The ABINIT code

X. Gonze

Thanks to the > 50 ABINIT contributors, and especially to GM Rignanese for contributions to the slides

ABINIT software project

Ideas (1997) :

1) Softwares for first-principles simulations are more and more complex : needs a worldwide collaboration, of specialized, complementary, groups
2) Linux software development : 'free software' model

Now (2018) :
>2000 registered people on the forum
>800 kLines of F90 + many python scripts (abipy)
about 50 contributors to ABINITv8
last release v8.8.2 used in this school http://www.abinit.org

Available freely (GPL, like Linux).

Properties from DFT+MBPT+ ...

Computation of ...
interatomic distances, angles, total energies electronic charge densities, electronic energies

A basis for the computation of ... chemical reactions electronic transport vibrational properties thermal capacity dielectric behaviour optical response superconductivity surface properties spectroscopic responses

Basic Documentation

Web site http://www.abinit.org ; http://docs.abinit.org
> User's guides
> Installations notes
$>$ List of input variables + description
> List of topics = a hub to input variables, files, tutorial, bibrefs
$>$ over 800 example input files
$\gg 30$ tutorial lessons (each 1-2 hours) https://docs.abinit.org/tutorial

+ Forum Web site http://forum.abinit.org

ABINIT tutorial : layout + dependencies

Sherbrooke, May 28-29, 2018

ABINIT＋python ：Abipy，Abitutorials ．．．

ABINIT organization on GitHUB https：／／github．com／abinit

Abipy ：python library for launching ABINIT jobs， and analysing／plotting the results http：／／pythonhosted．org／abipy
＝＞e．g．connecting ABINIT with tools for high－throughput calculations developed in the Materials Project context （like Pymatgen，Fireworks）．
Abitutorials ：tutorial based on Jupyter notebooks ABINIT＋python

ABINIT
Belgium https：／／www．abinit．org trunk＠abinit．org

四 Repositories 13 Seople 19 Teams 0 Projects 2 Prings

Pinned repositories

三 abinit \quad＝abipy
UCL

The official github mirror of the Abinit repository．
ETNT／binit

三 abitutorials

Abinit tutorials based on AbiPy

Running ABINIT : basics

Density Functional Theory calculations In ABINIT ...

Representation of mathematical formalism with a Plane Wave basis set :

- wavefunctions
- density, potential

Periodic boundary conditions
=> wavefunctions characterized by a wavevector (k-vector)
PseudoPotentials (or Projector Augmented Waves - PAW)
Iterative techniques to solve the equations
(Schrödinger equation ; DFT Self-consistency ; optimisation of atomic positions)

External files in a ABINIT run

Results:

log, main output, energy derivatives (_DDB), ... - text files density (_DEN), potential (_POT), wavefunctions (_WFK), ... - binary F90 files or similar files in netCDF (_DEN.nc, _POT.nc, _WFK.nc)

Advantage of netCDF : portable, addressed by content, extensible, Python-friendly

ABINIT : the pipeline and the driver

Basic 'files' file : delivers filenames

h2.in	Name of input file h2.out
h2i	Name of main output file
h2o	'Root' name for possibly other input files
h2	'Root' name for possibly other output files
hydrogen.hgh	'Root' name for temporary files
[oxygen.pspnc	Name for the pseudopotential file for atoms of type 1
[92u.psp	Name for the pseudopotential file for atoms of type 2]

Made of at least 6 lines (more if > 1 type of atoms) with one name/address specified on each of these lines.

A basic 'input’ file : dihydrogen (I)

\# H2 molecule in big cubic box
\# Characters after '\#' or after '!' are comments, will be ignored.
\# Keywords followed by values. Order of keywords in file is not important.
\# Definition of the unit cell
acell 101010 \# Keyword "acell" refers to
\# lengths of primitive vectors (default in Bohr)
\# Definition of the atom types
ntypat 1 \# Only one type of atom
znucl 1 \# Keyword "znucl" refers to atomic number of
\# possible type(s) of atom. Pseudopotential(s)
\# mentioned in "filenames" file must correspond
\# to type(s) of atom. Here, the only type is Hydrogen.
\# Definition of the atoms
natom 2 \# Two atoms
typat 11 \# Both are of type 1, that is, Hydrogen
xcart \# This keyword indicate that location of the atoms
\# will follow, one triplet of number for each atom

-0.70 .00 .0	\# Triplet giving cartesian coordinates of atom 1, in Bohr
0.70 .00 .0	\# Triplet giving cartesian coordinates of atom 2, in Bohr

A basic input file : dihydrogen (II)

```
\# Definition of planewave basis set
ecut 10.0 \# Maximal plane-wave kinetic energy cut-off, in Hartree
```

```
# Definition of k-point grid
kptopt 0 # Enter k points manually
nkpt 1 # Only one k point is needed for isolated system,
    # taken by default to be 0.0 0.0 0.0
```

\#Definition of SCF (self-consistent field) procedure
nstep 10 \# Maximal number of SCF cycles
toldfe 1.0d-6 \# Will stop when, twice in a row, the difference
\# between two consecutive evaluations of total energy
\# differs by less than toldfe (default in Hartree)
diemac 2.0 \# Although this is not mandatory, it is worth to precondition the
\# SCF cycle. A model dielectric function, used as standard
\# preconditioner, is described in "dielng" input variable section.
\# Here, we follow prescriptions for molecules in a big box
\#\# After modifying the following section, one might need to ...
\#\% \% < BEGIN TEST_INFO> Metadata ... to be ignored in the tutorial!

Specification of the atomic geometry

ABINIT : a periodic code

Plane waves $\mathrm{e}^{\mathrm{iKr}}$: particularly simple and efficient (when used with pseudopotentials), but infinite spatial extent.
Cannot use a finite set of planewaves for finite systems ! Need periodic boundary conditions.
Primitive vectors \mathbf{R}_{j}, primitive cell volume Ω_{0}

OK for crystalline solids

But : finite systems, surfaces, defects, polymers,

Solution : the supercell technique

Molecule, cluster

Surface : treatment of a slab

Interface

Point defect in a bulk solid

Examples of defects SiO_{2}-quartz : Pb

Comparison with amorphous SiO_{2}

Main input file : input variable flexibility

- cell primitive vectors \rightarrow rprim
\ldots or angle (degrees) between primitive vectors \rightarrow angdeg
+ scale cell vector lengths \rightarrow acell
+ scale cartesian coordinates \rightarrow scalecart
- number of atoms \rightarrow natom
- reduced coordinates \rightarrow xred (initial guess ...)
... or cartesian coordinates \rightarrow xcart (in Bohr) / xangst (in Å)
- type of atoms \rightarrow typat
- space group \rightarrow spgroup + natrd
\ldots or number of symmetries \rightarrow nsym
+ symmetry operations \rightarrow symrel + tnons

Example : cubic zirconium dioxide

Bilbao Crystallographic Server \rightarrow Assignment of Wyckoff Positions

Assignment of Wyckoff Positions

Atoms Data:

AT.	WP	SS	Representative	Atomic orbit
Zr1	4a (0,0,0)	m-3m	$(0.000000,0.000000,0.000000)$	$(0.000000,0.000000,0.000000)$ $(0.000000,0.500000,0.500000)$ $(0.500000,0.000000,0.500000)$ $(0.500000,0.500000,0.000000)$
O2				$(0.250000,0.250000,0.250000)$
				$(1 / 4,1 / 4,1 / 4)$ $(0.750000,0.750000,0.250000)$ $(0.750000,0.250000,0.750000)$ $(0.250000,0.750000,0.750000)$ $(0.250000,0.250000,0.750000)$ $(0.750000,0.750000,0.750000)$ $(0.250000,0.750000,0.250000)$ $(0.750000,0.250000,0.250000)$

Face-centered cubic, with three atoms per primitive cell

Example : cubic zirconium dioxide

natom 3
acell 3*5.01 Angst NOTE "*" is a repeater
rprim 0.00 .50 .5
0.50 .00 .5
0.50 .50 .0
typat 122
xred 3*0.0 3*0.25 3*0.75
=> symmetries are found automatically

