Introduction to the features of the FlapwMBPT code

Andrey L. Kutepov Brookhaven National Lab, Upton, NY

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences as a part of the Computational Materials Science Program.

Plan

- Brief theory for the methods included in FlapwMBPT code
- General information about FlapwMBPT code
- How different methods are combined in one code
- DFT related features
- Hartree-Fock/Hybrids related features
- GW related features
- Diagrammatic approaches beyond GW approximation
- Examples of the calculations
- Hands on training

DFT

Hartree-Fock (Hybrids)

Vertex corrected GW

Hedin's equations (PR 139, A796 (1965))

$$\Gamma^{\alpha}(123) = \delta(12)\delta(13) + \sum_{\beta} \frac{\delta\Sigma^{\alpha}(12)}{\delta G^{\beta}(45)} G^{\beta}(46)\Gamma^{\beta}(673)G^{\beta}(75)$$

$$P(12) = \sum_{\alpha} G^{\alpha}(13)\Gamma^{\alpha}(342)G^{\alpha}(41)$$

$$+\sum_{\beta} \frac{\delta \Sigma^{\alpha}(12)}{\delta G^{\beta}(45)} G^{\beta}(46) \Gamma^{\beta}(673) G^{\beta}(75)$$

$$P(12) = \sum_{\alpha} G^{\alpha}(13)\Gamma^{\alpha}(342)G^{\alpha}(41)$$

W(12) = V(12) + V(13)P(34)W(42)

 $\Sigma^{\alpha}(12) = -G^{\alpha}(14)\Gamma^{\alpha}(425)W(51)$

$$2) = \sum G^{\alpha}(13)\Gamma^{\alpha}(342)G^{\alpha}(41)$$

 $G^{\alpha}(12) = G^{\alpha}_{0}(12) + G^{\alpha}_{0}(13)\Sigma^{\alpha}(34)G^{\alpha}(42)$

Approximations for the vertex

General information about FlapwMBPT

- Solid or electron gas (this talk is about solids only)
- Flexible FLAPW+LO all-electron basis set
- Non-relativistic, scalar-relativistic, or Dirac fully relativistic treatment of relativity
- Spin-polarized calculations
- MPI for parallelization
- Strictly one language (Fortran90) is used

How different methods are combined in one code

Summary of DFT related features

- Different functionals LDA, GGA91, GGA96 (PBE)
- Can be used to generate "physical" W for subsequent GW or ${\rm GW}\Gamma$

Properties available in DFT part

- Total energy: E(V), V0, B0, frozen phonons
- Atomic forces
- Susceptibilities (charge, longitudinal and transverse spin)
- One-electron spectra
- DOS, PDOS, k-resolved DOS
- Bands plotting

Summary of Hartree-Fock related features

• Hartree-Fock or Hybrids (*PBE0*, *YS* – *PBE0*)

```
(JCP 105, 9982(1996), PRB 83, 235118(2011))
```

- Can be used to generate "physical" W for subsequent GW or GWΓ
 Properties available in Hartree-Fock part
- Total energy
- One-electron spectra
- DOS, PDOS, k-resolved DOS

Summary of GW related features

- One shot GoWo or GoWphys with Go, Wo (Wphys) from DFT, Hartree-Fock, or Hybrid
- Partially sc GWo or GWphys with Wo (Wphys) from DFT, Hartree-Fock, or Hybrid
- Fully self-consistent GW
- QSGW or partial sc QSGW₀ or QSGW_{phys}
- Fully scGW can be used to generate "physical" W for subsequent GW Γ

Properties available in GW part

- Spectral functions (total, partial, k-resolved)
- Total energy (fully scGW)
- Susceptibilities

Diagrammatic approaches beyond GW

- One shot G0W0Γ1 or G0WphysΓ1 with G0, W0 (Wphys) from DFT, Hartree-Fock, Hybrid, or scGW
- Partially sc GW0Γ or GWphysΓ with W0 (Wphys) from DFT, Hartree-Fock, Hybrid, or scGW
- Fully self-consistent GWΓ, different approaches for Γ, see PRB 94, 155101 (2016)
- Ψ-functional based scheme can be used to generate "physical" W for subsequent BSE-based scheme
 Properties available in GMC part

Properties available in GW Γ part

- Spectral functions (total, partial, k-resolved)
- Total energy (Ψ-functional based schemes)
- Susceptibilities

E(V) for Si (sp material)

E(V) for V (3d transition metal)

E(V) for Pu (5f material)

Na: Dynamical Structure Factor

Na: Plasmon Dispersion

Plasmon Dispersion along ΓN line

Experimental data: PRB 84, 075109(2011)

Band plotting: FeSb2 (Orthorhombic) (role of SOI)

Band gaps: PBE and YS-PBE0 versus one shot GW

Band gaps: different flavors of scGW

scGW for 3d metals: ground state properties

LDA	
GGA	
RPA	<u> </u>
scGW	
Exp.	
-	

LDA, scGW:

J. Phys.: Condens. Matter 29 (2017) 465503

GGA, RPA and Exp. Data: PRB 87, 214102 (2013)

Self consistent GWΓ: Band gaps

Convergence with respect to the basis size (Si)

Convergence of the ladder sums

Future plans

- Charge and spin susceptibilities based on hybrid functionals
- BSE for optics (based on DFT or HF (Hybrids))
- Magnetic susceptibilities in fully relativistic (Dirac equation) approach
- Linear response for phonons, electron-phonon interaction (DFT)

