_{\tau} \prod_{r=1}^n c_{j_r}(\tau'_r) c^{\dagger}_{i_r}(\tau_r) \prod_{s=1}^m Q^{\dagger}_{I_s}(\tilde{\tau}_s) Q_{J_s}(\tilde{\tau}'_s)] \times \operatorname{Det}[\Delta_{i_l j_k}(\tau_k - \tau'_l)] \times \prod_{s=1}^m F_{I_s J_s}(\tilde{\tau}_s - \tilde{\tau}'_s)$$

Assume

(i) $[H_{\text{loc}}, Q_J] = 0$ (ii) $[Q_I^{\dagger}, c_i^{\dagger}] = q_{iI} \cdot c_i^{\dagger}$ and $[Q_I^{\dagger}, c_i] = -q_{iI} \cdot c_i$ (iii) $[Q_I, Q_J] = [Q_I^{\dagger}, Q_J] = 0$ (iv) $\exists K_{IJ} \beta$ -periodic such that $K_{IJ}'' = F_{IJ}$

$$\Rightarrow Z = \sum_{n} \sum_{\substack{i_1 \cdots i_n \\ j_1 \cdots j_n}} \int_{>} d\tau_1 \cdots d\tau_n \int_{>} d\tau_1' \cdots d\tau_n' \operatorname{Tr}[e^{-\beta H_{\operatorname{loc}}} T_{\tau} \prod_{r=1}^n c_{j_r}(\tau_r') c_{i_r}^{\dagger}(\tau_r)] \times \operatorname{Det}[\Delta(\tau_k - \tau_l')] \\ \times \exp\left[\sum_{r,s=1}^n \sum_{IJ} q_{i_rI} q_{j_sJ} \left(K_{IJ}(\tau_r - \tau_s) - K_{IJ}(\tau_r - \tau_s') - K_{IJ}(\tau_r' - \tau_s) + K_{IJ}(\tau_r' - \tau_s') \right) \right]$$

Werner, P., and A. J. Millis (2010), Phys. Rev. Lett. 104 (14), 146401 T. Ayral, S. Biermann, and P. Werner, Phys. Rev. B 87, 125149

Dress the expansion

(i) $[H_{\text{loc}}, Q_J] = 0$ (ii) $[Q_I^{\dagger}, c_i^{\dagger}] = q_{iI} \cdot c_i^{\dagger}$ and $[Q_I^{\dagger}, c_i] = -q_{iI} \cdot c_i$ (iii) $[Q_I, Q_J] = [Q_I^{\dagger}, Q_J] = 0$ (iv) $\exists K_{IJ} \beta$ -periodic such that $K_{IJ}'' = F_{IJ}$

$$\Rightarrow \frac{d}{d\tilde{\boldsymbol{\tau}}} \operatorname{Tr}[e^{-\beta H_{\operatorname{loc}}} T_{\tau} c(\tau') c^{\dagger}(\tau) \boldsymbol{Q}^{\dagger}(\tilde{\boldsymbol{\tau}}) Q(\tilde{\boldsymbol{\tau}}')] = \\ \left(\boldsymbol{q} \cdot \delta(\tilde{\boldsymbol{\tau}} - \tau) - \boldsymbol{q} \cdot \delta(\tilde{\boldsymbol{\tau}} - \tau')\right) \operatorname{Tr}[e^{-\beta H_{\operatorname{loc}}} T_{\tau} c(\tau') c^{\dagger}(\tau) Q(\tilde{\boldsymbol{\tau}}')]$$

$$\Rightarrow \int_{0}^{\beta} \underbrace{\widetilde{F(\tilde{\tau} - \tilde{\tau}')}}_{F(\tilde{\tau} - \tilde{\tau}')} \underbrace{\operatorname{Tr}[\cdots Q^{\dagger}(\tilde{\tau})Q(\tilde{\tau}')]}_{g} d\tilde{\tau} = \underbrace{K'(\tilde{\tau} - \tilde{\tau}')}_{-q} \operatorname{Tr}[\cdots Q^{\dagger}(\tilde{\tau})Q(\tilde{\tau}')]|_{\tilde{\tau} = 0}^{\tilde{\tau} = \beta} \\ -q(K'(\tau - \tilde{\tau}') - K'(\tau' - \tilde{\tau}')) \operatorname{Tr}[\cdots Q(\tilde{\tau}')]$$

$$\Rightarrow \iint_{0}^{\beta} F(\tilde{\tau} - \tilde{\tau}') \operatorname{Tr}[\cdots Q^{\dagger}(\tilde{\tau})Q(\tilde{\tau}')] d\tilde{\tau} d\tilde{\tau}' = \{ \text{ boundary terms } \} |_{\tilde{\tau}'=0}^{\tilde{\tau}'=\beta} \\ -q^{2} (K(\tau - \tau) - K(\tau - \tau') - K(\tau' - \tau) + K(\tau' - \tau')) \operatorname{Tr}[\cdots]$$

Dress the expansion

•
$$Z = \sum_{nm} \frac{(-1)^m}{m!} \sum_{\substack{i_1 \cdots i_n \\ j_1 \cdots j_n}} \int_{>} d\tau_1 \cdots d\tau_n \int_{>} d\tau'_1 \cdots d\tau'_n \sum_{\substack{I_1 \cdots I_m \\ J_1 \cdots J_m}} \int d\tilde{\tau}_1 \cdots d\tilde{\tau}_m \int d\tilde{\tau}'_1 \cdots d\tilde{\tau}'_m$$
$$\times \operatorname{Tr}[e^{-\beta H_{\operatorname{loc}}} T_{\tau} \prod_{r=1}^n c_{j_r}(\tau'_r) c^{\dagger}_{i_r}(\tau_r) \prod_{s=1}^m Q^{\dagger}_{I_s}(\tilde{\tau}_s) Q_{J_s}(\tilde{\tau}'_s)] \times \operatorname{Det}[\Delta_{i_l j_k}(\tau_k - \tau'_l)] \times \prod_{s=1}^m F_{I_s J_s}(\tilde{\tau}_s - \tilde{\tau}'_s)$$