OR
natom 3 acell 3*5.01 Angst
rprim 0.00 .50 .5
0.50 .00 .5
0.50 .50 .0
typat 122
spgroup 225 natrd 2
xred $3^{*} 0.03^{*} 0.25=>$ the set of atoms is completed automatically

Primitive vectors in ABINIT (rprim)

- $\quad R_{\mathrm{i}}(\mathrm{j}) \rightarrow \operatorname{rprimd}(\mathrm{j}, \mathrm{i})=$ scalecart $(\mathrm{j}) \times \operatorname{rprim}(\mathrm{j}, \mathrm{i}) \times$ acell (i)

$$
\begin{array}{rlll}
\text { scalecart } & 9.5 & 9.8 & 10.0 \\
\text { rprim } & 0.0 & 0.5 & 0.5 \\
& 0.5 & 0.0 & 0.5 \\
& 0.5 & 0.5 & 0.0
\end{array}
$$

face-centered orthorhombic

$$
\begin{array}{lcccc}
\text { acell } & 9.5 & 9.5 & 10.0 & \\
\text { rprim } & 0.8660254038 \mathrm{E}+00 & 0.5 & 0.0 \\
& -0.8660254038 \mathrm{E}+00 & 0.5 & 0.0 \\
& 0.0 \quad 0.0 \quad 1.0 & & \\
& & \mathrm{a}_{\mathrm{i}} \rightarrow & \text { acell(i) / } \mathrm{a}_{\mathrm{i}} \rightarrow \text { angdeg(i) }
\end{array}
$$

\(\left.\begin{array}{rllll}acell \& 9.5 \& 9.5 \& 10.0

angdeg \& 120 \& 90 \& 90\end{array}\right]\)				
acell	9.0 9.0 9.0			
angdeg	48	48	48	

hexagonal

hexagonal
trigonal

Symmetries in ABINIT

- Seitz notation for the symmetry operations of crystal :

- Applied to the equilibrium position vector of atom κ relative to the origin of the cell τ_{κ}, this symmetry transforms it as:

$$
\begin{aligned}
\{\mathbf{S} \mid \mathbf{v}(S)\} \tau_{\kappa} & =\mathbf{S} \tau_{\kappa}+\mathbf{v}(S)=\tau_{\kappa^{\prime}}+\mathbf{R}^{a} \\
\left\{S_{\alpha \beta} \mid v_{\alpha}(S)\right\} \tau_{\kappa \alpha} & =S_{\alpha \beta} \tau_{\kappa \alpha}+v_{\alpha}(S)=\tau_{\kappa^{\prime} \alpha}+R_{\alpha}^{a}
\end{aligned}
$$

where R^{a} belongs to the real space lattice.

The plane wave basis set

$$
\psi_{\mathbf{k}}(\mathbf{r})=\left(N \Omega_{0}\right)^{-1 / 2} \sum_{\mathbf{G}} \mathrm{u}_{\mathbf{k}}(\mathbf{G}) \mathrm{e}^{\mathrm{i}(\mathbf{k}+\mathbf{G}) \mathbf{r}}
$$

A reminder : basic equations in DFT

Solve self-consistently the Kohn-Sham equation

$$
\begin{aligned}
& \left\{\begin{array}{l}
\hat{H}\left|\psi_{\mathrm{n}}\right\rangle=\varepsilon_{\mathrm{n}}\left|\psi_{\mathrm{n}}\right\rangle \\
\hat{H}=\hat{T}+\hat{V}+\hat{V}_{H x c}[\rho] \\
\rho(\vec{r})=\sum_{\mathrm{n}}^{o c c} \psi_{\mathrm{n}}^{*}(\vec{r}) \psi_{\mathrm{n}}(\vec{r}) \\
\text { or minimize } \\
E_{e l}\{\psi\}=\sum_{\mathrm{n}}\left\langle\psi_{\mathrm{n}}(\mathbf{r})\right. \\
\delta_{\mathrm{mn}}=\left\langle\psi_{\mathrm{m}} \mid \psi_{\mathrm{n}}\right\rangle \text { for } \mathrm{m}, \mathrm{n} \in \text { occupied set } \\
\text { with } \hat{T}+\hat{V}\left|\psi_{\mathrm{n}}\right\rangle+E_{H x c}[\rho] \\
\end{array}, \sum_{\mathrm{a} \kappa}-\frac{Z_{\mathrm{\kappa}}}{\left|\vec{r}_{\mathrm{r}}-\overrightarrow{\mathrm{R}}_{\mathrm{\kappa}}^{\mathrm{a}}\right|}\right.
\end{aligned}
$$

Periodic system : wavevectors

For a periodic Hamiltonian : wavefunctions characterized by a wavevector \mathbf{k} (crystal momentum) in Brillouin Zone

Bloch's theorem

$$
\psi_{\mathrm{m}, \mathbf{k}}\left(\mathbf{r}+\mathbf{R}_{\mathrm{j}}\right)=\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{R}_{\mathrm{j}}} \psi_{\mathrm{m}, \mathbf{k}}(\mathbf{r})
$$

$$
\psi_{\mathrm{m}, \mathrm{k}}(\mathbf{r})=\left(N \Omega_{0}\right)^{-1 / 2} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{r}} \mathrm{u}_{\mathrm{m}, \mathrm{k}}(\mathbf{r}) \quad \mathrm{u}_{\mathrm{m}, \mathrm{k}}\left(\mathbf{r}+\mathbf{R}_{\mathrm{j}}\right)=\mathrm{u}_{\mathrm{m}, \mathrm{k}}(\mathbf{r})
$$

Normalization?
Born-von Karman supercell supercell vectors $\mathrm{N}_{\mathrm{j}} \mathbf{R}_{\mathrm{j}}$ with $\mathrm{N}=\mathrm{N}_{1} \mathrm{~N}_{2} \mathrm{~N}_{3}$
$\psi_{\mathrm{m}, \mathbf{k}}\left(\mathbf{r}+\mathrm{N}_{\mathrm{j}} \mathbf{R}_{\mathrm{j}}\right)=\psi_{\mathrm{m}, \mathrm{k}}(\mathbf{r})$

Planewave basis set

Reciprocal lattice : set of \mathbf{G} vectors such that $e^{i \mathbf{G} \mathbf{R}_{j}}=1$
$\mathrm{e}^{\mathrm{i} G r}$ has the periodicity of the real lattice

$$
\mathrm{u}_{\mathbf{k}}(\mathbf{r})=\sum_{\mathbf{G}} \mathrm{u}_{\mathbf{k}}(\mathbf{G}) \mathrm{e}^{\mathrm{i} \mathbf{G r}} \quad \psi_{\mathbf{k}}(\mathbf{r})=\left(N \Omega_{0}\right)^{-1 / 2} \sum_{\mathbf{G}} \mathrm{u}_{\mathbf{k}}(\mathbf{G}) \mathrm{e}^{\mathrm{i} \mathbf{k}+\mathbf{G}) \mathbf{r}}
$$

$u_{\mathbf{k}}(\mathbf{G})=\frac{1}{\Omega_{\mathrm{o}}} \int_{\Omega_{0}} \mathrm{e}^{-\mathrm{i} \mathbf{G r}} \mathrm{u}_{\mathbf{k}}(\mathbf{r}) \mathrm{d} \mathbf{r}$
(Fourier transform)
Kinetic energy of a plane wave $-\frac{\nabla^{2}}{2} \rightarrow \frac{(\mathbf{k}+\mathbf{G})^{2}}{2}$
The coefficients $u_{\mathbf{k}}(\mathbf{G})$ for the lowest eigenvectors
decrease exponentially with the kinetic energy $\frac{(\mathbf{k}+\mathbf{G})^{2}}{2}$
Selection of plane waves determined by a cut-off energy $\mathrm{E}_{\text {cut }}$

$$
\frac{(\mathbf{k}+\mathbf{G})^{2}}{2}<\underset{\substack{\text { eut } \\ \text { ecut }}}{ } \text { Plane wave sphere }
$$

