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I. INTRODUCTION

The low-energy properties of correlated materials are often characterized by competing

interactions, which lead to rich phase diagrams and large responses to changes in pres-

sure, doping or external fields. Many of these effects cannot be explained by perturbative

approaches, and a direct numerical simulation of the relevant lattice models is often not

possible, which makes a theoretical understanding very challenging. A relatively recent ex-

perimental trend is to explore the nonequilibrium properties of such materials. By driving

the system out of equilibrium, one can hope to disentangle competing effects with differ-

ent intrinsic time-scales, and thus shed new light on complicated, intertwined correlation

phenomena.1 An even more exciting prospect is the possibility to “tune” material proper-

ties by external driving,2 or the discovery of “hidden states” of correlated materials, which

cannot be accessed via thermal pathways.3

Stimulated by these experimental developments, a growing theoretical effort is focusing

on the simulation of the nonequilibrium dynamics in correlated lattice systems. Here, we

discuss one of the most promising approaches – the nonequilibrium generalization of dynam-

ical mean field theory (DMFT).4,5 This method, which is formulated in the thermodynamic

limit, simplifies the computational task by mapping the lattice problem to a self-consistent

solution of a quantum impurity model. If a suitable “impurity solver” is used, it can treat

local interactions of arbitrary strength, highly excited states, as well as the eventual ther-

malization of the system after a perturbation. We will start by explaining the main ideas

and approximations behind the well-established equilibrium DMFT formalism,6 and then

show how it can be extended to situations in which an equilibrium system at time t = 0

is perturbed either by a time-dependent change in an interaction parameter, or by a time-
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FIG. 1: Left panels: Mapping of the classical Ising model to an effective single-site model (spin in

an external magnetic field). Right panels: Mapping of the Hubbard model to an effective single-site

model (one correlated site in an uncorrelated bath).

dependent electric field. We illustrate the nonequilibrium DMFT method with two results

for the one-band Hubbard model: (i) the dynamical band narrowing or band inversion in-

duced by periodic electric fields, and (ii) the influence of nonthermal fixed points on the

relaxation dynamics in quenched antiferromagnets.

II. DYNAMICAL MEAN-FIELD THEORY

A. Single-site effective model

To motivate the basic strategy behind the DMFT approach, and to appreciate the nature

of the approximation, we first recall the static mean-field theory for the classical Ising model,

illustrated in the left-hand panels of Fig. 1. There, we have a lattice of interacting Ising

spins with interaction J between nearest-neighbor spins. In the mean-field approximation,

we focus on one particular spin, s0, and replace the remaining degrees of freedom by an

effective external magnetic field heff = zmJ , where z is the coordination number and m is
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the magnetization per site. The lattice model

H Ising = −J
∑

〈ij〉
sisj (1)

thus maps to the single-site effective model

H Ising
eff = −heffs0. (2)

For this model, the magnetization at inverse temperature β = 1/T is

meff = tanh(βheff). (3)

If we identify the magnetization m of the lattice model with the magnetization meff of the

single-site effective model, we obtain the self-consistency condition

m ≡ meff = tanh(βzJm), (4)

which implicitly determines the mean field heff. One can find the self-consistent solution by

iteration.

We now turn to the generic model for correlated electron materials, the Hubbard model,

and apply the same strategy.6 For simplicity, we consider a one-band Hubbard model

HHubbard = −v
∑

〈ij〉σ
(d†iσdjσ + d†jσdiσ) + U

∑

i

ni↑ni↓ − µ
∑

iσ

niσ, (5)

which describes electrons hopping between nearest neighbor sites of some lattice with am-

plitude v. Two electrons on the same site interact with a repulsive energy U . We added a

chemical potential term because we will work in the grand canonical ensemble. The nonin-

teracting dispersion ǫk is obtained as the Fourier transform of the the hopping matrix. For

example, in the case of a one-dimensional lattice with lattice spacing a, ǫk = −2v cos(ka).

Inspired by the Weiss molecular-field strategy, we focus on one particular site of the lattice

(black dot in the right hand panels of Fig. 1) and replace the remaining degrees of freedom

of the model by a bath of non-interacting levels and a hybridization term that connects the

interacting site to the bath. The effective single-site problem thus becomes an Anderson

impurity model,

Himp =
∑

pσ

εpc
†
pσcpσ +

∑

pσ

(Vpσd
†
σcpσ + V ∗

pσc
†
pσdσ) + Un↑n↓ − µ(n↑ + n↓). (6)
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Here, the d† create electrons on the impurity (black dot), nσ = d†σdσ, and the c†p create

electrons in bath states (empty dots) labeled by a quantum number p. In this effective

single-site model, hoppings from the impurity into the bath and back (bottom right panel of

Fig. 1) represent processes in the original model where an electron hops from the black site

into the lattice and returns to it after some excursion through the lattice (top right panel of

Fig. 1). The hybridization parameters Vp give the amplitudes for such transitions.