•
$$\iint_{0}^{\beta} d\boldsymbol{\tau} d\boldsymbol{\tilde{\tau}} \operatorname{Tr}[e^{-\beta H_{\text{loc}}} T_{\tau} \prod_{r=1}^{n} c(\tau_{r}') c^{\dagger}(\tau_{r}) \boldsymbol{Q}^{\dagger}(\boldsymbol{\tilde{\tau}}) \boldsymbol{Q}(\boldsymbol{\tilde{\tau}'})] F(\boldsymbol{\tilde{\tau}} - \boldsymbol{\tilde{\tau}'}) = \\ -\sum_{r,s=1}^{n} \boldsymbol{q}^{2} \left(K(\tau_{r} - \tau_{s}) - K(\tau_{r} - \tau_{s}') - K(\tau_{r}' - \tau_{s}) + K(\tau_{r}' - \tau_{s}') \right) \operatorname{Tr}[e^{-\beta H_{\text{loc}}} T_{\tau} \prod_{r=1}^{n} c(\tau_{r}') c^{\dagger}(\tau_{r})]$$

$$\Rightarrow Z = \sum_{n} \sum_{\substack{i_1 \cdots i_n \\ j_1 \cdots j_n}} \int_{>} d\tau_1 \cdots d\tau_n \int_{>} d\tau_1' \cdots d\tau_n' \operatorname{Tr}[e^{-\beta H_{\operatorname{loc}}} T_\tau \prod_{r=1}^n c_{j_r}(\tau_r') c_{i_r}^{\dagger}(\tau_r)] \times \operatorname{Det}[\Delta_{i_k j_l}(\tau_k - \tau_l')] \\ \times \exp\left[\sum_{r,s=1}^n \sum_{IJ} q_{i_r I} q_{j_s J} \left(K_{IJ}(\tau_r - \tau_s) - K_{IJ}(\tau_r - \tau_s') - K_{IJ}(\tau_r' - \tau_s) + K_{IJ}(\tau_r' - \tau_s')\right)\right]$$

Assumptions (i-iii)

 $(i) \quad [H_{\text{loc}}, Q_J] = 0 \qquad (ii) \quad [Q_I^{\dagger}, c_i^{\dagger}] = q_{iI} \cdot c_i^{\dagger} \quad \text{and} \quad [Q_I^{\dagger}, c_i] = -q_{iI} \cdot c_i \qquad (iii) \quad [Q_I, Q_J] = [Q_I^{\dagger}, Q_J] = 0$

• Density-Density

$$H_{\text{loc}} = \sum_{i} (\epsilon_{i} - \mu) n_{i} + \sum_{ij} U_{ij} n_{i} n_{j} \qquad \Rightarrow \qquad Q \in \{n_{i}\} \qquad (n_{i} := c_{i}^{\dagger} c_{i})$$
$$S = -\int \sum_{i} c_{i}^{\dagger}(\tau) \mathcal{G}_{0,i}^{-1}(\tau - \tau') c_{i}(\tau') d\tau d\tau' + \int \sum_{ij} n_{i}(\tau) \mathcal{U}_{ij}(\tau - \tau') n_{j}(\tau') d\tau d\tau'$$

• General

$$H_{\text{loc}} = \sum_{ij} c_i^{\dagger} (\epsilon_{ij} - \mu \delta_{ij}) c_j + \sum_{ijkl} c_i^{\dagger} c_j^{\dagger} U_{ijkl} c_k c_l \xrightarrow{\text{always}} Q = N := \sum_i c_i^{\dagger} c_i$$
$$SU(2) \times SO(3) : S_z, \quad L_z \text{ (depends on basis } c_i) \qquad (\text{ii}): S^2, L^2$$
$$SO(3) : J_z \qquad (\text{depends on basis } c_i) \qquad (\text{ii}): S^2$$

Assumption (iv)

(*iv*) $\exists K_{IJ} \beta$ -periodic such that $K''_{IJ} = F_{IJ}$

$$\begin{split} \tilde{S}_{\text{dyn}} &:= S_{\text{dyn}} - \int Q^{\dagger}(\tau^{+})F(i\nu_{n} = 0)Q(\tau)d\tau \\ \Rightarrow \tilde{F}(\tau) &= F(\tau) - F(i\nu_{n} = 0)\delta(\tau) \\ \Rightarrow \tilde{K}(\tau) &= \frac{1}{2\beta}F(i\nu_{n} = 0)|\tau|(|\tau| - \beta) + \sum_{n \neq 0}\frac{F(i\nu_{n})}{\beta(i\nu_{n})^{2}}e^{-i\nu_{n}\tau} \\ \Rightarrow \tilde{H}_{\text{loc}} &:= H_{\text{loc}} + Q^{\dagger}F(i\nu_{n} = 0)Q = \sum_{ij}c_{i}^{\dagger}(\epsilon_{ij}^{\text{scr}} - \mu\delta_{ij})c_{j} + \sum_{ijkl}c_{i}^{\dagger}c_{j}^{\dagger}U_{ijkl}^{\text{scr}}c_{k}c_{l} \end{split}$$

Observables

$$Z = \int D[c^{\dagger}, c]e^{-S} = \sum_{\mathcal{C}, \mathcal{Q}} w(\mathcal{C}, \mathcal{Q}) = \mathbf{H} + \mathbf{C} + \mathbf{C} + \mathbf{C} + \mathbf{Q} +$$