Number of planewaves

Number of plane waves
= function of the
kinetic energy cut-off
... not continuous

Also, a (discontinuous) function of lattice parameter at fixed kinetic energy

Discontinuities in energy and pressure

=> Energy (and pressure) also (discontinuous) functions of lattice parameter at fixed kinetic energy

Sherbrooke, May 28-29, 2018

Removing discontinuities

Kinetic energy

Kinetic energy

Convergence wrt to kinetic energy cutoff

Plane waves : the density and potential

Fourier transform of a periodic function $\quad \mathrm{f}(\mathbf{r})$

$$
\mathrm{f}(\mathbf{G})=\frac{1}{\Omega_{\mathrm{or}}} \int_{\Omega_{\mathrm{or}}} \mathrm{e}^{-\mathrm{i} \mathrm{Gr}} \mathrm{f}(\mathbf{r}) \mathrm{d} \mathbf{r} \quad \mathrm{f}(\mathbf{r})=\sum_{\overrightarrow{\mathrm{G}}} \mathrm{e}^{\mathrm{i} \mathbf{G r}} \mathrm{f}(\mathbf{G})
$$

Poisson equation $\quad \Rightarrow \mathrm{n}(\mathbf{G})$ and $\mathrm{V}_{\mathrm{H}}(\mathbf{G})$

$$
\mathrm{V}_{\mathrm{H}}(\mathbf{r})=\left.\int \frac{\mathrm{n}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \mathrm{d} \mathbf{r}^{\prime} \Leftrightarrow \nabla^{2} \mathrm{~V}_{\mathrm{H}}\right|_{\mathbf{r}}=-4 \pi \mathrm{n}(\mathbf{r})
$$

Relation between Fourier coefficients:

$$
\mathrm{G}^{2} \mathrm{~V}_{\mathrm{H}}(\mathbf{G})=4 \pi \mathrm{n}(\mathbf{G}) \quad \mathrm{V}_{\mathrm{H}}(\mathbf{G})=\frac{4 \pi}{\mathrm{G}^{2}} \mathrm{n}(\mathbf{G})
$$

For $\mathrm{G}^{2}=0 \quad(\mathbf{G}=0 \quad)$ divergence of $\mathrm{V}_{\mathrm{H}}(\mathbf{G}=0)$

Representation of the density

Density associated with one eigenfunction :

$$
\mathrm{n}_{\mathrm{nk}}(\mathbf{r})=\mathrm{u}_{\mathrm{nk}}^{*}(\mathbf{r}) \mathrm{u}_{\mathrm{nk}}(\mathbf{r})
$$

Computation of

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{nk}}^{*}(\mathbf{r}) \mathrm{u}_{\mathrm{nk}}(\mathbf{r}) \\
= & \left(\sum_{\mathbf{G}} \mathrm{u}_{\mathrm{nk}}^{*}(\mathbf{G}) \mathrm{e}^{-\mathrm{i} \mathbf{G r}}\right)\left(\sum_{\mathbf{G}^{\prime}} \mathrm{u}_{\mathrm{nk}}\left(\mathbf{G}^{\prime}\right) \mathrm{e}^{-\mathrm{i} \mathbf{G} \mathbf{r}}\right) \\
= & \sum_{\mathbf{G} \mathbf{G}^{\prime}}\left[\mathrm{u}_{\mathrm{nk}}^{*}(\mathbf{G}) \mathrm{u}_{\mathrm{nk}}\left(\mathbf{G}^{\prime}\right)\right] \mathrm{e}^{\mathrm{i}\left(\mathbf{G}^{\prime}-\mathbf{G}\right) \mathbf{r}}
\end{aligned}
$$

Non-zero coefficients for $\mathbf{k}+\mathbf{G} \in$ sphere $\mathbf{k}+\mathbf{G}^{\prime} \in$ sphere

The sphere for $\mathrm{n}(\mathbf{G})$ has a double radius

From real space to reciprocal space $\mathrm{n}(\mathbf{r})=\sum_{\mathbf{G} \in \operatorname{sphere}(2)} \mathrm{n}(\mathbf{G}) \mathrm{e}^{\mathrm{i} \mathbf{G r}}$

Use of the discrete Fourier transform $\quad\left\{\mathbf{r}_{\mathrm{i}}\right\} \leftrightarrow\{\mathbf{G}\}$

Representation : wrap-up

- Choice of a basis (e.g. Plane waves)
- Truncating of the basis -> finite basis

$$
\frac{(\mathbf{k}+\mathbf{G})^{2}}{2}<\mathrm{E}_{\mathrm{cut}} \quad \text { Sphere of plane waves }
$$

- Discontinuous increase of the number of plane waves ?

Smearing of $u(\mathbf{G})$
-> Progressive incorporation of new G vectors

- Representation of the density

Sphere with a double radius in the reciprocal space

- Going from the real space to reciprocal space

Discrete Fourier transform
Grid of points + Fast Fourier Transform

$$
\left\{\mathbf{r}_{i}\right\} \leftrightarrow\{\mathbf{G}\}
$$

Sampling the Brillouin zone

From discrete states to Brillouin zone

Discrete summations over states :
Total kinetic energy $\quad \sum_{i}\left\langle\psi_{i}\right|-\frac{1}{2} \nabla^{2}\left|\psi_{i}\right\rangle$
Density

$$
n(\mathbf{r})=\sum_{i} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})
$$

In the periodic case : summation over energy bands + integration over the Brillouin zone
Total kinetic energy $\quad \sum_{n} \frac{1}{\Omega_{0 \mathrm{k}}} \int_{\Omega_{0 \mathrm{k}}} f\left(\varepsilon_{F}-\varepsilon_{\mathrm{nk}}\right)\left\langle\psi_{\mathrm{nk}}\right|-\frac{1}{2} \nabla^{2}\left|\psi_{\mathrm{nk}}\right\rangle d \mathrm{k}$
Density $\quad n(\mathbf{r})=\sum_{n} \frac{1}{\Omega_{0 \mathrm{k}}} \int_{\Omega_{0 \mathrm{k}}} f\left(\varepsilon_{F}-\varepsilon_{\mathrm{nk}}\right) \psi_{\mathrm{nk}}{ }^{*}(\mathbf{r}) \psi_{\mathrm{nk}}(\mathbf{r}) d \mathrm{k}$
How to treat $\frac{1}{\Omega_{o \mathbf{k}}} \int_{\Omega_{o \mathbf{k}}} X_{\mathbf{k}} \mathrm{dk} \quad ?$

Brillouin zone integration

$$
\frac{1}{\Omega_{o \mathbf{k}}} \int_{\Omega_{o \mathbf{k}}} \mathrm{X}_{\mathbf{k}} \mathrm{d} \mathbf{k} \Rightarrow \sum_{\{\mathbf{k}\}} \mathrm{w}_{\mathbf{k}} \mathrm{X}_{\mathbf{k}} \quad\left[\text { with } \sum_{\{\mathbf{k}\}} \mathrm{w}_{\mathbf{k}}=1\right]
$$

Simple answer: Homogeneous grid (1D-2D-3D) and equal weights

Brillouin zone integration

Theorem :

If • the integrand is periodic

- the integrand is continuous + derivable at all orders $\left(C^{\infty} D^{\infty}\right)$
- $\{\mathbf{k}\}$ homogeneous grid (1D-2D-3D) and $W_{k} \quad$ all equal

Then exponential convergence, with respect to $\Delta \mathbf{k}$

- OK for semiconductors/insulators where the occupation number is independent of k within a band
- Convergence : one ought to test several grids with different $\Delta \mathbf{k}$
- Monkhorst \& Pack grids (Phys. Rev. B 13, 5188 (1976))
$k_{1} \times k_{2} \times k_{3}$ points + simple cubic, FCC, BCC ...
- Other techniques ... (tetrahedron method)