Our task now is to optimize the parameters εp and Vp such that the bath of the Anderson

impurity model mimics the lattice environment as closely as possible. These parameters

are the analogues of heff and thus need to be adjusted self-consistently. The self-consistent

solution is constructed in such a way that the impurity Green’s function Gimp(iωn) repro-

duces the local lattice Green’s function Gloc(iωn) ≡ Gi,i(iωn). In other words, if G(k, iωn)

is the momentum-dependent lattice Green’s function of the Hubbard model, we seek bath

parameters and hybridizations such that

∫

(dk)G(k, iωn) ≡ Gimp(iωn), (7)

where
∫

(dk) denotes a normalized integral over the Brillouin zone. This self-consistency

equation is the analogue of (4).

B. Impurity action

It is often convenient to integrate out the noninteracting bath degrees of freedom and to

express the partition function of the Anderson impurity model as

Zimp = Trd
[

T e−Simp
]

, (8)

with the action Simp = Sloc + Shyb given by

Sloc =

∫ β

0

dτ
[

Un↑(τ)n↓(τ)− µ(n↑(τ) + n↓(τ))
]

, (9)

Shyb =
∑

σ

∫ β

0

dτdτ ′d†σ(τ
′)∆σ(τ

′ − τ)dσ(τ), (10)

and T the time-ordering operator. The impurity Green’s function becomes

Gimp(τ) = −〈T d(τ)d
†(0)〉Simp

= −
1

Zimp

Trd
[

T e−Simpd(τ)d†(0)
]

. (11)



5

The hybridization function ∆σ(τ
′ − τ) in Eq. (10) represents the amplitude for hopping

from the impurity into the bath at time τ and back onto the impurity at time τ ′. It is a func-

tion of the bath energies and hybridization amplitudes and is most conveniently expressed

in Matsubara frequency space [∆ (iωn) =
∫ β

0
dτ eiωnτ∆(τ) ,∆(τ) = 1

β

∑

n e
−iωnτ∆(iωn)]:

∆σ(iωn) =
∑

p

|Vpσ|
2

iωn − εp
. (12)

It is also useful to introduce the Green’s function of the non-interacting impurity (“Weiss

Green’s function”), G0, which is related to the hybridization function by

[G0σ]
−1(iωn) = iωn + µ−∆σ(iωn). (13)

∆(τ) [or equivalently G0(τ)] contains all the relevant information about the bath and thus

plays the role of the mean field. It is a dynamical mean field, because the hybridization

function [or Weiss Green’s function] depends on time or frequency.

C. DMFT approximation

We obtain the solution of Eq. (7) iteratively. However, in contrast to the Ising case (4),

it is not immediately clear how we can use this self-consistency condition to update the

dynamical mean field. To define a practical procedure, we have to relate the left-hand-side

of Eq. (7) to impurity model quantities. This step involves, as the essential approximation of

the DMFT method, a significant simplification of the momentum-dependence of the lattice

self-energy.

The self-energy describes the effect of interactions on the propagation of electrons. In the

non-interacting model, the lattice Green’s function is G0(k, iωn) = [iωn + µ− ǫk]
−1, with ǫk

the Fourier transform of the hopping matrix. The Green’s function of the interacting model

is G(k, iωn) = [iωn + µ− ǫk − Σ(k, iωn)]
−1 with Σ(k, iωn) the lattice self-energy. Therefore

Σ(k, iωn) = G−1
0 (k, iωn)−G−1(k, iωn). (14)

Similarly, we obtain the impurity self-energy as

Σimp(iωn) = G
−1
0 (iωn)−G−1

imp(iωn), (15)
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with G−1
0 defined in Eq. (13). The DMFT approximation is the identification of the lattice

self-energy with the momentum-independent impurity self-energy,

Σ(k, iωn) ≈ Σimp(iωn). (16)

This approximation enables us to rewrite the self-consistency equation (7) as

∫

(dk)[iωn + µ− ǫk − Σimp(iωn)]
−1 ≡ Gimp(iωn). (17)

Since both Gimp(iωn) and Σimp(iωn) are determined by the impurity model parameters εp

and Vp (or the function ∆(τ) or G0(τ)), Eq. (17) defines a self-consistency condition for

these parameters (or functions).

D. DMFT self-consistency loop

We now formulate the self-consistency loop for the Weiss Green’s function G0(iωn). Start-

ing from an arbitrary initial G0(iωn) (for example, the local Green’s function of the nonin-

teracting lattice model), we iterate the following steps until convergence:

1. Solve the impurity problem, that is, compute the impurity Green’s function Gimp(iωn)

for the given G0(iωn),

2. Extract the self-energy of the impurity model: Σimp(iωn) = G
−1
0 (iωn)−G−1

imp(iωn),

3. Identify the lattice self-energy with the impurity self-energy, Σ(k, iωn) = Σimp(iωn)

(DMFT approximation), and compute the local lattice Green’s function Gloc(iωn) =
∫

(dk)[iωn + µ− ǫk − Σimp(iωn)]
−1,

4. Apply the DMFT self-consistency condition, Gloc(iωn) = Gimp(iωn), and use it to

define a new Weiss Green’s function G−1
0 (iωn) = G−1

loc(iωn) + Σimp(iωn).