• Expand observables as

or use source fields

$$-\frac{\partial}{\partial \Delta} \ln Z = -\langle c \, c^{\dagger} \rangle = G \qquad \Rightarrow \qquad G = -Z^{-1} \sum_{\mathcal{C}, \mathcal{Q}} \frac{\partial}{\partial \Delta} w(\mathcal{C}, \mathcal{Q}) \qquad \text{(Green Function)}$$
$$-\frac{\partial}{\partial F} \ln Z = \langle Q \, Q^{\dagger} \rangle = \chi \qquad \Rightarrow \qquad \chi = -Z^{-1} \sum_{\mathcal{C}, \mathcal{Q}} \frac{\partial}{\partial F} w(\mathcal{C}, \mathcal{Q}) \qquad \text{(Susceptibility)}$$

• Write $\langle O \rangle = Z^{-1} \sum_{\mathcal{C}, \mathcal{Q}} o(\mathcal{C}, \mathcal{Q}) w(\mathcal{C}, \mathcal{Q})$ if possible !

Susceptibilities

$$\chi(i\nu_n) = -Z^{-1} \sum_{\mathcal{C},\mathcal{Q}} \frac{\partial w(\mathcal{C},\mathcal{Q})}{\partial F(i\nu_n)}$$

$$\mathbf{F} \neq \mathbf{0}: \quad \frac{\partial}{\partial F(i\nu_n)} \quad \equiv \quad \times \frac{e^{i\nu_n(\tilde{\tau}'-\tilde{\tau})}}{\beta F(\tilde{\tau}-\tilde{\tau}')} \quad \Rightarrow \quad \chi(i\nu_n) = -Z^{-1}\sum_{\mathcal{C},\mathcal{Q}} w(\mathcal{C},\mathcal{Q}) \sum_{s=1}^{|\mathcal{Q}|} \frac{e^{i\nu_n(\tilde{\tau}'_s-\tilde{\tau}_s)}}{\beta F(\tilde{\tau}_s-\tilde{\tau}'_s)}$$

 $\mathbf{F} = \mathbf{0}: \quad \chi(i\nu_n) = -Z^{-1}\sum_{\mathcal{C},\tilde{\tau}\tilde{\tau}'} \operatorname{Tr}_{\mathcal{C},\mathbf{Q}^{\dagger}\mathbf{Q}} \times \operatorname{Det}_{\mathcal{C}} \times \frac{e^{i\nu_n(\tilde{\tau}'-\tilde{\tau})}}{\beta} \qquad \mathbf{v.s.} \qquad Z = \sum_{\mathcal{C}} \operatorname{Tr}_{\mathcal{C}} \cdot \operatorname{Det}_{\mathcal{C}}$

Susceptibilities: Dressed expansion

$$\chi(i\nu_n) = -Z^{-1} \sum_{\mathcal{C}} \frac{\partial w(\mathcal{C})}{\partial F(i\nu_n)}$$

$$Z = \sum_{\mathcal{C}} w(\mathcal{C}) = \sum_{\mathcal{C}} \operatorname{Tr}_{\mathcal{C}} \times \operatorname{Det}_{\mathcal{C}} \times \operatorname{Exp}_{\mathcal{C}} = \operatorname{In} + \operatorname{Ind}_{c_i(\tau)} \operatorname{In}_{c_j^{\dagger}(\tau)} + \operatorname{Ind}_{c_i(\tau)} \operatorname{In}_{c_j^{\dagger}(\tau)} + \operatorname{Ind}_{c_i(\tau)} \operatorname{In}_{c_j^{\dagger}(\tau)} \operatorname{In}_{c_i(\tau)} \operatorname{In}_{c_j^{\dagger}(\tau)} + \operatorname{Ind}_{c_i(\tau)} \operatorname{In}_{c_j^{\dagger}(\tau)} \operatorname{In}_{c_i(\tau)} \operatorname{In}_{c_j^{\dagger}(\tau)} \operatorname{In}_{c_i(\tau)} \operatorname{In}_{c_j^{\dagger}(\tau)} \operatorname{In}_{c_i(\tau)} \operatorname{In}_{c_j^{\dagger}(\tau)} \operatorname{In}_{c_i(\tau)} \operatorname{In}_{c_j^{\dagger}(\tau)} \operatorname{In}_{$$

$$\begin{split} \boldsymbol{i\nu_n} \neq \mathbf{0}: \quad \frac{\partial w(\mathcal{C})}{\partial F(i\nu_n)} &= \mathrm{Tr}_{\mathcal{C}} \times \mathrm{Det}_{\mathcal{C}} \times \frac{\partial \mathrm{Exp}_{\mathcal{C}}}{\partial F(i\nu_n)} \\ \Rightarrow \quad \chi(i\nu_n) &= Z^{-1} \sum_{\mathcal{C}} w(\mathcal{C}) \sum_{r,s=1}^{|\mathcal{C}|} \frac{q_{i_r}q_{j_s}}{\beta\nu_n^2} \left(e^{i\nu_n(\tau_s - \tau_r)} - e^{i\nu_n(\tau_s' - \tau_r')} - e^{i\nu_n(\tau_s - \tau_r')} + e^{i\nu_n(\tau_s' - \tau_r')} \right) \end{split}$$

$$i\nu_n = 0: \quad \frac{\partial w(\mathcal{C})}{\partial F(i\nu_n)} = \operatorname{Tr}_{\mathcal{C}} \times \operatorname{Det}_{\mathcal{C}} \times \frac{\partial \operatorname{Exp}_{\mathcal{C}}}{\partial F(i\nu_n)} + \frac{\partial \operatorname{Tr}_{\mathcal{C}}}{\partial F(i\nu_n)} \times \operatorname{Det}_{\mathcal{C}} \times \operatorname{Exp}_{\mathcal{C}}$$