BZ integration : Monkhorst-Pack grid

- Uniformly spaced grid of $\mathrm{n}_{\mathrm{k} 1} \times \mathrm{n}_{\mathrm{k} 2} \times \mathrm{n}_{\mathrm{k} 3}$ points in the first Brillouin Zone [Monkhorst \& Pack, Phys. Rev. B 13, 5188 (1976)]

$$
\mathrm{n}_{\mathrm{k} 1}=\mathrm{n}_{\mathrm{k} 2}=3
$$

$\mathrm{n}_{\mathrm{k} 1}=\mathrm{n}_{\mathrm{k} 2}=4$
ngkpt nk1 nk2 nk3

Unshifted and shifted grids

- k-points grid can be chosen to be shifted : not centered at Γ.
- Advantage : comparable accuracy can be obtained with fewer kpoints in IBZ (especially for highly symmetric cases)

$n_{k} 1=n_{k 2}=3$
unshifted

$n_{k} 1=n_{k 2}=3$
shifted by $(1 / 2,1 / 2)$
ngkpt nk1 nk2 nk3

$$
\text { shiftk sk1 sk2 sk3 (defaut: } 0.50 .5 \text { 0.5) }
$$

Combining grids with various shifts

- k-points grid with various shifts can also be combined.

combining unshifted and shifted by $(1 / 2,1 / 2)$ for $n_{k 1}=n_{k 2}=3$

```
ngkpt nk1 nk2 nk3
nshiftk nsk
shiftk sk1(1) sk2(1) sk3(1)
    sk1(2) sk2(2) sk3(2)
    "
```


Irreducible wedge

- Using symmetries to avoid summing entire BZ :
- Restrict the sum to the Irreducible Brillouin zone (IBZ) provided that weights are adapted.

Treatment of metals (I)

Behaviour of $f\left(\varepsilon_{F}-\varepsilon_{\mathrm{nk}}\right)$? Energy
Discontinuity of integrand at Fermi level

Smearing technique

First trial : generalisation of DFT to finite temperature
$f\left(\varepsilon_{n \mathbf{k}}\right)=\frac{1}{1+e^{\left(\varepsilon_{n \mathbf{k}}-\varepsilon_{\mathrm{F}}\right) / \mathrm{kT}}}$
f goes from 0 to 2 in an energy range $\quad \sigma=\mathrm{k}_{\mathrm{B}} \mathrm{T}$
$E(T) \cong E(T=0)+\alpha T^{2}+\ldots$

$$
F(T)=E-T S
$$

occopt 3
tsmear σ
Problem: T needed to recover the same convergence as for semiconductors is very high (>> 2000 K)

Treatment of metals (II)

Better technique: obtain $E(\sigma=0)$ from total energy expression $E(\sigma)$ with modified occupation numbers, and σ similar to a temperature
$E(\sigma)=E(\sigma=0)+\alpha \sigma^{2}+O\left(\sigma^{3}\right)$ with α small
or $E(\sigma)=E(\sigma=0)+\alpha \sigma^{n}+O\left(\sigma^{n+1}\right)$ with $\mathrm{n}>2$
$\mathrm{f}_{\mathrm{nk}}\left(\varepsilon_{\mathrm{nk}}\right)=\mathrm{s} \cdot \int_{\text {Spin factor }}^{\infty}=\frac{\varepsilon_{\mathrm{nk}}-\varepsilon_{\mathrm{F}}}{\sigma} \tilde{\delta}(\mathrm{t}) \mathrm{dt} \quad\left[\right.$ with $\left.\int_{-\infty}^{\infty} \tilde{\delta}(\mathrm{t}) \mathrm{dt}=1\right]$
Gaussian smearing $\tilde{\delta}(x)=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-\mathrm{x}^{2}} \Rightarrow \alpha$ small occopt 7
Gauss - Hermite smearing $\tilde{\delta}(x)=\frac{1}{\sqrt{\pi}}\left(\frac{3}{2}-x^{2}\right) e^{-x^{2}}$
$\Rightarrow \mathrm{n}=4$ but occupations can be negative
'Cold Smearing'
occopt 4/5
(Marzari et al, Phys. Rev. Lett. 82, 3296 (1999))
$\Rightarrow \mathrm{n}=3$ with positive occupations

Convergence wrt k-points and smearing

Total energy (Ry)

UCL
$n_{k}\left(n_{k} \times n_{k} \times n_{k}\right.$ k-point grid)
Courtesy of S. Narasimhan

How many k points ? Smearing width ?

Rule of thumb ! Goal : lattice parameter converged better than 0.5 \%

Semiconductors - Insulators	$\# \mathbf{k} \times N_{\text {atoms }}$	$50 \ldots 500$
Metals	$\# \mathbf{k} \times N_{\text {atoms }}$	$1000 \ldots 2000$

Use symmetries \Rightarrow integration in the irreducible Brillouin zone

2D Example

grid $4 \times 4=16$
n
3 points in the irreducible Brillouin Zone
Smearing : depends on the density of electronic states (DOS) at the Fermi level
s-p Metal (Al, Na ...) ~ 0.04 Ha
d Metal (Cu, Ag...) ~ 0.01 Ha
\. magnetism needs small σ

Pseudopotentials

Core and valence electrons (I)

Core electrons occupy orbitals that are « the same » in the atomic environment or in the bonding environment

It depends on the accuracy of the calculation !

Separation between core and valence orbitals : the density...

$$
\begin{aligned}
n(\mathbf{r}) & =\sum_{i}^{N} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r}) \\
& =\sum_{i \in \text { corre }}^{N_{\text {core }}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})+\sum_{i \in v a l}^{N_{\text {val }}} \psi_{i}^{*}(\mathbf{r}) \psi_{i}(\mathbf{r})=n_{\text {core }}(\mathbf{r})+n_{\text {val }}(\mathbf{r})
\end{aligned}
$$

«Frozen core» for $\mathrm{i} \in \operatorname{core}: \psi_{i}=\psi_{i}^{\text {atom }}$

Small core / Large core

It depends on the target accuracy of the calculation! (remark also valid for pseudopotentials, with similar cores) For some elements, the core/valence partitioning is obvious, for some others, it is not.

F atom: $(1 s)^{2}+(2 s)^{2}(2 p)^{5}$
IP 1keV $\quad 10-100 \mathrm{eV}$
Ti atom : $\quad(1 s)^{2}(2 s)^{2}(2 p)^{6}(3 s)^{2}(3 p)^{6}(4 s)^{2}(3 d)^{2} \quad$ small core

$$
(1 s)^{2}(2 s)^{2}(2 p)^{6}(3 s)^{2}(3 p)^{6}(4 s)^{2}(3 d)^{2} \quad \text { large core }
$$

IP $\quad 99.2 \mathrm{eV} \quad 43.3 \mathrm{eV}$
Gd atom : small core with $n=1,2,3$ shells , might include $4 s, 4 p$, and $4 d$ in the core. $4 f$ partially filled

Core and valence electrons (II)

Separation between core and valence orbitals : the energy ...

$$
\begin{aligned}
E_{\mathrm{KS}}\left[\left\{\psi_{i}\right\}\right] & =\sum_{i}\left\langle\psi_{i}\right|-\frac{1}{2} \nabla^{2}\left|\psi_{i}\right\rangle+\int V_{\text {ext }}(\mathbf{r}) n(\mathbf{r}) \mathrm{d} \mathbf{r}+\frac{1}{2} \int \frac{n\left(\mathbf{r}_{1}\right) n\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2}+E_{\mathrm{xc}}[n] \\
E_{\mathrm{KS}}\left[\left\{\psi_{i}\right\}\right] & =\sum_{i \in \text { core }}^{N_{\text {corre }}}\left\langle\psi_{i}\right|-\frac{1}{2} \nabla^{2}\left|\psi_{i}\right\rangle+\int V_{\text {ext }}(\mathbf{r}) n_{\text {core }}(\mathbf{r}) \mathrm{d} \mathbf{r}+\frac{1}{2} \int \frac{n_{\text {core }}\left(\mathbf{r}_{1}\right) n_{\text {core }}\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \\
& +\sum_{i \in \text { val }}^{N_{\text {val }}}\left\langle\psi_{i}\right|-\frac{1}{2} \nabla^{2}\left|\psi_{i}\right\rangle+\int V_{\text {ext }}(\mathbf{r}) n_{\text {val }}(\mathbf{r}) \mathrm{d} \mathbf{r}+\frac{1}{2} \int \frac{n_{\text {val }}\left(\mathbf{r}_{1}\right) n_{\text {val }}\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2} \\
& +\int \frac{n_{\text {val }}\left(\mathbf{r}_{1}\right) n_{\text {core }}\left(\mathbf{r}_{2}\right)}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \mathrm{d} \mathbf{r}_{1} \mathrm{~d} \mathbf{r}_{2}+E_{\mathrm{xc}}\left[n_{\text {core }}+n_{\text {val }}\right]
\end{aligned}
$$

Removing core electrons (I)

From the previous construction : valence orbitals must still be orthogonal to core orbitals
(=> oscillations, slope at the nucleus ...)