The computationally expensive step is the solution of the impurity problem (Step 1).

When the loop converges, the bath contains information about the topology of the lattice

(through the density of states), and about the phase (metal, Mott insulator, antiferromag-

netic insulator, . . . ). The impurity, which exchanges electrons with the bath, thus feels, at

least to some extent, as if it were a site of the lattice.
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Obviously, a single-site impurity model does not capture all the physics. In particular,

the DMFT approximation neglects all spatial fluctuations. These fluctuations are impor-

tant, for example, in low-dimensional systems. The DMFT formalism is believed to provide

a qualitatively correct description of three-dimensional unfrustrated lattice models. It be-

comes exact in the limit of infinite dimension7 or infinite coordination number (where spatial

fluctuations are negligible), in the non-interacting limit (U = 0 implies Σ = 0), and in the

atomic limit (t = 0 implies ∆ = 0).

E. Cluster extensions

To capture the effect of short-range spatial fluctuations, cluster extensions of dynamical

mean field theory were developed.8 In these extensions, a cluster of several sites, instead of

a single site, is embedded in a self-consistently determined bath. This embedding allows

to describe the short-range spatial correlations on the cluster explicitly, while treating the

longer range correlations on a mean-field level.

In a cluster DMFT, we divide the lattice into a superlattice of clusters containing nc

sites and apply the DMFT procedure to the superlattice.9 The cluster Green’s functions and

self-energies are now matrices of size nc×nc, while ǫk becomes a matrix v̂(k), defined as the

Fourier transform of the hopping matrix on the superlattice. The momenta k are those of

the reduced Brillouin zone of the superlattice.

To be more specific, let us consider a one-dimensional Hubbard chain, with lattice spacing

a, that we decompose into two-site clusters. The hopping matrix then has the form





























. . . −v

−v 0 −v

−v 0 −v

−v 0 −v

−v 0 −v

−v
. . .





























,

which after Fourier transformation on the superlattice with spacing 2a becomes
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−v̂(k) = eik0





0 v

v 0



+ eik(2a)





0 0

v 0



 + eik(−2a)





0 v

0 0





=





0 v(1 + e−i2ka)

v(1 + ei2ka) 0



 . (18)

The self-consistency condition, which fixes the 2× 2 matrix of the dynamical mean field G0

or ∆, is now
∫

reduced BZ

(dk)[(iωn + µ)Î − v̂(k)− Σ̂imp(iωn)]
−1 = Ĝimp, (19)

with the reduced Brillouin zone −π/2a ≤ k < π/2a.

As is evident from the hopping matrix (18), the cluster DMFT formalism breaks trans-

lational invariance within the cluster. There is an alternative cluster DMFT, called the

dynamical cluster approximation, which enforces this symmetry.8 The two-site DCA corre-

sponds to the hopping matrix

−v̂DCA(k) =





0 2v cos(ka)

2v cos(ka) 0



 . (20)

In the “momentum basis,” {dK=0 = 1√
2
(d1 + d2), dK=π

a
= 1√

2
(d1 − d2)}, the Green’s func-

tions and self-energies are diagonal matrices, and the self-consistency conditions for each

“momentum sector” K is
∫

sector K

(dk)[iωn + µ− ǫk − ΣK
imp(iωn)]

−1 = GK
imp, (21)

with ǫk = −2v cos(ka). In our two-site example, sector K = 0 corresponds to −π/2a ≤ k <

π/2a, while sector K = π/a corresponds to π/2a ≤ k < 3π/2a. The first Brillouin zone

thus decomposes into two sectors of equal size, centered at the reciprocal lattice vectors of

the periodized two-site cluster.

III. NONEQUILIBRIUM GENERALIZATION

A. Kadanoff-Baym contour

Let us consider a Hubbard model with time-dependent parameters,

H(t) = −
∑

〈ij〉σ
vij(t)(d

†
iσdjσ + d†jσdiσ) + U(t)

∑

i

ni↑ni↓ − µ(t)
∑

iσ

niσ. (22)
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Initially (at t = 0) the system is assumed to be in an equilibrium state at inverse temperature

β = 1/T , and thus described by the density matrix

ρ(0) =
1

Z
e−βH(0), (23)

where Z = Tr e−βH(0) is the equilibrium partition function. The time evolution of the density

matrix is determined by the von Neumann equation,

i
d

dt
ρ(t) = [H(t), ρ(t)], (24)

where the bracket represents the commutator. Formally, one can write the solution of

Eq. (24) as

ρ(t) = U(t, 0) ρ(0)U(0, t), (25)

with the time-evolution operator defined as

U(t, t′) =



















T exp

(

−i

∫ t

t′
dt̄H(t̄)

)

t > t′,

T̃ exp

(

−i

∫ t

t′
dt̄H(t̄)

)

t < t′.

(26)

Here T (T̃ ) denotes the (anti-)time-ordering operator. Note that the Hamiltonians at differ-

ent times do in general not commute ([H(t), H(t′)] 6= 0). With this ordering, the evolution

operator becomes unitary, U(t, t′)[U(t, t′)]† = 1, and satisfies U(t, t′)U(t′, t′′) = U(t, t′′).