 $\Rightarrow \quad \chi(i\nu_n) = \text{ do it yourself } \dots \qquad (\tilde{H}_{\text{loc}} := H_{\text{loc}} + Q^{\dagger}F(i\nu_n = 0)Q)$

Transition towards numerics ...

$$Z = \sum_{\mathcal{C}} w(\mathcal{C}) = \sum_{\mathcal{C}} \operatorname{Tr}_{\mathcal{C}} \times \operatorname{Det}_{\mathcal{C}} = \mathbf{H} + \underbrace{\mathbf{c}_{j}(\tau')}_{c_{i}^{\dagger}(\tau)} + \underbrace{\mathbf{c}_{j}(\tau')}_{\mathcal{C}_{i}^{\dagger}(\tau)} + \underbrace{\mathbf{c}_{j}(\tau')}_{\mathcal{C}_{i}^{\dagger}(\tau)}$$

• Choose impurity **Basis** $\{|a\rangle\}$: $(\mathbf{M}_i)_{ab} := \langle a|c_i|b\rangle$ $(\mathbf{H})_{ab} := \langle a|H_{\text{loc}}|b\rangle \propto \delta_{ab}$

$$\Rightarrow \quad w(\mathcal{C}) = \operatorname{Tr}[e^{-\beta \mathbf{H}} \mathbf{T}_{\tau} \prod_{r=1}^{|\mathcal{C}|} \mathbf{M}_{j_{r}}(\tau_{r}') \mathbf{M}_{i_{r}}^{\dagger}(\tau_{r})] \times \operatorname{Det}_{\mathcal{C}} \qquad \left(\mathbf{M}(\tau) := e^{\tau \mathbf{H}} \mathbf{M} e^{-\tau \mathbf{H}} \right)$$

• Sample $w(\mathcal{C})$ with **Markov-Chain** $\mathcal{C}_1 \to \mathcal{C}_2 \to \cdots \to \mathcal{C}_t \to \mathcal{C}_{t+1} \to \cdots$

$$\Rightarrow \quad \langle O \rangle = Z^{-1} \sum_{\mathcal{C}} o(\mathcal{C}) w(\mathcal{C}) \approx N^{-1} \sum_{t=1}^{N} o(\mathcal{C}_t)$$

• $P(\mathcal{C}_{t+1}|\mathcal{C}_1\cdots\mathcal{C}_t) = P(\mathcal{C}_{t+1}|\mathcal{C}_t)$ from **Metropolis-Hasting**

$$P(\mathcal{C}_{t+1}|\mathcal{C}_t) = \mathcal{C}_{t+1} = \mathcal{C}_{t+1} := \mathcal{C}_{$$

____instructions ____→ data transfer

GPU

- Few but powerful compute cores
- Optimised for **sequential** processing
 - minimise time per operation

• Master

- Many but slow compute cores
- Optimised for parallel processing
 - ➡ maximise operations per time

Slave

What means "parallel processing"?

Profile CPU code

Implementation

- **one** Monte-Carlo simulation per **CPU core** (using MPI)
- several algorithmic optimisations

Profiling

$$w(\mathcal{C}) = \operatorname{Tr}[e^{-\beta \mathbf{H}}T_{\tau}\prod_{\mathcal{C}}\mathbf{M}\mathbf{M}^{\dagger}] \times \operatorname{Det}_{\mathcal{C}}$$

- one Monte-Carlo simulation (i.e. CPU core) uses GPU for matrix-multiplication
 - → speed-up for this Monte-Carlo simulation: $x \approx 6$
- other Monte-Carlo simulations (i.e. CPU cores) work as usual

→ overall speed-up :=
$$\frac{\#MC \text{ samples } CPU + GPU}{\#MC \text{ samples } CPU} = \frac{N-1+x}{N} \approx 1.3$$

 N : #CPU cores

 N : #CPU cores

Matrices to small too small to keep GPU busy

need more parallelism

Multiple (MPI) processes and GPU

• By default, GPU access from different MPI processes is sequential

• Concurrent GPU access with MPS (multi-process service)

• Disadvantages of using MPS:

(i) Different MPI processes can **not share** GPU memory

 \blacktriangleright Waste of **GPU**-memory (storing **M**-matrices takes 0.6 GB)

(ii) **CPU** cores using **GPU** for matrix-multiplication are essentially idle

➡ Waste of computational resources

Multiple MC-Simulations per MPI-Process (i.e. CPU core)?

Single (MPI) process and GPU

• Synchronous (blocking) v.s. asynchronous (non-blocking) calls:

• Streams + Asynchronous calls:

```
A();
asyncA<<<...,1>>>();
B();
asyncB<<<...,2>>>();
C();
asyncC<<<...,3>>>();
```


Asynchronous CPU-GPU Algorithm

Loop over Monte-Carlo Simulations

Results

node configuration

speed-up (CPU+GPU over CPU)

3.5x

5x

2 NVidia K80 2 Intel Xeon Processor E5-2697 v4 (36 cores)

2 NVidia P100 2 Intel Xeon Processor E5-2697 v4 (36 cores)

1 NVidia K20

1 AMD Opteron (16 cores)

@ Titan, Oak Ridge

5x

4 NVidia P100 2 IBM Power8 (20 cores)

@ SummitDev, Oak Ridge

12.5x

4. LQSGW+DMFT code tutorial with NiO

Goal

- 1. DMFT self-consistent solution (starting from a prerun)
- 2. DOS and PDOS calculation
- 3. Spectral function calculation