Pseudopotentials try to remove completely the core orbitals from the simulation

Problem with the number of nodes
This is a strong modification of the system ...
Pseudopotentials confine the strong changes within a « cut-off radius »

Removing core electrons (II)

Going from

$$
\left(-\frac{1}{2} \nabla^{2}+\mathrm{v}\right)\left|\psi_{\mathrm{i}}\right\rangle=\varepsilon_{\mathrm{i}}\left|\psi_{\mathrm{i}}\right\rangle
$$

To

$$
\left(-\frac{1}{2} \nabla^{2}+\mathrm{v}_{\mathrm{ps}}\right)\left|\psi_{\mathrm{ps}, \mathrm{i}}>=\varepsilon_{\mathrm{ps}, \mathrm{i}}\right| \psi_{\mathrm{ps}, \mathrm{i}}>
$$

Possible set of conditions (norm-conserving pseudopotentials) NCPP - Hamann D.R., Schlüter M., Chiang C, Phys.Rev.Lett. 43, 1494 (1979)
$\varepsilon_{\mathrm{i}}=\varepsilon_{\mathrm{ps}, \mathrm{i}}$
$\psi_{\mathrm{i}}(\mathbf{r})=\psi_{\mathrm{ps}, \mathrm{i}}(\mathbf{r})$ for $\mathrm{r}>\mathrm{r}_{\mathrm{c}}$
$\int_{\mathrm{r}<\mathrm{r}_{\mathrm{c}}}\left|\psi_{\mathrm{i}}(\mathbf{r})\right|^{2} \mathrm{~d} \mathbf{r}=\int_{\mathrm{r}<\mathrm{r}_{\mathrm{c}}}\left|\psi_{\mathrm{ps}, \mathrm{i}}(\mathbf{r})\right|^{2} \mathrm{~d} \mathbf{r}$
For the lowest
angular momentum channels (s + p ... d ...f)

Generalisation : ultra-soft pseudopotentials (USPP), projector-augmented plane waves (PAW)

Example of pseudopotential

Radial distance [a.u.]

Pseudopotentials/PAW data in ABINIT

- Preferred PAW atomic dataset table : JTH

Jollet, Torrent, Holzwarth, Computer Physics Comm. 185, 1246 (2014)
https://www.abinit.org/psp-tables

Atomic data available
\square Atomic data non available
Also, possibility to use : GPAW table, GBRV v1.0 table, or norm-conserving pseudopotentials (e.g. ONCVPSP pseudo generator), or many others

Pseudopotentials/PAW data in ABINIT

- Norm-conserving pseudos : pseudo-dojo approach

Van Setten et al , Computer Physics Comm. 226, 39 (2018)
https://www.pseudo-dojo.org

Computing the forces

Computing the forces (I)

Born - Oppenheimer approx. \Rightarrow find electronic ground state in potential created by nuclei.

A starting configuration of nuclei $\left\{\mathrm{R}_{\kappa}\right\}$ is usually NOT in equilibrium geometry.

$$
\mathrm{F}_{\kappa, \alpha}=-\left.\frac{\partial E}{\partial R_{\kappa, \alpha}}\right|_{\left\{\overrightarrow{\mathrm{R}}_{\kappa}\right\}} \quad \text { (principle of virtual works) }
$$

Forces can be computed by finite differences.
Better approach : compute the response to a perturbation
\Rightarrow What is the energy change ?

$$
\left\{\mathrm{R}_{\kappa, \alpha}\right\} \rightarrow\left\{\mathrm{R}_{\kappa, \alpha}+\underset{\kappa}{\left.\lambda \delta \mathrm{R}_{\kappa, \alpha}\right\}}\right. \text { Small parameter }
$$

Computing the forces (II)

To simplify, let's compute the derivative of an electronic eigenvalue
Perturbation theory : Hellmann - Feynman theorem

$$
\begin{array}{r}
\frac{d \varepsilon_{\mathrm{n}}}{\mathrm{~d} \lambda}=\left\langle\psi_{\mathrm{n}}^{(0)}\right| \frac{\mathrm{d} \hat{\mathrm{H}}}{\mathrm{~d} \lambda}\left|\Psi_{\mathrm{n}}^{(0)}\right\rangle \\
\frac{\mathrm{d} \psi_{\mathrm{n}}}{\mathrm{~d} \lambda} \text { not needed! }
\end{array}
$$

Application to the derivative with respect to an atomic displacement :

$$
\begin{gathered}
\hat{\mathrm{H}}=\hat{\mathrm{T}}+\hat{\mathrm{V}}_{\text {ext }}\{\hat{\mathrm{R}}\} \Rightarrow \frac{\partial \hat{\mathrm{H}}}{\partial \mathrm{R}_{\mathrm{\kappa}, \alpha}}=\frac{\partial \hat{\mathrm{V}}_{e x t}}{\partial \mathrm{R}_{\mathrm{K}, \alpha}} \\
\frac{\partial \varepsilon_{n}}{\partial \mathrm{R}_{\mathrm{k}, \alpha}}=\left\langle\psi_{\mathrm{n}}\right| \frac{\partial \hat{\mathrm{H}}}{\partial \mathrm{R}_{\mathrm{K}, \alpha} \mid}\left|\psi_{\mathrm{n}}\right\rangle=\int \mathrm{n}(\mathbf{r}) \frac{\partial \hat{\mathrm{V}}_{e x t}(\mathbf{r})}{\partial \mathrm{R}_{\mathrm{k}, \alpha}} \mathrm{dr}
\end{gathered}
$$

Computing the forces (III)

Generalisation to density functional theory

Reminder: $\quad \mathrm{E}\left[\psi_{\mathrm{i}}\right]=\sum_{n}\left\langle\psi_{\mathrm{i}}\right| \hat{\mathrm{T}}\left|\psi_{\mathrm{i}}\right\rangle+\int \mathrm{n}(\mathbf{r}) \mathrm{V}_{\mathrm{ext}}(\mathbf{r}) \mathrm{d} \mathbf{r}+\mathrm{E}_{\mathrm{Hxc}}[\mathrm{n}]$ If change of atomic positions ...