Using the time-dependent density matrix (25), the expectation value of an observable O

measured at time t is given by

〈O(t)〉 = Tr [ρ(t)O]. (27)

By substituting ρ(0) defined in Eq. (23) into Eq. (25) and interpreting e−βH(0) ≡ U(−iβ, 0)

as the evolution along the imaginary time axis from 0 to −iβ (with imaginary-time ordering),

we can express Eq. (27) as

〈O(t)〉 =
1

Z
Tr [U(t, 0)e−βH(0)U(0, t)O] =

1

Z
Tr [U(−iβ, 0)U(0, t)OU(t, 0)]. (28)

In the last step, we have permuted the operators under the trace. The operators, read

from right to left, follow the time ordering 0 → t → 0 → −iβ. It is thus convenient to

introduce the L-shaped contour C with the three branches C1: 0 → tmax, C2: tmax → 0, and
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FIG. 2: The L-shaped contour C = C1 ∪ C2 ∪ C3 in the Kadanoff-Baym formalism. The arrows

indicate the contour ordering. For example, t′ lies ahead of t in the contour ordering. (From

Ref. 5.)

C3: 0 → −iβ, as shown in Fig. 2, where tmax is the maximum time up to which one wants

to let the system evolve. Then the expectation value (28) can be written as

〈O(t)〉 =
1

Z
Tr

[

TC e
−i

∫
C dt̄H(t̄)O(t)

]

=
Tr

[

TC e
−i

∫
C dt̄ H(t̄)O(t)

]

Tr
[

TC e
−i

∫
C
dt̄H(t̄)

] , (29)

where TC is the contour-ordering operator that arranges operators on the contour C in the

order 0 → tmax → 0 → −iβ (as indicated by the arrows in Fig. 2), O(t) indicates that

the operator O is inserted at time t on the contour C, and we have used the fact that the

evolution along the forward (C1) and backward (C2) contours cancels if no other operator is

inserted, so that e−βH(0) = TC exp
(

−i
∫

C dt̄H(t̄)
)

.

The contour-ordered formalism can also be applied to higher-order correlation functions,

〈TCA(t)B(t
′)〉 ≡

1

Z
Tr

[

TC e
−i

∫
C
dt̄ H(t̄)A(t)B(t′)

]

. (30)

In this expression, t and t′ can lie anywhere on C, and the contour-ordered product of two

operators A and B is defined as TC A(t)B(t
′) = θC(t, t

′)A(t)B(t′)± θC(t
′, t)B(t′)A(t), where

θC(t, t
′) = 1 when t′ comes earlier than t in the contour ordering and 0 otherwise. The sign

± is minus when the operators A and B are both fermionic and plus otherwise. Whenever

an operator is subject to the contour-ordered product, one has to specify which branch its

time argument lies on.

Of particular relevance are the contour-ordered nonequilibrium Green’s functions, which

we define as

G(t, t′) ≡ −i〈TC d(t) d
†(t′)〉, (31)
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where t, t′ ∈ C. For simplicity, spin and orbital indices associated with the operators are

not shown. Due to the three branches, on which the time arguments t and t′ can lie, the

Green’s function has 3×3 = 9 components: G(t, t′) ≡ Gij(t, t
′) (t ∈ Ci, t

′ ∈ Cj , i, j = 1, 2, 3).

Conventionally we express them in a 3× 3 matrix form,

Ĝ =











G11 G12 G13

G21 G22 G23

G31 G32 G33











. (32)

B. Dynamical mean field formalism

Since the dynamical mean field formalism only involves an approximation on the spatial

degrees of freedom (the mapping from a lattice model to a single-site or cluster impurity

model), while time-dependent fluctuations are retained, it is conceptually rather easy to

extend this formalism to nonequilibrium situations. All we have to do is to solve the DMFT

equations on the L-shaped Kadanoff-Baym contour (Fig. 2), instead of solving them on

the imaginary-time interval (which corresponds to the branch C3 of this contour). How-

ever, because we do not in general have time-translation invariance anymore, the Green’s

function G(t, t′), self-energy Σ(t, t′), and hybridization function ∆(t, t′) depend on two time-

arguments t and t′, rather than just the time difference t−t′, and we cannot solve the DMFT

equations by Fourier transformation anymore. They become coupled integral-differential

equations for the different components of the respective 3× 3 matrices.