In this tutorial, commands you should run are marked by red colors

LQSGW+DMFT in COMSUITE

Directories

Located at /soft/public_soft/gw_dmft

.. bin ComCoulomb ComDC ComLowH ComWann CTQMC example gw wannier90_2.1

: where we have all the excutibles

- : program to calculate bosonic Weiss field
- : program for double counting self-energy
- : program to calculate fermionic Weiss field, DOS, spectral functions
- : program to construct Wannier functions
- : CTQMC impurity solver
- : examples
- : FlapwMBPT code by Andrey Kutepov
- : Wannier90 package

Let's load the gw_dmft module

- Make sure that you logged in to the cluster with "ssh -X" (for the visualization)
- load gw_dmft modules
 \$ module load gw_dmft/2018
- All loaded modules \$ module list

Currently Loaded Modules: 1) gw_dmft/2018 2) slurm/17.11 3) intel/18.2 4) conda/2

- If there is any other modules are loaded, please unload them to avoid conflicts.
 - \$ module unload ??? (if necessary)

Let's resume our calculations from almost converged results

NiO LQSGW prerun

- copy examples/NiO to the location you would like to run \$ cp -r \$COMSUITE_BIN/../example/NiO .
- move to the lqsgw directory
 \$ cd NiO/
 \$ cd lqsgw
- you can see the job script (please don't run this example but use the prerun outputs)

#!/bin/bash
#
#SBATCHpartition=c-apc
#SBATCHnodes=1
#SBATCH -c 6
#SBATCHtime=24:00:00
#SBATCH -J temp
#SBATCH -o temp.out
#SBATCHerror=temp.err
module load gw_dmft/2018
mpirun -np 6 \$COMSUITE_BIN/rspflapw.exe

NiO LQSGW+DMFT run

- move to the lqsgw+dmft directory
 \$ cd ../lqsgw_dmft
- see the job submission script (Ilscript) and run the calculation
 \$ sbatch Ilscript

#!/bin/bash
#
#SBATCH -partition = c-apc
#SBATCH -nodes=1
#SBATCH -c=1
#SBATCH -time=01:00:00
#SBATCH -e temp.err
#SBATCH -o temp.out
#SBATCH -j temp
module load gw_dmft/2018
\$COMSUITE_BIN/comdmft.py

comdmft.ini

```
control={'initial_lattice_dir'
                                   : '../lqsgw',
        'method'
                             : 'lgsgw+dmft',
        'spin_orbit'
                             : False,
        'mpi prefix': "srun -n 1",
        'impurity_problem':[[2, 'd']],
        'impurity_problem_equivalence':[1],
        'restart': True
        'sigma_mix_ratio': 0.05
wan_hmat={'kgrid': [10, 10, 10],
            'froz_win_min': -10.0,
            'froz_win_max': 10.0,
          }
imp={'temperature'
                            : 300,
       '1':{
      'impurity matrix': [[1,0,0,0,0],
                        [0,1,0,0,0],
                        [0,0,2,0,0],
                        [0,0,0,1,0],
                        [0,0,0,0,2]],
      'thermalization_time': 1,
      'measurement_time': 15,
      'green_cutoff': 50,
      'coulomb': 'full',
      }}
```

- LQSGW+DMFT input file in python dirctionary format
- all dictionary keys in small letters
- composed of three python dictionaries of "control", "wan_hmat" and "imp"

In control

- 'methods': 'lqsgw+dmft'
- 'initial_lattice_dir': '../lqsgw"
 - the path to LQSGW output directory

'impurity_problem': [[2,'d']]

- a python list to specify correlated orbitals. The first and second indices are for the atom index and shell type.

- atom index: in the order listed in the "../lqsgw/coord.xsf"

	PRIMCOOR	D		
\cap	2	1		
	8	0.000000	0.000000	0.000000
INI	28	2.097129	2.097129	2.097129

- shell index: either "d" or "f"

'impurity_problem_equivalence': [1]

- equivalence of each impurity problem.

- identified by an integer starting from 1. If this value is the same, they are equivalent.

- If this value is negative, it is the time-reversal symmetry pair to the one with the same absolute value.

'spin_orbit': True or False

- if False, correlated orbitals correspond to cubic spherical harmonics

$$Y_{lm} = \begin{cases} \frac{i}{\sqrt{2}} Y_l^{-|m|} - (-1)^m Y_l^{|m|}, & m < 0\\ Y_l^0, & m = 0\\ \frac{1}{\sqrt{2}} Y_l^{-|m|} + (-1)^m Y_l^{|m|}, & m > 0 \end{cases}$$

where Y_l^m is a spherical harmonics.

In control

- if True, correlated orbitals chosen at each correlated atom correspond spin-angular functions |l,i,m>

$$\Omega_{l,i=\pm\frac{1}{2},m} = \sum_{s\pm 1/2} C_{i,s}^{l,m} Y_l^{m-s}(\hat{r}) u_s$$

where u_s is a spinor, and $C_{i,s}^{\overline{l},m} = \langle l, m-s, \frac{1}{2}, s | l+i, m \rangle$.