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ext}}(\overrightarrow{\mathrm{r}})=\sum_{\mathrm{k}^{\prime}}-\frac{\mathrm{Z}_{\mathrm{k}^{\prime}}}{\mid \overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}}_{\mathrm{k}^{\prime} \mid}} \quad \text { (can be generalized to pseudopotential case) } \\
& \frac{\partial \mathrm{V}_{\mathrm{ext}}(\overrightarrow{\mathrm{r}})}{\partial \mathrm{R}_{\mathrm{k}, \alpha}}=+\frac{\mathrm{Z}_{\mathrm{k}^{\prime}}}{\left|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}}_{\mathrm{k}}\right|^{2}} \cdot \frac{\partial\left|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}}_{\mathrm{k}}\right|}{\partial \mathrm{R}_{\mathrm{k}, \alpha}}=-\frac{\mathrm{Z}_{\mathrm{k}^{\prime}}}{\left|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}}_{\mathrm{k}}\right|^{3}} \cdot\left(\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}}_{\mathrm{k}}\right)_{\alpha} \\
& \frac{\partial \mathrm{E}}{\partial \mathrm{R}_{\mathrm{k}, \alpha}}=\int \mathrm{n}\left(\mathrm{r}^{\prime}\right) \frac{\partial \mathrm{V}_{\mathrm{ext}}\left(\mathrm{r}^{\prime}\right)}{\partial \mathrm{R}_{\mathrm{k}, \alpha}} d \mathrm{r}^{\prime}=-\int \frac{\mathrm{n}\left(\mathrm{r}^{\prime}\right)}{\left|\overrightarrow{\mathrm{r}}^{\prime}-\overrightarrow{\mathrm{R}}_{\mathrm{k}}\right|^{3}} \cdot\left(\overrightarrow{\mathrm{r}}^{\prime}-\overrightarrow{\mathrm{R}}_{\mathrm{k}}\right)_{\alpha} \mathrm{d} \overrightarrow{\mathrm{r}}^{\prime}
\end{aligned}
$$

Forces can be computed directly from the density !

Iterative algorithms

Algorithmics: problems to be solved

(1) Kohn - Sham equation

$$
\underline{\underline{\mathrm{A}} \underline{\mathrm{x}}_{i}=\lambda_{i} \underline{\mathrm{x}}_{i},}
$$

Size of the system
[2 atoms... 600 atoms...] + vacuum ?
Dimension of the vectors $\underline{\mathrm{x}}_{i} \quad 300 \ldots \quad 100000 \ldots$ (if planewaves)
\# of (occupied) eigenvectors
4... 1200...
(2) Self-consistency
(3) Geometry optimization

Find the positions $\left\{\mathbf{R}_{\kappa}\right\}$ of ions such that the forces $\left\{\mathbf{F}_{\kappa}\right\}$ vanish
[= Minimization of energy]

Current practice : iterative approaches

The 'steepest-descent' algorithm

Forces are gradients of the energy : moving the atoms along gradients is the steepest descent of the energy surface.
=> Iterative algorithm.
Choose a starting geometry, then a parameter λ, and iterately update the geometry, following the forces :

$$
\mathrm{R}_{\kappa, \alpha}^{(\mathrm{n}+1)}=\mathrm{R}_{\kappa, \alpha}^{(\mathrm{n})}+\lambda \mathrm{F}_{\kappa, \alpha}^{(\mathrm{n})}
$$

Equivalent to the simple mixing algorithm of SCF (see later)
-binit

Energy+forces around equilib. geometry

Let us denote the equilibrium geometry as $\mathrm{R}_{\kappa, \alpha}^{*}$

Analysis of forces close to the equilibrium geometry, at which forces vanish, thanks to a Taylor expansion :
$\mathrm{F}_{\kappa, \alpha}\left(\mathrm{R}_{\kappa^{\prime}, \alpha^{\prime}}\right)=\mathrm{F}_{\kappa, \alpha}\left(\mathrm{R}_{\kappa^{\prime}, \alpha^{\prime}}^{*}\right)+\left.\sum_{\kappa^{\prime}, \alpha^{\prime}} \frac{\partial \mathrm{F}_{\kappa, \alpha}}{\partial \mathrm{R}_{\kappa^{\prime}, \alpha^{\prime}}}\right|_{\left\{\mathrm{R}^{*}\right\}}\left(\mathrm{R}_{\kappa^{\prime}, \alpha^{\prime}}-\mathrm{R}_{\kappa^{\prime}, \alpha^{\prime}}^{*}\right)+O\left(\mathrm{R}_{\kappa^{\prime}, \alpha^{\prime}}-\mathrm{R}_{\kappa^{\prime}, \alpha^{\prime}}^{*}\right)^{2}$
Moreover, $\quad \mathrm{F}_{\kappa, \alpha}=-\frac{\partial \mathrm{E}^{\mathrm{BO}}}{\partial \mathrm{R}_{\kappa, \alpha}} \quad \frac{\partial \mathrm{F}_{\kappa^{\prime}, \alpha}}{\partial \mathrm{R}_{\kappa, \alpha}}=-\frac{\partial^{2} \mathrm{E}^{\mathrm{BO}}}{\partial \mathrm{R}_{\kappa, \alpha} \partial \mathrm{R}_{\kappa^{\prime}, \alpha^{\prime}}}$
Vector and matrix notation

$$
\mathrm{R}_{\kappa, \alpha}^{*} \rightarrow \underline{\mathrm{R}}^{*}
$$

$$
\mathrm{F}_{\kappa, \alpha} \rightarrow \underline{\mathrm{F}}
$$

$$
\left.\frac{\partial^{2} \mathrm{E}^{\mathrm{BO}}}{\partial \mathrm{R}_{\kappa, \alpha} \partial \mathrm{R}_{\kappa^{\prime}, \alpha}}\right|_{\left\{\mathrm{R}_{\kappa, \alpha}^{*}\right\}} \rightarrow \text { (the Hessian) }
$$

Steepest-descent : analysis (I)

$$
\mathrm{R}_{\kappa, \alpha}^{(\mathrm{n}+1)}=\mathrm{R}_{\kappa, \alpha}^{(\mathrm{n})}+\lambda \mathrm{F}_{\kappa, \alpha}^{(\mathrm{n})}
$$

Analysis of this algorithm, in the linear regime :

$$
\begin{aligned}
& \underline{\mathrm{F}}(\underline{\mathrm{R}})=\mathrm{F}\left(\underline{\mathrm{R}}^{*}\right)-\underline{\underline{\mathrm{H}}}\left(\underline{\mathrm{R}}-\underline{\mathrm{R}}^{*}\right)+O\left(\underline{\mathrm{R}}-\underline{\mathrm{R}}^{*}\right)^{2} \\
& \underline{\mathrm{R}}^{(\mathrm{n}+1)}=\underline{\mathrm{R}}^{(\mathrm{n})}+\lambda \underline{\mathrm{F}}^{(\mathrm{n})} \Longrightarrow\left(\underline{\mathrm{R}}^{(\mathrm{n}+1)}-\underline{\mathrm{R}}^{*}\right)=\left(\underline{\mathrm{R}}^{(\mathrm{n})}-\underline{\mathrm{R}}^{*}\right)-\lambda \underline{\underline{\mathrm{H}}}\left(\underline{\mathrm{R}}^{(\mathrm{n})}-\underline{\mathrm{R}}^{*}\right) \\
&\left(\underline{\mathrm{R}}^{(\mathrm{n}+1)}-\underline{\mathrm{R}}^{*}\right)=(\underline{\underline{1}}-\lambda \underline{\underline{\mathrm{H}}})\left(\underline{\mathrm{R}}^{(\mathrm{n})}-\underline{\mathrm{R}}^{*}\right)
\end{aligned}
$$

For convergence of the iterative procedure, the "distance" between trial geometry and equilibrium geometry must decrease.

1) Can we predict conditions for convergence ?
2) Can we make convergence faster?