We can define a nonequilibrium Anderson impurity model by the contour action

Simp = Sloc + Shyb = −i

∫

C
dtHloc(t)− i

∑

σ

∫

C
dt dt′ d†σ(t)∆(t, t′)dσ(t

′), (33)

where Hloc(t) denotes the interaction and chemical potential terms in Eq. (22), and ∆(t, t′)

is a hybridization function defined on the contour. With this, the contour-ordered impurity

Green’s function is defined as

Gimp(t, t
′) = −i〈TC d(t)d

†(t′)〉Simp
, (34)

where the expectation value of observables with respect to Simp is

〈· · · 〉Simp
=

Tr[TC exp(Simp) · · · ]

Tr[TC exp(Simp)]
. (35)
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The hybridization function ∆(t, t′), or equivalently the Weiss Green’s function

G0(t, t
′) = (i∂t + µ(t))δC(t, t

′)−∆(t, t′) (36)

plays the role of the dynamical mean field and is fixed by the usual self-consistency loop

(now to be solved on the contour C):

1. Solve the impurity problem, that is, compute the impurity Green’s function Gimp(t, t
′)

for the given G0(t, t
′),

2. Extract the self-energy of the impurity model: Σimp(t, t
′) = G−1

0 (t, t′)−G−1
imp(t, t

′),

3. Identify the lattice self-energy with the impurity self-energy, Σk(t, t
′) = Σimp(t, t

′)

(DMFT approximation), and compute the local lattice Green’s function Gloc(t, t
′) =

∫

(dk)[(i∂t + µ(t)− ǫk(t))δC(t, t
′)− Σimp(t, t

′)]−1 (=
∫

(dk)[G−1
0,k(t, t

′)− Σimp(t, t
′)]−1),

4. Apply the DMFT self-consistency condition, Gloc(t, t
′) = Gimp(t, t

′), and use it to

define a new Weiss Green’s function: G−1
0 (t, t′) = G−1

loc(t, t
′) + Σimp(t, t

′).

In order to appreciate the meaning of these formal expressions, we have to add some

explanations.

a. Noninteracting Green’s functions. The noninteracting lattice Green’s function

G0,k(t, t
′) = −i〈TCdk(t)d

†
k(t

′)〉 for H0(t) =
∑

k[ǫk(t)− µ(t)]d†kdk satisfies

[

i∂t + µ(t)− ǫk(t)
]

G0,k(t, t
′) = δC(t, t

′), (37a)

G0,k(t, t
′)
[

− i
←−
∂t′ + µ(t′)− ǫk(t

′)
]

= δC(t, t
′), (37b)

where g(t)
←−
∂t ≡ ∂tg(t). The two equations are equivalent, and each determines G0,k uniquely

if solved with the boundary condition G(0+, t) = −G(−iβ, t), G(t, 0+) = −G(t,−iβ):

G0,k(t, t
′) = −i[θC(t, t

′)− f(ǫk(0)− µ(0))]e−i
∫ t

t′ dt̄[ǫk(t̄)−µ(t̄)], (38)

where f(ǫ) = 1/(eβǫ − 1) is the Fermi occupation function. The two equations of motion

(37) can be rewritten by introducing the inverse of the Green’s function

G−1
0,k(t, t

′) =
[

i∂t + µ(t)− ǫk(t)
]

δC(t, t
′), (39)

which is a differential operator on the contour. Equations (37) then simply read G−1
0,k∗G0,k =

G0,k ∗G
−1
0,k = δC , where the star denotes a contour convolution.

The noninteracting impurity Green’s function is given by Eq. (36).
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b. Dyson equation The interacting Green’s function G is given by the Dyson equation,

G = G0 +G0 ∗ Σ ∗G (40)

= G0 +G ∗ Σ ∗G0. (41)

We can transform the Dyson equation and its conjugate from its integral form into a differ-

ential form by convoluting with the operator G−1
0 from the left [Eq. (40)] or right [Eq. (41)],

respectively,

[G−1
0 − Σ] ∗G = G ∗ [G−1

0 − Σ] = δC. (42)

The result may be expressed as G−1 = G−1
0 − Σ, which looks identical to the equilibrium

form of the Dyson equation. However, Eq. (42) has a different meaning for Matsubara

and contour-ordered Green’s functions. In the nonequilibrium case, the two Eqs. (42) are

integro-differential equations of the form

[i∂t + µ(t)− ǫk(t)]G(t, t′)−

∫

C
dt̄Σ(t, t̄)G(t̄, t′) = δC(t, t

′), (43a)

G(t, t′)[−i
←−
∂t′ + µ(t′)− ǫk(t

′)]−

∫

C
dt̄ G(t, t̄)Σ(t̄, t′) = δC(t, t

′). (43b)

The time derivative ∂tG in these equations is related to the value of G at different times via

the convolution Σ ∗G. The equations are causal, and define a time-propagation scheme for

G, in which the self-energy plays the role of a memory kernel. On the imaginary branch, on

the other hand, the same equations provide a boundary value problem for the (Matsubara)

Green’s functions of an equilibrium state, which can be solved by Fourier transformation.