• 'mpi_prefix': : 'srun -n 1'

- MPI prefix commonly used for ComCoulomb, ComDC, ComLowH, ComWann, and CTQMC.
- If a different MPI prefixs from this prefix is necessary for a program, use 'mpi_prefix_coulomb', 'mpi_prefix_lowh', 'mpi_prefix_dc', 'mpi_prefix_wannier', and 'mpi_prefix_impurity',

• 'restart': : True

- True or False. If True, It will resume the calculation from the prerun.
- default value: False

• 'mpi_prefix_lowh':

- MPI prefix for ComLowH
- default value: control['mpi_prefix']

• 'mpi_prefix_impurity':

- MPI prefix for the impurity solver
- default value: control['mpi_prefix']

• 'mpi_prefix_wannier'

- MPI prefix for ComWann
- default value: control['mpi_prefix']

In control

• 'mpi_prefix_coulomb':

- MPI prefix for ComCoulomb
- default value: control['mpi_prefix']

• 'mpi_prefix_dc':

- MPI prefix for ComDC
- default value: control['mpi_prefix']

'sigma_mix_ratio'

- Self-energy linear mixing ratio.
- default value: 0.1

• 'max_iter_num_impurity':

- maximum iteration for the DMFT self-consistent loop.
- default value: 50

• 'proj_win_min':

- low-energy cutoff to renormalize the projectors
- default value: wan_hmat['dis_win_min']

• 'proj_win_max':

- high-energy cutoff to renormalize the projectors
- default value: wan_hmat['dis_win_max']

Important concepts for wan_hmat

- For Wannier function construction
 - Choice of the inner (frozen) energy window: large energy window in the $E_{F} \pm 10 eV$
 - Choice of the outer (disentanglement) energy window: from E_{F} -10eV to E_{F} +50eV

Important concept for wan_hmat

- The choice of initial trial orbitals $| au {f R}=0
 angle_t$
 - MT orbitals with desired angular momentum character
 - Radial function of $|\tau \mathbf{R} = 0\rangle_t$ is chosen in such a way which maximize

$$\frac{1}{N_{\mathbf{k}}} \sum_{n\mathbf{k}}^{E_{min}^{inner} < E_{n\mathbf{k}} < E_{min}^{inner}} |\langle n\mathbf{k} | \tau \mathbf{k} \rangle_t|^2$$
where $|\tau \mathbf{k} \rangle_t = \frac{1}{N_{\mathbf{k}}} \sum_{\mathbf{R}} |\tau \mathbf{R} \rangle_t e^{i\mathbf{k} \cdot \mathbf{R}}$
- Among MT orbitals we choose ones
$$\frac{1}{N_{\mathbf{k}}} \sum_{n\mathbf{k}}^{E_{min}^{inner} < E_{n\mathbf{k}} < E_{min}^{inner}} |\langle n\mathbf{k} | \tau \mathbf{k} \rangle_t|^2 > 0.2$$

- For correlated orbitals, final wannier function $| au {f R}=0
angle_{f}$ usually

$$_f \langle \tau \mathbf{R} = 0 | \tau \mathbf{R} = 0 \rangle_t > 0.95$$

which means $|\tau {f R}=0
angle_f$ is strongly localized and a atom-like wavefunction

Wannier functions and interpolated bandstructure of NiO

- The number of bands in the inner window: 10
- The number of bands in the outer window: 25
- The number of trial orbitals: 12 orbitals (Ni-s, Ni-p, Ni-d, O-p)

In wan_hmat

- 'kgrid': [15,15,15],
 - crystal momentum grid for the wannier interpolation of LQSGW bandstructure
- 'froz_win_min': -10 eV,
 - lower boundary of the inner (frozen) window in eV
- 'froz_win_max': 10 eV,
 - upper boundary of the inner (frozen) window in eV
- 'dis_win_min':
 - lower boundary of the outer (disentanglement) window in eV.
 - defaule value: froz_win_min
- 'dis_win_max':
 - upper boundary of the outer (disentanglement) window in eV.
 - defaule value: froz_win_max +40.0
- 'num_iter':
- the number of minization step for the wannierization process. (gauge dependent part of total spreading)
- default value: 0

• 'dis_num_iter':

- the number of minization step for the disentanglement process. (gauge independent part of total spreading)

- defaule value: 100

In imp

- 'temperature': 300
 - simulation temperature in K
- for each distinct impurity problem indexed by the value in control["impurity_problem_equivalence"]
 - 'impurity_matrix': [

[1,0,0,0,0],	
[0,1,0,0,0],	1: t2g
[0,0,2,0,0],	2:eg
[0,0,0,1,0],	U
[0,0,0,0,2]	
],	

- --equivalence of the matrix element of the fermionic Weiss field and impurity self-energy. Starting from "1"
- --if these values are the same, the values of the elements will be assumed to be identical.
- --if the element in the matrix is zero, then it will not be sampled by the impurity solver.
- --each column and row corresponds to the Wannier orbitals in the following order.
- --If control['spin_orbit']==False, "m" is sorted in ascending order.
- To illustrate for "d" orbitals, in this order: |xy>,|yz>,|z²>,|xz>, |x²-y²>
- --if control['spin_orbit']==True, the most rapidly changing index is "m" and the next one is "i". They are sorted in ascending order,
- To illustrate for "f" orbitals, in this order: |3,-0.5, -2.5>,|3,-0.5, -1.5>,|3,-0.5, -0.5>, |3,-0.5, 0.5>,|3,-0.5, 1.5>,|3,-0.5, 2.5>, |3,0.5, -3.5>,|3,0.5, -2.5>,|3,0.5, -1.5>, |3,0.5, -0.5>,|3,0.5, 0.5>,|3,0.5, 1.5>,|3,0.5, 2.5>, |3,0.5, 3.5>,
In imp

- 'Coulomb': 'full',

--'full' or 'ising' are available. We construct Coulomb matrix in the following way.

$$U_{m_1,m_2,m_3,m_4} = \sum_{k=0}^{2l,even} \frac{4\pi}{2k+1} F_l^k \sum_{q=-k}^k \langle Y_l^{m_1} | Y_k^q Y_l^{m_4} \rangle \langle Y_l^{m_2} Y_k^q | Y_l^{m_3} \rangle$$

--If 'full', no additional approximation is considered.

--If 'ising', only $U_{{}_{abba}}$ or $U_{{}_{abab}}$ are non-zero.