Hands on training (Plan)

- Basic DFT run (bands, DOS, total energy) Si
- Spin polarized calculation Fe
- Dirac relativistic example δ -Pu
- Charge susceptibility Na
- Hybrid use LiF
- PBE+G0W0 LiF
- QSGW LiF
- scGW LiF
- PBE+scGWphys LiF
- $scGW\Gamma LiF$
- Details about the variables in input file /soft/public_soft/FlapwMBPT/FlapwMBPT_Input.pdf

How to run the code

- go to /soft/public_soft/FlapwMBPT directory
- copy ./EXAMPLES in your directory
- module load apw/2018
- In order to run the code, go in any of the subdirectories and perform:
- sbatch sub.sh
- The results will go in the same subdirectory. There are also precalculated ./TEST subdirectories for comparison

Basic DFT run - Si

- TEXT *** band structure calculation of Si ***
- CONTROL iter_dft 10 iter_hf 0 iter_gw 0 iter_qp 0

iter_psi 0 iter_bsp 0

restart_begin 0 restart_end 0

admix 0.4 adspin 0.7 adm_gw 0.6 acc_it_gw 0.8

- iexch 205 scal_spin 1.0 psi_fncl_use 1
- nproc_tau 1 nproc_k 1 nproc_pbr 1
- irel 0 clight 274.074 rel_interst F

temperature 300.0

FILES

allfile 'si'

SYM symgen 'I:T(0.25,0.25)_R4Z:T(0.25,0.25)_R3D_' STRUCTURE par 10.26122 nsort 1 istruc 3

b_a 1.0 c_a 1.0

- a '0.0,0.5,0.5'
- b '0.5,0.0,0.5'
- c '0.5,0.5,0.0'
- tau '0.0,0.0,0.0'
- REAL SPACE MESHES mdiv 20 20 20

nrdiv 12 12 12

nrdiv_red 4 4 4

BASIS cut_gw_ratio 0.7 cut_vrt_ratio 1.0

eps_pb 0.001 eps_pb_vrt 0.005

ZONES nbndf 0 nbndf_bnd 0 0

BND_PLOT n_k_div 12

- DOS emindos -0.3 emaxdos 0.3 ndos 300
- e_small 0.005 e_small_bos 0.001
- K_POINT ndiv 8 8 8 metal F k_line 111

ndiv_c 1 1 1

k_integral FD n_k_int 1 1 1

MULTI_SCF vv0 1.0

- MAGNET b_extval 0.0 iter_h_ext 00000
- b_ext 0.0 0.0 1.0

COULOMB eps_coul 0.0001

- W w_sc_gw scf w_sc_qp scf w_sc_psi scf w_sc_bsp scf
- HARTREE-FOCK alpha_hbr 0.25 omega_hse 0.165 hybrid_type 0
- VERTEX_P psi_p 60000 bse_kernel_p 6000
- iter_ladder_p 1 nu_w_stat 0
- VERTEX_S psi_sig 60000 psi2_sig 60000
- iter_sigma_gwg 1
- VERTEX_XI iter_ladder_xi 0 q_suscept 2
- chi_cmp 000 vrt_x_appr 000
- nrax_chi 100 freq_chi 1.0
- theta bse GW0
- OPTICS opt_mode 000000 opt_loc_fld F
- TAU MESH n_tau 46 exp_tau_gw 6.0
- OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6
- omega_geom 200.0 omega_max 900.0
- NU MESH n_nu_exa 10 n_nu_geom 30 n_nu_asy 6
- nu_geom 100.0 nu_max 400.0
- HEG rs -4.0 k_inf 5.0 n_k_heg 50
- ATOMIC DATE ------
- txtel Si z 14.0 magn_shift 0.0
- smt 2.1 h 1.d-7 nrad 900
- Imb 4 Impb 4
- lim_pb_mt 12 10 10 10 10 10 10
- lim pb mt red 6 4 4 2 2 0 0
- ntle 3 3 1 1 1 1 1
- I augm atocc ptnl corr idmd
- 0 LOC 2.0 2.9 N 0
- 0 APW 2.0 3.9 N 0
- 0 LOC 0.0 4.9 N 1
- 1 LOC 6.0 2.9 N 0
- 1 APW 2.0 3.9 N 0
- 1 LOC 0.0 4.9 N 1
- 2 APW 0.0 3.9 N 0
- 3 APW 0.0 4.9 N 0
- 4 APW 0.0 5.9 N 0

Basic DFT – output files

- **out** monitoring total energy/density convergence
- **si.out** general output (basis set sizes, timings,...)
- si_dft.dos DOS
- si_dn_dft.dosk k-resolved DOS
- siSi____sum_dft.pdos PDOS
- **si_dft_band_LAPW.dat** data file for band plotting
- **si_dft_band_LAPW.gnu** GNUPLOT file for band plotting