This equilibrium solution provides the initial value for the time propagation.

c. Time-dependent electric fields. The first term in Eq. (22), with arbitrary hoppings

vij(t), can incorporate the effect of time-dependent electromagnetic fields. For a single-band

model, the Peierls substitution10 introduces the vector potential A(r, t) as a phase factor in

the hopping matrix elements,

vij(t) = vij exp

(

−ie

∫ Rj

Ri

dr A(r, t)

)

, (44)

and adds a scalar potential term e
∑

iσ Φ(Ri, t)d
†
iσdiσ to the Hamiltonian (e is the charge of

an electron). It derives from the requirement that the Hamiltonian is invariant under the
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gauge transformation

djσ → djσ exp
(

ie χ(Rj , t)
)

, (45a)

A(r, t)→ A(r, t) +∇χ(r, t), (45b)

Φ(r, t)→ Φ(r, t)−
∂χ(r, t)

∂t
. (45c)

The (gauge-invariant) current operator can then be obtained from the derivative j(r) =

−δH/δA(r). Usually, we consider situations in which the applied field varies only slowly on

the atomic scale, which is well satisfied even for optical frequencies. When the r-dependence

of A is neglected, the Peierls substitution leads to a time-dependent dispersion

ǫk(t) = ǫ(k − eaA(t)), (46)

where ǫ(k) is the dispersion for zero field, and a is the lattice spacing, so that the hopping

part of the Hamiltonian reads H0 =
∑

kσ ǫk(t)nkσ. Correspondingly, the current operator

in the limit of long wavelengths becomes

j(t) =
e

V

∑

kσ

Vk(t)nkσ, (47)

where V is the volume, and Vk is the group velocity of the Bloch electrons,

Vk(t) = ∂kǫk(t) = ∂kǫ(k − eaA(t)). (48)

IV. SPECTROSCOPY

As a Green’s function based method, DMFT gives access to the occupation of the many-

body states and the excitation spectrum. In order to discuss how this information can be

extracted in the nonequilibrium context, we have to take a closer look at the 3×3 components

of the contour Green’s function (32). In general, one can shift the operator with the largest

real-time argument (e.g., t in Fig. 2) from C1 to C2 (and vice versa), because the time-

evolution along C1 and C2 to the right of that operator cancels. This kind of redundancy
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implies the following relations among the components of the matrix (32),

G11(t, t
′) = G12(t, t

′) (for t ≤ t′), (49a)

G11(t, t
′) = G21(t, t

′) (for t > t′), (49b)

G22(t, t
′) = G21(t, t

′) (for t < t′), (49c)

G22(t, t
′) = G12(t, t

′) (for t ≥ t′), (49d)

G13(t, τ
′) = G23(t, τ

′), (49e)

G31(τ, t
′) = G32(τ, t

′). (49f)

These relations allow one to eliminate three of the nine components in the Green’s func-

tion (32), and to introduce six linearly independent “physical” Greens functions, called the

retarded (GR), advanced (GA), Keldysh (GK), left-mixing (G¬), right-mixing (G ¬), and

Matsubara Green’s function (GM). They are explicitly given by

GR(t, t′) = 1
2
(G11 −G12 +G21 −G22) = −iθ(t− t′)〈{d(t), d†(t′)}〉, (50a)

GA(t, t′) = 1
2
(G11 +G12 −G21 −G22) = iθ(t′ − t)〈{d(t), d†(t′)}〉, (50b)

GK(t, t′) = 1
2
(G11 +G12 +G21 +G22) = −i〈[d(t), d

†(t′)]〉, (50c)

G¬(t, τ ′) = 1
2
(G13 +G23) = i〈d†(τ ′)d(t)〉, (50d)

G ¬(τ, t′) = 1
2
(G31 +G32) = −i〈d(τ)d

†(t′)〉, (50e)

GM(τ, τ ′) = −iG33 = −〈Tτ d(τ)d
†(τ ′)〉. (50f)

In the above formulas, we assume fermionic operators d and d†, [, ] ({, }) denotes a com-

mutator (anti-commutator), t, t′ ∈ C1 ∪ C2, τ, τ
′ ∈ C3, θ(t) is the step function, and Tτ is

the time-ordering operator on the imaginary time axis. Note that the commutator is used

for fermionic operators in GK (50c). For convenience, we also define the lesser and greater

Green’s functions

G<(t, t′) = G12 = i〈d†(t′)d(t)〉, (50g)

G>(t, t′) = G21 = −i〈d(t)d
†(t′)〉, (50h)

which are related to the retarded, advanced, and Keldysh Green’s functions via

G< = 1
2
(GK −GR +GA), (51a)

G> = 1
2
(GK +GR −GA). (51b)
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The physical components (50) are useful for the interpretation of simulation results. We

can motivate this by first considering the equilibrium case. When H does not depend on

time, the real-time components of G(t, t′) depend on the time difference t− t′ only and can

be Fourier transformed. The imaginary part of the retarded (or advanced) Green’s function

gives the single-particle spectral function,11

A(ω) = −
1

π
ImGR(ω) =

1

π
ImGA(ω), (52)

which represents the density of single-particle excitations at energy ω of the many-body

state, as can be seen from the Lehmann representation,12

A(ω) =
1

Z

∑

mn

(

e−βEn + e−βEm
)

|〈n|c†|m〉|2δ(ω − En + Em). (53)

Out of equilibrium, one can still define the spectral function using the partial Fourier trans-

formation [tav = (t + t′)/2, trel = t− t′],

A(ω, tav) = −
1

π
Im

∫

dtrele
iωtrelGR(t, t′), (54)

which satisfies the sum rule
∫

dωA(ω, tav) = 1.