- 'thermalization_time': 1,

» wall time for the thermalization in minutes

- 'measurement_time': 5,

» wall time for the measurement in minutes

- 'green_cutoff': 70,

» cutoff-energy in eV to sample green's function and self-energy.

» values beyond this energy will be provided by analytical equations.

- 'susceptibility_cutoff':

- » cutoff-energy to sample susceptibility.
- » Default value: 300 eV

Output directory

• in lqsgw_dmft directory

cmd.log comdmft.ini convergence.log coulomb dc delta.dat impurity llscript lowh sig.dat sig_dc.dat sig_dc_hf.dat temp.err temp.out u_slater.dat v_slater.dat wannier w slater.dat

- \rightarrow convergence log file
- → Output of ComCoulomb
- → Output of ComDC
- → hybridization function
- → Output of CTQMC solver
- → Output of ComLowH
- → impurity self-energy
- → double-counting self-energy
- \rightarrow the high-frequency limit of double-counting self-energy
- → bosonic Weiss-field
- $\rightarrow V_{\rm loc}$
- → Output of ComWann
- $\rightarrow W_{loc}$

convergence.log

step	i_imp	causality	static_f0	w_sp_min	w_sp_max	mu	std_sig	n_imp	histo_1	histo_2
wannier				0.29931962	1.69293343					
coulomb_1			6.54262544803							
delta	0	good				0.029191338307				
impurity_1	0	good					3.33784542527	8.19467	107.860951974	119.601660157
delta	1	good				0.164895902779				
impurity_1	1	good					1.70132143417	8.17458	98.2045831536	97.6973570752
delta	2	good				0.267689886163				
impurity_1	2	good					0.886010804306	8.1662	95.0848573468	90.6707568246
delta	3	good				0.34353949486				
impurity_1	3	good					0.479993764726	8.16272	94.1990718702	89.0756294454
delta	4	good				0.388125192763				

- keeping track of convergence of some quantities at each iteration
- causality: causality of hybridization function / self-energy
- w_sp_min: mininum spreading of the Wannier functions
- w_sp_max: maximum spreading of the Wannier functions
- mu: LQSGW+DMFT chemical potential w.r.t. LQSGW chemical potential
- std_sig:

$$\sqrt{\frac{\sum_{i} (\Sigma_{i}^{j}(i\omega_{n}) - \Sigma_{i}^{j-1}(i\omega_{n}))^{2}}{n_{\omega}n_{orb}}}$$

- n_imp: occputation in the impurity orbitals
- histo_1: the first moment of the perturbation order histrogram
- histo_2: the second moment of the perturbation order histrogram
- ctqmc_sign: CTQMC sign

Dynamical U

In "lqsgw_dmft"

• Bosonic Weiss field in u_slater.dat and W_loc in w_slater.dat

• Bare Coulomb interaction in v_slater.dat

1:f0(eV) 1:f2(eV) 1:f4(eV) 23.277958614497 12.294135887544 8.129215063726
--

Dynamical U

- \bullet At high frequency, U and $W_{_{loc}}$ converge to $V_{_{loc}}$
- In comparison to F⁰, F² and F⁴ shows weaker frequency dependence

Local-GW impurity self-energy

In "lqsgw_dmft"

- "sig_dc.dat"
 - » Real and imaginery part of impurity self-energy within local GW approximation are listed

- "sig_hf_dc.dat"
 - » Real and imaginery part of the Hartree-Fock contribution to the impurity self-energy within local GW approximation are listed

|--|

Local-GW impurity self-energy

- At high frequency, self-energy converges to Hartree-fock limit
- No divergent self-energy near Fermi-level.

Impurity self-energy

• "lqsgw_dmft/sig.dat": in the same format as "sig_dc.out"

Impurity self-energy on real frequency axis

- analytical continuation by maximum entropy method (using Kristjan's code, at lqsgw_dmft/maxent)
- Divergent self-energy near Fermi level for e_{q} orbitals

Hybridization function

- "lqsgw_dmft/delta.dat"
- in the same format as sig.dat

- move to a directory for the DOS calculation
 mkdir realgrid
 cd realgrid
- 2. copy files necessary to calculate DOS and partial DOS by using prepare_realaxis.py \$COMSUITE_BIN/prepare_realaxis.py 0.1 ../lowh/ ../wannier/ ../maxent/sig.dat -m 2

```
[lect18@inter ~]$ /soft/public soft/gw dmft/bin/prepare realaxis.py -h
usage: prepare realaxis.py [-h] [-m MODE]
                           broadening lowh directory wan directory self energy
prepare inputs of comlowh calculation on real axis
positional arguments:
                        broadening
  broadening
  lowh directory
                        lowh directory
  wan directory
                       wannier directory
  self energy
                        real-axis self-energy
optional arguments:
  -h, --help
                        show this help message and exit
  -m MODE, --mode MODE If 3, code calculates spectral function along the high
                        symmetry line defined in 'kpath.dat'. If it is 2, it
                        calculates projected density of states. Default: 3
```

3. prepare job submission script

(you can copy it from "../realgrid_for_comparison/llscript)

#!/bin/bash
#
#SBATCH –partition = c-apc
#SBATCH -nodes=1
#SBATCH -time=01:00:00
#SBATCH -e temp.%j.err
#SBATCH -o temp.%j.out
#SBATCH -j temp
module load gw_dmft/2018
srun -n 1 \$COMSUITE_BIN/ComLowH