Spin polarized case - Fe

TEXT *** band structure calculation of bcc Fe *** CONTROL iter_dft 17 iter_hf 0 iter_gw 0 iter_qp 0 iter psi 0 iter_bsp 0 restart begin 0 restart end 0 admix 0.2 adspin 0.7 adm gw 0.15 acc it gw 0.2 iexch 5 scal spin 1.0 psi fncl use 0 nproc_tau 1 nproc_k 2 nproc_pbr 1 irel 1 clight 274.074 rel_interst F temperature 300.00 FILES allfile 'fe' SYM symgen 'I R3D R4Z ' STRUCTURE par 5.417731 nsort 1 istruc 2 b_a 1.0 c_a 1.0 a '-0.5,0.5,0.5' b '0.5,-0.5,0.5' c '0.5,0.5,-0.5' tau '0.0,0.0,0.0' REAL SPACE MESHES mdiv 16 16 16 nrdiv 10 10 10 nrdiv_red 6 6 6 BASIS cut_gw_ratio 0.6 cut_vrt_ratio 1.0 eps pb 0.001 eps pb vrt 0.01 ZONES nbndf 30 nbndf bnd 00 BND PLOT n k div 12 DOS emindos -0.5 emaxdos 0.5 ndos 400 e_small 0.008 e_small_bos 0.0001 K_POINT ndiv 8 8 8 metal T k_line 110 ndiv_c 1 1 1 k integral FD n k int 1 1 1 MULTI SCF vv0 1.0 MAGNET b_extval 0.0 iter_h_ext 10000 b_ext 0.0 0.0 1.0 COULOMB eps_coul 0.001

W w_sc_gw scf w_sc_qp scf w_sc_psi scf w_sc_bsp scf HARTREE-FOCK alpha_hbr 0.25 omega_hse 0.165 hybrid_type 0 VERTEX_P psi_p 60000 bse_kernel_p 6000 iter ladder p1nu w stat0 VERTEX S psi sig 20000 psi2 sig 60000 iter sigma gwg 1 VERTEX_XI iter_ladder_xi 0 q_suscept 3 chi_cmp 000 vrt_x_appr 000 nrax_chi 330 freq_chi 0.1 theta bse GW OPTICS opt mode 000000 opt loc fld F TAU MESH n tau 46 exp tau gw 4.0 OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6 omega geom 100.0 omega max 600.0 NU MESH n_nu_exa 10 n_nu_geom 30 n_nu_asy 6 nu geom 100.0 nu max 400.0 HEG rs -4.0 k inf 5.0 n k heg 50 ATOMIC DATE ----txtel Fe z 26.0 magn shift 0.5 smt 2.0 h 1.d-7 nrad 800 Imb 4 Impb 6 lim_pb_mt 22 22 22 22 20 20 20 lim pb mt red 12332200 ntle 3 3 2 1 1 1 1 1 1 1 1 1 I augm atocc ptnl corr idmd 0 LOC 2.0 3.9 N 0 0 APW 2.0 4.9 N 0 0 LOC 0.0 5.9 N 1 1 LOC 6.0 3.9 N 0 1 APW 0.0 4.9 N 0 1 LOC 0.0 5.9 N 1 2 APW 6.0 3.9 N 0 2 LOC 0.0 4.9 N 1 3 APW 0.0 4.9 N 0

4 APW 0.0 5.9 N 0

Spin-polarized Fe – output files

- **out** monitoring total energy/density convergence
- **fe.out** general output (basis set sizes, timings,...)
- fe_dft.dos DOS
- fe_dn_dft.dosk k-resolved DOS (spin down)
- fe_up_dft.dosk k-resolved DOS (spin up)
- feFe___sum_dft.pdos PDOS
- fe_dft_band_LAPW.dat data file for band plotting
- **fe_dft_band_LAPW.gnu** GNUPLOT file for band plotting

Dirac relativistic example (δ -Pu)

TEXT *** band structure calculation of Pu (FCC) ** CONTROL iter_dft 40 iter_hf 0 iter_gw 0 iter_qp 0 iter_psi 0 iter_bsp 0 restart begin 0 restart end 0 admix 0.1 adspin 0.7 adm gw 0.2 acc it gw 0.35 iexch 205 scal spin 1.0 psi fncl use 1 nproc_tau 1 nproc_k 4 nproc_pbr 1 irel 2 clight 274.074 rel_interst T temperature 300.0 FILES allfile 'pu' SYM symgen 'I R4Z R3D ' STRUCTURE par 8.7831 nsort 1 istruc 3 b_a 1.0 c_a 1.0 a '0.0,0.5,0.5' b '0.5,0.0,0.5' c '0.5,0.5,0.0' tau '0.0,0.0,0.0' REAL SPACE MESHES mdiv 20 20 20 nrdiv 12 12 12 nrdiv_red 2 2 2 BASIS cut_gw_ratio 0.6 cut_vrt_ratio 1.0 eps pb 0.0001 eps pb vrt 0.01 ZONES nbndf 0 nbndf bnd 0 0 BND PLOT n k div 10 DOS emindos -1.0 emaxdos 0.8 ndos 400 e_small 0.001 e_small_bos 0.01 K_POINT ndiv 6 6 6 metal T k_line 011 ndiv c 1 1 1 k integral FD n k int 111 MULTI SCF vv0 1.0 MAGNET b_extval 0.0 iter_h_ext 00000 b_ext 0.0 0.0 1.0 COULOMB eps_coul 0.0001