Need to understand the action of
$\overline{U C L}$

Steepest-descent : analysis (II)

What are the eigenvectors and eigenvalues of $\underline{\underline{\mathrm{H}}}$?
 positive definite matrix

$$
\left(=\left.\frac{\partial^{2} \mathrm{E}^{\mathrm{BO}}}{\partial \mathrm{R}_{\kappa, \alpha} \partial \mathrm{R}_{\kappa^{\prime}, \alpha^{\prime}}}\right|_{\left\{\mathrm{R}_{\kappa, \alpha}^{* *}\right\}}\right)
$$

$\underline{\underline{H}} \underline{f}_{i}=h_{i} \underline{f}_{i}$ where $\left\{\underline{f}_{i}\right\}$ form a complete, orthonormal, basis set Discrepancy decomposed as $\quad\left(\underline{\mathrm{R}}^{(\mathrm{n})}-\underline{\mathrm{R}}^{*}\right)=\sum \mathrm{c}_{i}^{(\mathrm{n})} \underline{\mathrm{f}}_{\mathrm{i}}$ and $\quad\left(\underline{\mathrm{R}}^{(\mathrm{n}+1)}-\underline{\mathrm{R}}^{*}\right)=(\underline{\underline{1}}-\lambda \underline{\underline{H}}) \sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{(\mathrm{n})} \underline{\mathrm{f}}_{\mathrm{i}}=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{(\mathrm{n})}\left(1-\lambda \mathrm{h}_{\mathrm{i}}\right) \underline{\mathrm{f}}_{\mathrm{i}}$
The coefficient of \underline{f}_{i} is multiplied by $1-\lambda h_{i}$
Iteratively :

$$
\left(\underline{\mathrm{R}}^{(\mathrm{n})}-\underline{\mathrm{R}}^{*}\right)=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{(0)}\left(1-\lambda \mathrm{h}_{\mathrm{i}}\right)^{(\mathrm{n})} \underline{\mathrm{f}}_{\mathrm{i}}
$$

Steepest-descent : analysis (III)

$$
\left(\underline{\mathrm{R}}^{(\mathrm{n})}-\underline{\mathrm{R}}^{*}\right)=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{(0)}\left(1-\lambda h_{\mathrm{i}}\right)^{(n)} \underline{\mathrm{f}}_{\mathrm{i}}
$$

The size of the discrepancy decreases if $\left|1-\lambda \mathrm{h}_{\mathrm{i}}\right|<1$ Is it possible to have $\left|1-\lambda h_{i}\right|<1$, for all eigenvalues ?
$\underline{\underline{H}}$ positive definite $=>$ all h_{i} are positive

$$
\text { Yes ! If } \lambda \text { positive, sufficiently small ... }
$$

Steepest-descent : analysis (IV)

$$
\left(\underline{\mathrm{R}}^{(\mathrm{n})}-\underline{\mathrm{R}}^{*}\right)=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}}^{(0)}\left(1-\lambda h_{\mathrm{i}}\right)^{\left(\mathrm{n}^{1}\right)} \underline{\mathrm{f}}_{\mathrm{i}}
$$

How to determine the optimal value of λ ?
The maximum of all |1- $\lambda h_{i} \mid$ should be as small as possible.
At the optimal value of λ, what will be the convergence rate ?
(= by which factor is reduced the worst component of $\left(\underline{\mathrm{R}}^{(\mathrm{n})}-\underline{\mathrm{R}}^{*}\right)$?)
$\begin{array}{lll}\left.\text { As an exercise : suppose } \begin{array}{ll}h_{1}= & 0.2 \\ h_{2}= & 1.0 \\ h_{3}=5.0\end{array}\right\} & \\ & & \\ & + \text { what is the convergence rate ? }\end{array}$

Hint : draw the three functions $\left|1-\lambda \mathrm{h}_{\mathrm{i}}\right|$ as a function of λ. Then, find the location of $\quad \lambda$ where the largest of the three curves is the smallest.

Find the coordinates of this point.

Steepest-descent: analysis (V)

Minimise the maximum of $\left|1-\lambda \mathrm{h}_{\mathrm{i}}\right|$

$$
\left.\begin{aligned}
& \mathrm{h}_{1}=0.2 \\
& \mathrm{~h}_{2}=1.0 \\
& \mathrm{~h}_{3}=5.0
\end{aligned} \right\rvert\, \begin{array}{ll}
1 \lambda & .0 .2 \mid \\
1 \lambda \lambda & 1 \\
1 \lambda & .5
\end{array}
$$

$$
\left.\begin{array}{rl}
\text { optimum }=>\lambda & =5 \\
\text { optimum }=\lambda \lambda & =1 \\
\text { optimum }=>\lambda & =0.2
\end{array}\right\} ?
$$

$$
\begin{gathered}
\mu=\underbrace{|1-\lambda 0.2|}_{\text {positive }}=\mid \underbrace{1-\lambda 5 \mid}_{\text {negative }} \\
1-\lambda \cdot 0.2=-(1-\lambda .5) \\
2-\lambda(0.2+5)=0=\lambda=2 / 5.2 \\
\mu=1-2 .(0.2 / 5.2)
\end{gathered}
$$

Only $\sim 8 \%$ decrease of the error, per iteration ! Hundreds of iterations will be needed to reach a reduction of the error by 1000 or more.

Note : the second eigenvalue does not play any role.
The convergence is limited by the extremal eigenvalues : if the parameter is too large, the smallest eigenvalue will cause divergence, but for that small parameter, the largest eigenvalue lead to slow decrease of the error...

The condition number

In general, $\lambda_{\text {opt }}=2 /\left(h_{\text {min }}+h_{\text {max }}\right)$

$$
\mu_{\text {opt }}=2 /\left[1+\left(\mathrm{h}_{\max } / \mathrm{h}_{\min }\right)\right]-1=\left[\left(\mathrm{h}_{\max } / \mathrm{h}_{\min }\right)-1\right] /\left[\left(\mathrm{h}_{\max } / \mathrm{h}_{\min }\right)+1\right]
$$

Perfect if $h_{\text {max }}=h_{\text {min }}$. Bad if $h_{\text {max }} \gg h_{\text {min }}$.
$\mathrm{h}_{\max } / \mathrm{h}_{\text {min }}$ called the "condition" number. A problem is "ill-conditioned" if the condition number is large. It does not depend on the intermediate eigenvalues.

Suppose we start from a configuration with forces on the order of $1 \mathrm{Ha} / \mathrm{Bohr}$, and we want to reach the target $1 \mathrm{e}-4 \mathrm{Ha} / \mathrm{Bohr}$. The mixing parameter is optimal. How many iterations are needed?
For a generic decrease factor $\Delta \quad$, with " n " the number of iterations.

$$
\begin{aligned}
&\left\|\underline{F}^{(\mathrm{n})}\right\| \approx\left(\frac{\mathrm{h}_{\max } / \mathrm{h}_{\min }-1}{\mathrm{~h}_{\max } / \mathrm{h}_{\min }+1}\right)^{\mathrm{n}}\left\|\underline{\mathrm{~F}}^{(0)}\right\| \quad \Delta \approx\left(\frac{\mathrm{h}_{\max } / \mathrm{h}_{\min }-1}{\mathrm{~h}_{\max } / \mathrm{h}_{\min }+1}\right)^{\mathrm{n}} \\
& \mathrm{n} \approx\left[\ln \left(\frac{\mathrm{~h}_{\max } / \mathrm{h}_{\min }+1}{\mathrm{~h}_{\max } / \mathrm{h}_{\min }-1}\right)\right]^{-1} \ln \Delta \approx 0.5\left(\mathrm{~h}_{\max } / \mathrm{h}_{\min }\right) \ln \frac{1}{\Delta} \quad \begin{array}{l}
\text { (The latter approximate } \\
\text { equality supposes a } \\
\text { large condition number) }
\end{array}
\end{aligned}
$$

Analysis of self-consistency

Natural iterative methodology (KS : in => out) :

$$
\mathrm{v}_{\mathrm{in}}(\mathbf{r}) \rightarrow \psi_{i}(\mathbf{r}) \rightarrow \mathrm{n}(\mathbf{r}) \rightarrow \mathrm{V}_{\mathrm{out}}(\mathbf{r})
$$

Which quantity plays the role of a force, that should vanish at the solution ?
The difference $\quad \mathrm{V}_{\text {out }}(\mathbf{r})-\mathrm{v}_{\text {in }}(\mathbf{r})$ (generic name : a "residual")
Simple mixing algorithm (\approx steepest - descent)

$$
\underline{\mathrm{v}}_{\mathrm{in}}^{(\mathrm{n}+1)}=\underline{\mathrm{v}}_{\mathrm{in}}^{(\mathrm{n})}+\lambda\left(\underline{\mathrm{v}}_{\mathrm{out}}^{(\mathrm{n})}-\underline{\mathrm{v}}_{\mathrm{in}}^{(\mathrm{n})}\right)
$$