4. submit the script \$ sbatch llscript

• realaxis/tdos.dat

#	omega(eV)	DOS(1/eV)	
	-50.000000000000	0.000177804560	
	-42.023729163000	0.000276918308	
	-36.241942949400	0.000627161151	
	-31.858487825300	0.005785580105	
	-28.420784332200	0.037314234345	
	-25.652541304600	0.079763477565	
	-23.375538144600	0.081789018970	
	-21.469658255600	0.073687474286	
	-19.850994524700	0.069423733434	
	-18.459161225800	0.068060677542	
	-17.249591724000	0.067313675285	
	-16.188676770200	0.066102959393	
	-15,250591955300	0.064375326169	
	-14,415167104500	0.062493362835	

• realaxis/pdos.dat

- (atom index, I, m) if spin_orbit==False and (atom index, I, i,m) if spin_orbit==True

ŧ	omega(eV)	(1,1,-1)	(1,1,0)	(1,1,1)	(2,0,0)
	-50.000000000000	0.000015753473	0.000015753473	0.000015753473	0.000011950079
	-42.023729163000	0.000023554294	0.000023554294	0.000023554294	0.000017046114
	-36.241942949400	0.000033678323	0.000033678323	0.000033678323	0.000023365976
	-31.858487825300	0.000048541987	0.000048541987	0.000048541987	0.000033820387
	-28.420784332200	0.000083715082	0.000083715082	0.000083715082	0.000068267782
	-25.652541304600	0.000147337328	0.000147337328	0.000147337328	0.000130797612
	-23.375538144600	0.000205012170	0.000205012170	0.000205012170	0.000166506290
	-21.469658255600	0.000274047245	0.000274047245	0.000274047245	0.000189699399
	-19.850994524700	0.000372694520	0.000372694520	0.000372694520	0.000217394738
	-18.459161225800	0.000503176265	0.000503176265	0.000503176265	0.000254764044
	-17.249591724000	0.000661807895	0.000661807895	0.000661807895	0.000304994797
	-16.188676770200	0.000847296191	0.000847296191	0.000847296191	0.000372302995
	-15.250591955300	0.001065018912	0.001065018912	0.001065018912	0.000463759228
	-14.415167104500	0.001328682075	0.001328682075	0.001328682075	0.000591389584
	-13.666419099000	0.001662727242	0.001662727242	0.001662727242	0.000776533107

- \$ python ./pdos_plot.py
- energy gap opens due to local strong correlation

 move to a directory for the spectral function calculation \$ mkdir ../realaxis \$ cd ../realaxis

2. copy files necessary to calculate spectral functions by using prepare_realaxis.py \$COMSUITE_BIN/prepare_realaxis.py 0.1 ../lowh/ ../wannier/ ../maxent/sig.dat -m 3

```
[lect18@inter ~]$ /soft/public soft/gw dmft/bin/prepare realaxis.py -h
usage: prepare realaxis.py [-h] [-m MODE]
                           broadening lowh directory wan directory self energy
prepare inputs of comlowh calculation on real axis
positional arguments:
 broadening
                        broadening
 lowh directory
                       lowh directory
 wan directory
                       wannier directory
 self energy
                        real-axis self-energy
optional arguments:
  -h, --help
                        show this help message and exit
  -m MODE, --mode MODE If 3, code calculates spectral function along the high
                        symmetry line defined in 'kpath.dat'. If it is 2, it
                        calculates projected density of states. Default: 3
```

3. create k-path file (kpath.dat)

\$ cp ../realaxis_for_comparison/kpath.dat .

- k points w.r.t. reciprocal lattice vector

186 The number	er of k points	
0.00000000	0.00000000	0.00000000
0.01666667	0.00000000	0.01666667
0.03333333	0.00000000	0.03333333
0.05000000	0.00000000	0.05000000
0.06666667	0.00000000	0.06666667
0.08333333	0.00000000	0.08333333
0.10000000	0.00000000	0.10000000
0.11666667	0.00000000	0.11666667
0.13333333	0.00000000	0.13333333
0.15000000	0.00000000	0.15000000
0.16666667	0.00000000	0.16666667
0.18333333	0.00000000	0.18333333
0.20000000	0.00000000	0.20000000
0.21666667	0.00000000	0.21666667
0.23333333	0.00000000	0.23333333
0.25000000	0.00000000	0.25000000
0.26666667	0.00000000	0.26666667
0.28333333	0.00000000	0.28333333
0.30000000	0.00000000	0.30000000
0.31666667	0.000000000	0.31666667

3. prepare job submission script

(you can copy it from "../realaxis_for_comparison/llscript)

#!/bin/bash
#
#SBATCH –partition = c-apc
#SBATCH -nodes=1
#SBATCH -time=01:00:00
#SBATCH -e temp.%j.err
#SBATCH -o temp.%j.out
#SBATCH -j temp
module load gw_dmft/2018
srun -n 1 \$COMSUITE_BIN/ComLowH

4. submit the script \$ sbatch llscript

• realaxis/spectral.dat

#	kpoint	E(eV)	A(1/eV)
	1	-50.000000000000	0.000170826963
	2	-50.000000000000	0.000170854205
	3	-50.000000000000	0.000170935102
	4	-50.000000000000	0.000171067293
	5	-50.000000000000	0.000171247218
	б	-50.000000000000	0.000171470600
	7	-50.000000000000	0.000171733002
	8	-50.000000000000	0.000172030282
	9	-50.000000000000	0.000172358869
	10	-50.000000000000	0.000172715722
	11	-50.000000000000	0.000173097979
	12	-50.000000000000	0.000173502371
	13	-50.000000000000	0.000173924570
	14	-50.000000000000	0.000174358701
	15	-50.000000000000	0.000174797197

k

\$ cp ../realaxis_for_comparison/spectral.py .
\$ python ./spectral.py

- Charge transfer gap opening
- white line: lqsgw bandstructure

LQSGW+DMFT

- Official version of the code will be released under GPL3.0 in August 2018.
- If you have any question, please contact sangkookchoi@gmail.com