W w_sc_gw scf w_sc_qp scf w_sc_psi scf w_sc_bsp scf HARTREE-FOCK alpha_hbr 0.25 omega_hse 0.165 hybrid_type 0 VERTEX_P psi_p 66000 bse_kernel_p 6000 iter ladder p 1 nu w stat 0 VERTEX S psi sig 65000 psi2 sig 60000 iter sigma gwg 1 VERTEX_XI iter_ladder_xi 0 q_suscept 2 chi_cmp 000 vrt_x_appr 000 nrax_chi 600 freq_chi 5.0 theta bse GW0 OPTICS opt mode 000000 opt loc fld F TAU MESH n tau 46 exp tau gw 4.0 OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6 omega geom 200.0 omega max 800.0 NU MESH n_nu_exa 10 n_nu_geom 30 n_nu_asy 6 nu geom 80.0 nu max 600.0 HEG rs -4.0 k inf 5.0 n k heg 50 ATOMIC DATE ----txtel Pu z 94.0 magn shift 0.0 smt 3.1 h 1.d-8 nrad 1200 Imb 6 Impb 6 lim_pb_mt 25 22 22 20 20 20 20 10 10 lim pb mt red 5 2 2 1 1 1 1 1 1 ntle 3 3 3 2 2 1 1 1 1 1 1 I augm atocc ptnl corridmd 0 LOC 2.0 6.9 N 0 0 APW 2.0 7.9 N 0 0 LOC 0.0 8.9 N 1 1 LOC 6.0 6.9 N 0 1 APW 0.0 7.9 N 0 1 LOC 0.0 8.9 N 1 2 LOC 10.0 5.9 N 0 2 APW 0.0 6.9 N 0

.....

Fully relativistic run – output files

- **out** monitoring total energy/density convergence
- **pu.out** general output (basis set sizes, timings,...)
- pu_dft.dos DOS
- pu_dn_dft.dosk k-resolved DOS
- puPu___sum_dft.pdos PDOS
- pu_dft_band_LAPW.dat data file for band plotting
- pu_dft_band_LAPW.gnu GNUPLOT file for band plotting

Charge susceptibility example (Na)

TEXT *** band structure calculation of bcc Na CONTROL iter_dft 10 iter_hf 0 iter_gw 0 iter_qp 0 iter psi 0 iter_bsp 0 restart begin 0 restart end 0 admix 0.7 adspin 0.7 adm gw 0.5 acc it gw 0.7 iexch 5 scal spin 1.0 psi fncl use 0 nproc_tau 1 nproc_k 4 nproc_pbr 1 irel 0 clight 274.074 rel_interst F temperature 300.0 FILES allfile 'na' SYM symgen 'I R3D R4Z ' STRUCTURE par 7.9593059 nsort 1 istruc 2 b a 1.0 c a 1.0 a '-0.5,0.5,0.5' b '0.5,-0.5,0.5' c '0.5,0.5,-0.5' tau '0.0,0.0,0.0' REAL SPACE MESHES mdiv 10 10 10 nrdiv 8 8 8 nrdiv red 2 2 2 BASIS cut_gw_ratio 0.6 cut_vrt_ratio 1.0 eps pb 0.001 eps pb vrt 0.01 ZONES nbndf 16 nbndf bnd 00 BND PLOT n k div 12 DOS emindos -0.5 emaxdos 0.5 ndos 100 e_small 0.0005 e_small_bos 0.001 K_POINT ndiv 8 8 8 metal T k_line 011 ndiv c 1 1 1 k integral FD n k int 111 MULTI SCF vv0 1.0 MAGNET b_extval 0.0 iter_h_ext 00000 b_ext 0.0 0.0 1.0 COULOMB eps_coul 0.0001

W w_sc_gw scf w_sc_qp scf w_sc_psi scf w_sc_bsp scf HARTREE-FOCK alpha_hbr 0.25 omega_hse 0.165 hybrid_type 0 VERTEX_P psi_p 00000 bse_kernel_p 0000 iter ladder p 4 nu w stat 0 VERTEX S psi sig 20000 psi2 sig 60000 iter sigma gwg 2 VERTEX_XI iter_ladder_xi 0 q_suscept 15 chi_cmp 100 vrt_x_appr 001 nrax_chi 360 freq_chi 1.0 theta bse GW0 OPTICS opt mode 000000 opt loc fld F TAU MESH n tau 46 exp tau gw 4.0 OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6 omega geom 80.0 omega max 600.0 NU MESH n_nu_exa 10 n_nu_geom 30 n_nu_asy 6 nu geom 80.0 nu max 600.0 HEG rs -4.0 k inf 5.0 n k heg 50 ATOMIC DATA ----txtel Na z 11.0 magn shift 0.0 smt 3.44 h 1.d-6 nrad 600 Imb 4 Impb 4 lim_pb_mt 15 12 12 12 10 10 10 lim pb mt red 3 2 1 0 0 0 0 ntle 2 2 1 1 1 1 1 I augm atocc ptnl corr idmd 0 LOC 2.0 2.9 N 0 0 APW 1.0 3.9 N 0 1 LOC 6.0 2.9 N 0 1 APW 0.0 3.9 N 0 2 APW 0.0 3.9 N 0 3 APW 0.0 4.9 N 0 4 APW 0.0 5.9 N 0

Charge susceptibility example – output files

na_K_points – list of K-points

.