In equilibrium, all components of G can be related to the spectral function by

G(t, t′) = −i

∫

dω eiω(t
′−t) A(ω) [θC(t, t

′)− f(ω)]. (55)

Since the contour step function is 0 (1) for the lesser (greater) Green’s function G12 (G21),

this expression relates the imaginary parts of these Green’s functions to the density of

occupied (unoccupied) states,

ImG<(ω) = 2π A(ω)f(ω) ≡ 2πN(ω), (56a)

−ImG>(ω) = 2π A(ω)[1− f(ω)]. (56b)

In equilibrium, the density of occupied (unoccupied) states is often calculated to understand

(inverse) photoemission spectroscopy in correlated materials. Similarly, intensities for time-

resolved (inverse) photoemission spectroscopy can be obtained from the real-time Green’s

functions G<(t, t′) and G>(t, t′).

Static photoemission spectroscopy in equilibrium is often analyzed in terms of the

momentum-resolved spectral function,

I(kf , E) =
∑

k

|Mk|
2δk||+q||,kf || Nk(E − ~ωq −W ), (57)
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where Nk(ω) = f(ω)Ak(ω) is the occupied density of states at momentum k [cf. Eq. (56a)],

q is the momentum of the incoming photon, and I(kf , E) is the photoemission intensity at

final momentum kf and energy E. The delta function accounts for momentum conservation

parallel to the surface, and the Mk denote matrix elements, which are usually approximated

as k-independent. The most important approximation entering this expression is the so-

called sudden approximation,13 which neglects interactions between the outgoing electron

and the bulk and thus allows to express the photoelectron current in terms of single-particle

properties of the sample.

In time-resolved ARPES one probes the state of a system with a short pulse with center-

frequency Ω, and counts the total number of electrons emitted with a certain momentum kf

and energy E. The electric field of the probe pulse is of the form cos[Ω(t− tp +φ)]S(t− tp),

where S(t) is the probe envelope, tp is the probing time, and φ is the carrier-envelope phase.

The system can be in an arbitrary nonequilibrium state due to an earlier perturbation (for

example a pump excitation). Equation (57) can be generalized to this situation:14 In the

sudden approximation, the electric probe field couples the electronic orbitals in the sample

to the outgoing electron states |kf〉 via some dipole matrix element. If we disregard the k-

dependence of this matrix element, second-order time-dependent perturbation theory gives

(after averaging over the carrier-envelope phase φ)

I(kf , E; tp) ∝
∑

k

δk||+q||,kf ||Ik(E − ~ωq −W ; tp), (58)

Ik(ω; tp) = −i

∫

dtdt′ S(t)S(t′)eiω(t
′−t)G<

k (t + tp, t
′ + tp). (59)

This expression connects the ARPES measurement to the contour Green’s functions deter-

mined in DMFT. (In contrast, the imaginary part of a partial Fourier transform G<(ω, t) =
∫

dt̄eiωt̄G<(t + t̄/2, t− t̄/2) is not always positive.) The equation contains the fundamental

frequency-time uncertainty:15 When the probe pulse is very short, S(t) = δ(t), one measures

instantaneous occupations G<
k (t, t) = nk(t), but all energy resolution is lost. In the limiting

case of a stationary state, Eq. (59) reduces to a convolution of the equilibrium result (57)

with the spectral density |S̃(ω)|2 of the probe pulse.
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V. APPLICATIONS

A. AC field quench

In the introduction, we have mentioned that one of the goals in the study of nonequi-

librium condensed matter systems is to “tune” material properties by driving a correlated

electron system out of equilibrium, for example by applying strong electric fields. Here,

we present a nonequilibrium DMFT calculation of a one-band Hubbard model driven by

periodic fields,16 which provides a glimpse of the type of phenomena that can be expected

to occur in driven systems. One remarkable prediction is that it is not only possible to tune

the strength of the effective Coulomb repulsion by external driving, but that under suitable

conditions, the repulsive interaction can be switched into an attractive interaction between

electrons.

We consider a half-filled Hubbard model on an infinite-dimensional hypercubic lattice

and a field E(t) = E cos(Ωt) with polarization in the body diagonal (E = E(1, 1, . . . , 1)).

In this case the hopping vij is renormalized by the periodic driving to an effective hopping

parameter17

veffij = J0(E/Ω) vij, (60)

where J0 is the zeroth-order Bessel function. The Bessel function is an oscillating function

with sign changes (see right hand panel of Fig. 3). When J0(E/Ω) = 0, Eq. (60) implies

that the effective hopping vanishes (dynamical localization). As we will see below, the

consequences of J0(E/Ω) < 0 are even more interesting.