Analysis ... $\underline{\mathrm{v}}_{\text {out }}\left[\underline{\mathrm{v}}_{\text {in }}\right]=\underline{\mathrm{v}}_{\text {out }}\left[\underline{\mathrm{v}}^{*}\right]+\frac{\delta \underline{\mathrm{v}}_{\text {out }}}{\delta \underline{\mathrm{v}}_{\text {in }}}\left(\underline{\mathrm{v}}_{\text {in }}-\underline{\mathrm{v}}^{*}\right)$

- $\underline{\underline{H}}$

Like the steepest-descent algorithm, this leads to the requirement to minimize $\left|1-\lambda h_{i}\right|$ where h_{i} are eigenvalues of $\frac{\delta \underline{v}_{\text {out }}}{\delta \underline{v}_{\text {in }}}$

Modify the condition number (II)

$$
\underline{R}^{(n+1)}=\underline{R}^{(n)}+\lambda\left(\underline{\underline{H}}^{-1}\right)_{\text {appox }} \underline{\underline{F}}^{(n)}
$$

$$
\underline{\mathrm{F}}(\underline{\mathrm{R}})=-\underline{\underline{H}}\left(\underline{\mathrm{R}}-\underline{\underline{R}}^{*}\right) \Longrightarrow \quad\left(\underline{(}^{(0+1)}-\underline{R}^{*}\right)=\left(1-\lambda\left(\underline{\underline{H}}^{-1}\right)_{\text {appox }} \underline{\underline{H}}\right)\left(\underline{\mathrm{R}}^{(n)}-\underline{\mathrm{R}}^{*}\right)
$$

Notes: 1) If approximate inverse Hessian perfect, optimal geometry is reached in one step, with $\lambda=1$.
Steepest-descent NOT the best direction.
2) Non-linear effects not taken into account. For geometry optimization, might be quite large. Even with perfect hessian, need 5-6 steps to optimize a water molecule.
3) Approximating inverse hessian by a multiple of the unit matrix is equivalent to changing the λ value.
4) Eigenvalues and eigenvectors of $\quad\left(\underline{\underline{H}}^{-1}\right)_{\text {approx }} \underline{\underline{H}}$ govern the convergence : the condition number can be changed. $\left(\underline{\underline{H}}^{-1}\right)_{\text {appoften }}$ called a "pre-conditioner".
5) Generalisation to other optimization problems is trivial.

Modify the condition number (III)

Approximate Hessian can be generated on a case-by-case basis.
Selfconsistent determination of the Kohn-Sham potential :
Jacobian = dielectric matrix.
Lowest eigenvalue close to 1 .
Largest eigenvalue :
= 1.5 ... 2.5 for small close-shell molecules, and small unit cell solids
(Simple mixing will sometimes converge with parameter set to 1 !)
$=$ the macroscopic dielectric constant (e.g. 12 for silicon),
forlarger close-shell molecules and large unit cell insulators,
= diverge for large-unit cell metals, or open-shell molecules !
Model dielectric matrices known for rather homogeneous systems.
Knowledge of approx. macroscopic dielectric constant
=> efficient preconditioner
Work in progress for inhomogeneous systems
(e.g. metals/vacuum systems).

Advanced algorithms: using the history

Instead of using only previously computed forces, take into account past forces for past positions

Large class of methods :

- Broyden (quasi-Newton-type),
- Davidson,
- conjugate gradients,
- Lanczos ...

Approximate Hessian can be combined with usage of history

Stages in the main processing unit

(3) scfcv.F90

(5) vtowfk.F90

(6) cgwf.F90

(7) getghc.F90

Ground-state

Molecular dynamics
Self-consistent field convergence

From a potential (v) to a density (rho)

From a potential (v) to
a wavefunction at some k-point
Conjugate-gradient on one wavefunction
Get the application of the Hamiltonian

In practice

(1) Kohn - Sham equation

$$
\left[-\frac{1}{2} \nabla^{2}+\mathrm{V}_{\mathrm{KS}}(\mathbf{r})\right] \psi_{i}(\mathbf{r})=\varepsilon_{i} \psi_{i}(\mathbf{r})
$$

Details are usually hidden to the user nline Note that scaling with size of system is quadratic or even cubic
(2) Self-consistency

Target tolerance
toldfe, toldff, tolrff, tolvrs

+ Maximal number of loops nstep

Preconditioner diemac, diemix, ...
(3) Geometry optimization / molecular dynamics

Find the positions $\left\{\mathbf{R}_{\kappa}\right\}$ of ions such that the forces $\left\{\mathbf{F}_{\kappa}\right\}$ vanish
Target tolerance tolmxf

+ Maximal number of loops ntime
Algorithm ionmov

Computing band structure and density of states

Non-self consistent calculations

- Once the density has been determined self-consistently, it is possible to compute the eigenenergies/eigenfunctions rapidly for a large number of wavevectors, at fixed KS potential
- Band structure :
non self-consistent calculation (iscf -2)
k-points along high-symmetry directions (kptopt<0;kptbounds;ndivk).

Sherbrooke, May 28-29, 2018

Density of states

- Density of states (DOS) defined as number of states available in energy range E to $E+d E$:

$$
g(E)=\sum_{n} \frac{1}{\Omega_{0 \mathrm{k}}} \int_{\Omega_{0 \mathrm{k}}} \delta\left(E-\varepsilon_{\mathrm{nk}}\right) d \mathrm{k}
$$

- Recipe : determine $\varepsilon_{\mathrm{nk}}$ on a grid of k-points in the BZ using a non self-consistent procedure (iscf -3).
- The δ-function is approximated by smeared-out function (typically a Gaussian) with a width σ (prtdos 1).
- Very fine grid of k-points needed to get sharp features accurately. For faster convergence, use tetrahedron method to interpolate between k-points (prtdos 2).

Example: SiO_{2}-quartz

DOS

Summary

- Plane waves basis set
- Brillouin zone integration
- PW need pseudopotentials
- Easy computation of forces

$$
\psi_{\mathbf{k}}(\mathbf{r})=\left(N \Omega_{0}\right)^{-1 / 2} \sum_{\mathbf{G}} \mathrm{u}_{\mathbf{k}}(\mathbf{G}) \mathrm{e}^{\mathrm{i}(\mathbf{k}+\mathbf{G}) \mathbf{r}}
$$

=> relaxation of geometry, or molecular dynamics

Beyond the basics

Documentation : central ABINIT doc

Web site https: //docs.abinit.org Based on markdown+mkdocs
> User's guide + Installations notes
$>$ List of topics, input variables, tutorial (>30 lessons)
$>$ Theory documents including bibliography
$\gg 1000$ example input files + reference output (from test set)

Documentation : abipy galleries

Web site

> Plot gallery
> Flow gallery
https://github.com/abinit/abipy
http://abinit.github.io/abipy/gallery/index.html
http://abinit.github.io/abipy/flow_gallery/index.html

MgB2 Fermi surface

Gruneisen parameters

Dielectric function with LFE

Joint Density of States

Eliashberg function

Bands + DOS

Band structure plot

Projected phonon DOS

Flow to analyze the convergence of phonons in metals wrt ngkpt and tsmear

GOWO Flow with convergence study wrt nband

Sherbrooke, May 28-29, 2018

Documentation : abipy galleries

MgB2 Fermi surface

Gruneisen parameters

Dielectric function with LFE

Eliashberg function

Bands + DOS

Band structure plot

Projected phonon DOS

Documentation : abipy galleries

Flow to analyze the convergence of phonons in metals wrt ngkpt and tsmear

Optic Flow
GOWO Flow with
convergence study wrt nband

Documentation : abitutorials

Web site https://github.com/abinit/abitutorials
> Jupyter notebook : very fast execution of tutorial, so student can grap the whole story, then come back to details later

- Easier if familiarized with python
> Recent, 7 lessons available

Abinit + AbiPy Lessons

- The H_{2} molecule
- Crystalline silicon
- Phonons, dielectric tensor and Born effective charges from DFPT
- $G_{0} W_{0}$ band structure
- Bethe-Salpeter equation and excitonic effects
- E-PH self-energy and T-dependent band structures
- Phonon linewidths and Eliashberg function of AI