- na____00DynSTRFact.dft Dynamical Structure Factor
- na___00EPSm1.dft Inverse Dielectric function
- na____00RSP.dft Response function

Hybrid functional (LiF)

TEXT *** band structure calculation of LiF (B1) *** CONTROL iter_dft 14 iter_hf 10 iter_gw 0 iter_qp 0 iter_psi 0 iter_bsp 0 restart begin 0 restart end 0 admix 0.3 adspin 0.7 adm gw 0.3 acc it gw 0.6 iexch 205 scal spin 1.0 psi fncl use 0 nproc_tau 1 nproc_k 4 nproc_pbr 1 irel 0 clight 274.074 rel_interst F temperature 300.0 FILES allfile 'lif' SYM symgen 'I R3D R4Z ' STRUCTURE par 7.60804 nsort 2 istruc 3 b_a 1.0 c_a 1.0 a '0.0,0.5,0.5' b '0.5,0.0,0.5' c '0.5,0.5,0.0' tau '0.0,0.0,0.0' '0.5.0.5..5' REAL SPACE MESHES mdiv 12 12 12 nrdiv 10 10 10 nrdiv_red 4 4 4 BASIS cut gw ratio 0.65 cut vrt ratio 1.0 eps_pb 0.001 eps_pb_vrt 0.01 ZONES nbndf 0 nbndf bnd 0 0 BND_PLOT n_k_div 2 DOS emindos -2.0 emaxdos 2.0 ndos 600 e_small 0.005 e_small_bos 0.04 K POINT ndiv 4 4 4 metal F k line 001 ndiv c 1 1 1 k integral FD n k int 111 MULTI SCF vv0 1.0 MAGNET b_extval 0.0 iter_h_ext 00000 b ext 0.0 0.0 1.0 COULOMB eps coul 0.0001

W w_sc_gw scf w_sc_qp scf w_sc_psi scf w_sc_bsp scf HARTREE-FOCK alpha_hbr 0.25 omega_hse 0.165 hybrid_type 3 VERTEX_P psi_p 60000 bse_kernel_p 0000 iter ladder p 6 nu w stat 0 VERTEX S psi sig 60000 psi2 sig 60000 iter sigma gwg 1 VERTEX_XI iter_ladder_xi 0 q_suscept 2 chi_cmp 000 vrt_x_appr 000 nrax_chi 100 freq_chi 1.0 theta bse GW0 OPTICS opt mode 000000 opt loc fld F TAU MESH n tau 46 exp tau gw 4.0 OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6 omega geom 200.0 omega max 900.0 NU MESH n_nu_exa 10 n_nu_geom 30 n_nu_asy 6 nu geom 100.0 nu max 400.0 HEG rs -4.0 k inf 5.0 n k heg 50 ATOMIC DATE ----txtel Li z 3.0 magn shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim_pb_mt= 12 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle 2 1 1 1 1 1 1 I augm atocc ptnl corr idmd 0 LOC 2.0 1.9 N 0 txtel _F z 9.0 magn_shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim pb mt= 12 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle= 1 1 1 1 1 1 1 I augm atocc ptnl corr idmd 0 APW 2.0 2.9 N 0

Hybrid functional example – output files

lif_hf.dos – DOS for hybrid functional

.

- lif_dn_hf.dosk k-resolved DOS for hybrid
- lifLi____sum_hf.pdos hybrid functional PDOS for Li
- lif_F___sum_hf.pdos hybrid functional PDOS for F
- lif____Sigma_X_band_x.hf Exchange Self Energy
- lif__hf_x.eig hybrid functional one electron energies

PBE+GoWo (LiF)

TEXT *** band structure calculation of LiF (B1) *** CONTROL iter_dft 14 iter_hf 0 iter_gw -1 iter_qp 0 iter_psi 0 iter_bsp 0 restart begin 0 restart end 0 admix 0.3 adspin 0.7 adm gw 0.3 acc it gw 0.6 iexch 205 scal spin 1.0 psi fncl use 0 nproc_tau 4 nproc_k 1 nproc_pbr 1 irel 0 clight 274.074 rel_interst F temperature 300.0 FILES allfile 'lif' SYM symgen 'I R3D R4Z ' STRUCTURE par 7.60804 nsort 2 istruc 3 b_a 1.0 c_a 1.0 a '0.0,0.5,0.5' b '0.5,0.0,0.5' c '0.5,0.5,0.0' tau '0.0,0.0,0.0' '0.5.0.5..5' REAL SPACE MESHES mdiv 12 12 12 nrdiv 10 10 10 nrdiv_red 4 4 4 BASIS cut gw ratio 0.65 cut vrt ratio 1.0 eps_pb 0.001 eps_pb_vrt 0.01 ZONES nbndf 0 nbndf bnd 1 8 BND_PLOT n_k_div 2 DOS emindos -2.0 emaxdos 2.0 ndos 600 e_small 0.005 e_small_bos 0.04 K POINT ndiv 4 4 4 metal F k line 001 ndiv c 1 1 1 k integral FD n k int 111 MULTI SCF vv0 1.0 MAGNET b_extval 0.0 iter_h_ext 00000 b ext 0.0 0.0 1.0 COULOMB eps_coul 0.0001

W w_sc_gw scf w_sc_qp scf w_sc_psi scf w_sc_bsp scf HARTREE-FOCK alpha_hbr 0.25 omega_hse 0.165 hybrid_type 3 VERTEX_P psi_p 60000 bse_kernel_p 0000 iter ladder p 6 nu w stat 0 VERTEX S psi sig 60000 psi2 sig 60000 iter sigma gwg 1 VERTEX_XI iter_ladder_xi 0 q_suscept 2 chi_cmp 000 vrt_x_appr 000 nrax_chi 100 freq_chi 1.0 theta bse GW0 OPTICS opt mode 000000 opt loc fld F TAU MESH n tau 46 exp tau gw 4.0 OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6 omega geom 200.0 omega max 900.0 NU MESH n_nu_exa 10 n_nu_geom 30 n_nu_asy 6 nu geom 100.0 nu max 400.0 HEG rs -4.0 k inf 5.0 n k heg 50 ATOMIC DATE ----txtel Li z 3.0 magn shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim_pb_mt= 12 10 10 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle 2 1 1 1 1 1 1 I augm atocc ptnl corr idmd 0 LOC 2.0 1.9 N 0 txtel _F z 9.0 magn_shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim pb mt= 12 10 10 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle= 1 1 1 1 1 1 1 I augm atocc ptnl corr idmd 0 APW 2.0 2.9 N 0

GoWo example – output files

- lif_Nu_Q____P_Re.gw P as a function of Matsubara freq-cy
- lif_dn_gw.dosk k-resolved DOS for G₀W₀
 lifLi___sum_gw.pdos G₀W₀ PDOS for Li
- lif_F___sum_gw.pdos GoWo PDOS for F
- lif_mbpt.eig list of G₀W₀ one electron energies and self energy components

QSGW (LiF)

TEXT *** band structure calculation of LiF (B1) *** CONTROL iter_dft 14 iter_hf 0 iter_gw 0 iter_qp 10 iter_psi 0 iter_bsp 0 restart begin 0 restart end 0 admix 0.3 adspin 0.7 adm gw 0.3 acc it gw 0.6 iexch 205 scal spin 1.0 psi fncl use 0 nproc_tau 4 nproc_k 1 nproc_pbr 1 irel 0 clight 274.074 rel_interst F temperature 300.0 FILES allfile 'lif' SYM symgen 'I R3D R4Z ' STRUCTURE par 7.60804 nsort 2 istruc 3 b_a 1.0 c_a 1.0 a '0.0,0.5,0.5' b '0.5,0.0,0.5' c '0.5,0.5,0.0' tau '0.0,0.0,0.0' '0.5.0.5..5' REAL SPACE MESHES mdiv 12 12 12 nrdiv 10 10 10 nrdiv_red 4 4 4 BASIS cut gw ratio 0.65 cut vrt ratio 1.0 eps_pb 0.001 eps_pb_vrt 0.01 ZONES nbndf 0 nbndf_bnd 0 0 BND_PLOT n_k_div 2 DOS emindos -2.0 emaxdos 2.0 ndos 600 e_small 0.005 e_small_bos 0.04 K POINT ndiv 4 4 4 metal F k line 001 ndiv c 1 1 1 k_integral FD n_k_int 1 1 1 MULTI SCF vv0 1.0 MAGNET b_extval 0.0 iter_h_ext 00000 b ext 0.0 0.0 1.0 COULOMB eps coul 0.0001

W w_sc_gw scf w_sc_qp scf w_sc_psi scf w_sc_bsp scf HARTREE-FOCK alpha_hbr 0.25 omega_hse 0.165 hybrid_type 0 VERTEX_P psi_p 60000 bse_kernel_p 0000 iter_ladder_p 6 nu_w_stat 0 VERTEX S psi sig 60000 psi2 sig 60000 iter sigma gwg 1 VERTEX_XI iter_ladder_xi 0 q_suscept 2 chi_cmp 000 vrt_x_appr 000 nrax_chi 100 freq_chi 1.0 theta bse GW0 OPTICS opt_mode 000000 opt_loc_fld F TAU MESH n tau 46 exp tau gw 4.0 OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6 omega_geom 200.0 omega_max 900.0 NU MESH n_nu_exa 10 n_nu_geom 30 n_nu_asy 6 nu geom 100.0 nu max 400.0 HEG rs -4.0 k inf 5.0 n k heg 50 ATOMIC DATE ----txtel Li z 3.0 magn shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim_pb_mt= 12 10 10 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle 4 3 2 2 1 1 1 I augm atocc ptnl corr idmd 0 LOC 2.0 1.9 N 0 txtel _F z 9.0 magn_shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim pb mt= 12 10 10 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle= 3 3 2 2 1 1 1 I augm atocc ptnl corr idmd 0 APW 2.0 2.9 N 0

QSGW example – output files

- •
- lif_qp.dos DOS for QSGW
- lif_dn_qp.dosk k-resolved DOS for QSGW
- lifLi___sum_qp.pdos QSGW PDOS for Li
- lif_F___sum_qp.pdos QSGW PDOS for F
- lif_Nu_Q____P_Re.qp P as a function of Matsubara freq-cy
- lif_Im_sigc_w_band_k.qp Im part of Sigma_corr
- lif_Re_sigc_w_band_k.qp Re part of Sigma_corr
- lif__qp_x.eig QSGW one electron energies
- lif_Z_factor_band_k_x.qp Renorm Z-factor

scGW (LiF)

TEXT *** band structure calculation of LiF (B1) *** CONTROL iter_dft 14 iter_hf 0 iter_gw 10 iter_qp 10 iter_psi 0 iter_bsp 0 restart begin 0 restart end 0 admix 0.3 adspin 0.7 adm gw 0.3 acc it gw 0.6 iexch 205 scal spin 1.0 psi fncl use 0 nproc_tau 4 nproc_k 1 nproc_pbr 1 irel 0 clight 274.074 rel_interst F temperature 300.0 FILES allfile 'lif' SYM symgen 'I R3D R4Z ' STRUCTURE par 7.60804 nsort 2 istruc 3 b_a 1.0 c_a 1.0 a '0.0,0.5,0.5' b '0.5,0.0,0.5' c '0.5,0.5,0.0' tau '0.0,0.0,0.0' '0.5.0.5..5' REAL SPACE MESHES mdiv 12 12 12 nrdiv 10 10 10 nrdiv_red 4 4 4 BASIS cut gw ratio 0.65 cut vrt ratio 1.0 eps_pb 0.001 eps_pb_vrt 0.01 ZONES nbndf 0 nbndf bnd 0 0 BND_PLOT n_k_div 2 DOS emindos -2.0 emaxdos 2.0 ndos 600 e_small 0.005 e_small_bos 0.04 K POINT ndiv 4 4 4 metal F k line 001 ndiv c 1 1 1 k integral FD n k int 111 MULTI SCF vv0 1.0 MAGNET b_extval 0.0 iter_h_ext 00000 b ext 0.0 0.0 1.0 COULOMB eps_coul 0.0001

W w_sc_gw scf w_sc_qp scf w_sc_psi scf w_sc_bsp scf HARTREE-FOCK alpha_hbr 0.25 omega_hse 0.165 hybrid_type 0 VERTEX_P psi_p 60000 bse_kernel_p 0000 iter_ladder_p 6 nu_w_stat 0 VERTEX S psi sig 60000 psi2 sig 60000 iter sigma gwg 1 VERTEX_XI iter_ladder_xi 0 q_suscept 2 chi_cmp 000 vrt_x_appr 000 nrax_chi 100 freq_chi 1.0 theta bse GW0 OPTICS opt_mode 000000 opt_loc_fld F TAU MESH n tau 46 exp tau gw 4.0 OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6 omega_geom 200.0 omega_max 900.0 NU MESH n_nu_exa 10 n_nu_geom 30 n_nu_asy 6 nu geom 100.0 nu max 400.0 HEG rs -4.0 k inf 5.0 n k heg 50 ATOMIC DATE ----txtel Li z 3.0 magn shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim_pb_mt= 12 10 10 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle 4 3 2 2 1 1 1 I augm atocc ptnl corr idmd 0 LOC 2.0 1.9 N 0 txtel _F z 9.0 magn_shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim pb mt= 12 10 10 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle= 3 3 2 2 1 1 1 I augm atocc ptnl corr idmd 0 APW 2.0 2.9 N 0

scGW example – output files

- lif_gw.dos Spectral function (SF) for scGW
- lif_dn_gw.dosk k-resolved SF for scGW

.

- lifLi__Chain_gw.pdos scGW PSF for Li
- lif_F__Chain_gw.pdos scGW PSF for F
- lif_Nu_Q____P_Re.gw P as a function of Matsubara freq-cy
- lif_Im_sigc_w_band_k.gw Im part of Sigma_corr
- lif_Re_sigc_w_band_k.gw Re part of Sigma_corr
 lif_Z_factor_band_k_x.gw Renorm Z-factor

PBE+scGWphys (LiF)

TEXT *** band structure calculation of LiF (B1) *** CONTROL iter_dft 14 iter_hf 0 iter_gw 10 iter_qp 10 iter psi 0 iter_bsp 0 restart begin 0 restart end 0 admix 0.3 adspin 0.7 adm gw 0.3 acc it gw 0.6 iexch 205 scal spin 1.0 psi fncl use 0 nproc_tau 4 nproc_k 1 nproc_pbr 1 irel 0 clight 274.074 rel_interst F temperature 300.0 FILES allfile 'lif' SYM symgen 'I R3D R4Z ' STRUCTURE par 7.60804 nsort 2 istruc 3 b_a 1.0 c_a 1.0 a '0.0,0.5,0.5' b '0.5,0.0,0.5' c '0.5,0.5,0.0' tau '0.0,0.0,0.0' '0.5.0.5..5' REAL SPACE MESHES mdiv 12 12 12 nrdiv 10 10 10 nrdiv_red 4 4 4 BASIS cut gw ratio 0.65 cut vrt ratio 1.0 eps_pb 0.001 eps_pb_vrt 0.01 ZONES nbndf 0 nbndf bnd 0 0 BND_PLOT n_k_div 2 DOS emindos -2.0 emaxdos 2.0 ndos 600 e_small 0.005 e_small_bos 0.04 K POINT ndiv 4 4 4 metal F k line 001 ndiv c 1 1 1 k integral FD n k int 111 MULTI SCF vv0 1.0 MAGNET b_extval 0.0 iter_h_ext 00000 b ext 0.0 0.0 1.0 COULOMB eps_coul 0.0001

W w_sc_gw non w_sc_qp scf w_sc_psi scf w_sc_bsp scf HARTREE-FOCK alpha hbr 0.25 omega hse 0.165 hybrid type 0 VERTEX P psi p 60000 bse kernel p 6000 iter ladder p 6 nu w stat 0 VERTEX_S psi_sig 60000 psi2_sig 60000 iter_sigma_gwg 1 VERTEX_XI iter_ladder_xi 0 q_suscept 2 chi_cmp 000 vrt_x_appr 000 nrax chi 100 freg chi 1.0 theta bse GW0 OPTICS opt mode 000000 opt loc fld F TAU MESH n_tau 46 exp_tau_gw 4.0 OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6 omega geom 200.0 omega max 900.0 NU MESH n nu exa 10 n nu geom 30 n nu asy 6 nu geom 100.0 nu max 400.0 HEG rs -4.0 k_inf 5.0 n_k_heg 50 ATOMIC DATE ----txtel Li z 3.0 magn_shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim pb mt= 12 10 10 10 10 10 10 lim_pb_mt_red 6 4 4 3 3 0 0 ntle 4 3 2 2 1 1 1 I augm atocc ptnl corr idmd 0 LOC 2.0 1.9 N 0 txtel F z 9.0 magn shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim_pb_mt= 12 10 10 10 10 10 10 lim_pb_mt_red 6 4 4 3 3 0 0 ntle= 3 3 2 2 1 1 1 I augm atocc ptnl corr idmd 0 APW 2.0 2.9 N 0

PBE+scGW_{phys} example – output files

- Similar to scGW output:
- lif_gw.dos Spectral function (SF)
- lif_dn_gw.dosk k-resolved SF
- lifLi__Chain_gw.pdos PSF for Li
- lif_F__Chain_gw.pdos PSF for F
- lif_Nu_Q____P_Re.gw P as a function of Matsubara freq-cy
- lif_Im_sigc_w_band_k.gw Im part of Sigma_corr
- lif_Re_sigc_w_band_k.gw Re part of Sigma_corr
 lif_Z_factor_band_k_x.gw Renorm Z-factor

scGWT (LiF)

TEXT *** band structure calculation of LiF (B1) *** CONTROL iter_dft 14 iter_hf 0 iter_gw 2 iter_qp 0 iter_psi 10 iter_bsp 0 restart begin 0 restart end 0 admix 0.3 adspin 0.7 adm gw 0.3 acc it gw 0.6 iexch 205 scal spin 1.0 psi fncl use 0 nproc_tau 4 nproc_k 1 nproc_pbr 1 irel 0 clight 274.074 rel_interst F temperature 300.0 FILES allfile 'lif' SYM symgen 'I R3D R4Z ' STRUCTURE par 7.60804 nsort 2 istruc 3 b_a 1.0 c_a 1.0 a '0.0,0.5,0.5' b '0.5,0.0,0.5' c '0.5,0.5,0.0' tau '0.0,0.0,0.0' '0.5.0.5..5' REAL SPACE MESHES mdiv 12 12 12 nrdiv 10 10 10 nrdiv_red 4 4 4 BASIS cut gw ratio 0.65 cut vrt ratio 1.0 eps_pb 0.001 eps_pb_vrt 0.01 ZONES nbndf 0 nbndf bnd 1 10 BND_PLOT n_k_div 2 DOS emindos -2.0 emaxdos 2.0 ndos 600 e_small 0.005 e_small_bos 0.04 K POINT ndiv 4 4 4 metal F k line 001 ndiv c 2 2 2 k integral FD n k int 111 MULTI SCF vv0 1.0 MAGNET b_extval 0.0 iter_h_ext 00000 b ext 0.0 0.0 1.0 COULOMB eps_coul 0.0001

W w_sc_gw scf w_sc_qp scf w_sc_psi scf w_sc_bsp scf HARTREE-FOCK alpha_hbr 0.25 omega_hse 0.165 hybrid_type 0 VERTEX_P psi_p 60000 bse_kernel_p 0000 iter_ladder_p 6 nu_w_stat 0 VERTEX S psi sig 60000 psi2 sig 60000 iter sigma gwg 1 VERTEX_XI iter_ladder_xi 0 q_suscept 2 chi_cmp 000 vrt_x_appr 000 nrax_chi 100 freq_chi 1.0 theta bse GW0 OPTICS opt_mode 000000 opt_loc_fld F TAU MESH n tau 46 exp tau gw 4.0 OMEGA MESH n_omega_exa 10 n_omega_geom 30 n_omega_asy 6 omega_geom 200.0 omega_max 900.0 NU MESH n_nu_exa 10 n_nu_geom 30 n_nu_asy 6 nu geom 100.0 nu max 400.0 HEG rs -4.0 k inf 5.0 n k heg 50 ATOMIC DATE ----txtel Li z 3.0 magn shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim_pb_mt= 12 10 10 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle 4 3 2 2 1 1 1 I augm atocc ptnl corr idmd 0 LOC 2.0 1.9 N 0 txtel _F z 9.0 magn_shift 0.0 smt 1.8 h 1.d-6 nrad 600 Imb 4 Impb 4 lim pb mt= 12 10 10 10 10 10 10 lim pb mt red 6 4 4 3 3 0 0 ntle= 3 3 2 2 1 1 1 I augm atocc ptnl corr idmd 0 APW 2.0 2.9 N 0

$scGW\Gamma$ example – output files

- **lif_gwg.dos** Spectral function (SF) for scGW Γ
- **lif_dn_gwg.dosk** k-resolved SF for scGW Γ

.

- **lifLi__Chain_gwg.pdos** scGW Γ PSF for Li
- **lif_F__Chain_gwg.pdos** $scGW\Gamma$ PSF for F
- lif_Nu_Q____P_Re.gwg P as a function of Matsubara freq-cy
- lif_Im_sigc_w_band_k.gwg Im part of Sigma_corr
- lif_Re_sigc_w_band_k.gwg Re part of Sigma_corr
 lif_Z_factor_band_k_x.gwg Renorm Z-factor

Getting the source

In order to obtain the latest version of the code:

Contact Andrey Kutepov (<u>akutepov@bnl.gov</u>)

Brief description of your plans on using the code would be very helpful.

In case you are using it, the reports on any bugs and problems would be very helpful too.