We can understand the relation (60) by choosing a gauge with pure vector potential,

E = ∂tA, with A(t) = −E sin(Ωt)/Ω. The Peierls substitution (46) then yields a time-

dependent dispersion ǫk−A(t) (we set e and a to 1 in the following). Averaging this dispersion

over one period of the driving field gives

ǫk =
Ω

2π

∫ 2π/Ω

0

dtǫk−A(t) = J0(E/Ω)ǫk. (61)

Let us consider what happens when the ac field is suddenly switched on at t = 0. Figure 3

shows the result for the double occupancy D(t) = 〈n̂↑(t)n̂↓(t)〉 for various values of E/Ω

with a fixed Ω. Initially D is smaller than the noninteracting value 〈n̂↑〉〈n̂↓〉 = 0.25 due

to the repulsive interaction. The switch-on of an ac field with small amplitude leads to a
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FIG. 3: Left panel: Time evolution of the double occupancy after an ac field quench with amplitude

E and frequency Ω. The interaction is U = 1. Right panel: Bessel function J0(E/Ω) with sign

changes at E/Ω = 2.4, 5.5, . . .. (Adapted from Ref. 16.)

decrease of D, accompanied by rapid oscillations with frequency 2Ω due to the nonlinear

effect of the ac field. The suppression of D can be interpreted as an enhanced U/W due

to the hopping renormalization (60) [W is the bandwidth, here the width of the Gaussian

density of states of the infinite-dimensional hypercubic lattice].

In a half-filled equilibrium system with repulsive interactions, D ≤ 0.25 (the equal sign

holds in the limit of infinite temperature). Remarkably, the double occupancy in Fig. 3

exceeds 0.25 when J0(E/Ω) < 0. This implies that the many-body interaction has turned

into an effective attraction (Ueff < 0). The origin of this sign inversion is a dynamical band

flipping.16 If the field is ramped up quickly, the occupation in momentum space does not

change significantly, resulting in a population inversion, or “negative temperature” (Teff < 0)

occupation in the flipped band (Fig. 4).

k

E

FIG. 4: Schematic picture of the dynamical band flipping with population inversion induced by an

ac field quench with J0(E/Ω) < 0. (From Ref. 5).
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If we look at the time-dependent density matrix of this state, we have

ρ(t) ∼ e−[J0(E/Ω)H0+Hint]/Teff = e−[H0+Hint/J0(E/Ω)][Teff/J0(E/Ω)]. (62)

In other words, a positive (repulsive) U in a negative T state is equivalent to a negative

(attractive) U in a positive T state. Hence, the ac-field quench amounts to an interaction

quench,

U → Ueff = U/J0(E/Ω). (63)

The ac-field quench provides a new way of inducing attractive interactions between elec-

trons. It may lead to an s-wave superconducting state with high Tc.

B. Nonthermal long-range ordered states

Correlated lattice systems exhibit various types of long-range order, including antiferro-

magnetism, superconductivity, and charge order. A symmetry-broken state on a bipartite

lattice can be treated within DMFT by solving impurity problems for each sublattice.6 The

impurity model for sublattice A is fixed by the local Green’s function on sublattice B and

vice versa. Here, we will consider antiferromagnetic order and a semielliptic density of

states of bandwidth 4v, for which the DMFT self-consistency condition can be expressed in

a closed form: the hybridization function ∆A,σ (∆B,σ) for the A (B) sublattice is given by

∆A,σ = v2GB,σ (∆B,σ = v2GA,σ), where G is the local lattice Green’s function. Together

with the relation ∆A,σ = ∆B,σ̄ for pure Néel-type symmetry breaking, this leads to a single

impurity calculation with the self-consistency condition ∆σ = v2Gσ̄.

The DMFT phase diagram for the half-filled, repulsive Hubbard model exhibits an anti-

ferromagnetically ordered insulating phase at low temperature (Fig. 5). For attractive U , one

finds an analogous phase diagram with AFM order replaced by s-wave superconductivity18

(at half-filling the superconducting state is degenerate with a charge ordered phase due to

a symmetry between the repulsive and attractive models,19 but in the doped system, super-

conductivity is more stable). The nature of the AFM insulating (or s-wave superconducting)

state changes qualitatively as |U | crosses the value corresponding roughly to the maximum

in the critical temperature. This is known as the “BCS-BEC” crossover in the literature on

cold atomic gases.
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FIG. 5: Antiferromagnetic phase diagram for the half-filled Hubbard model (semi-elliptic DOS,

bandwidth 4; QMC data from Ref. 20). The black dots show the effective temperatures after

quenches from Ui = 2, T = 0.08 to Uf = 1.9, 1.8, . . . , 1.0, and for quenches from Ui = 4, T = 0.1

to Uf = 6, 7, 8.

First, we consider the time evolution of the magnetization m after interaction quenches

(more precisely ramps) out of the antiferromagnetic phase on the weak-coupling side. Start-

ing from T ≈ 0.08, Ui = 2 we rapidly change the interaction to Uf = 1.9, 1.8, . . . , 1.0.21

Interaction quenches may seem far-fetched in the condensed matter context, but in the pre-

vious section we have discussed a theoretical proposal how this may be realized in driven

systems. Here, we just use the interaction quenches as a convenient method to drive the

system across the phase boundary into the disordered state. We expect to see the same phe-

nomena if the system crosses the phase boundary along the temperature axis, for example

after the injection of energy through an electric field pulse.

The left-hand panel of Fig. 6 shows the time evolution of the magnetization after the

quench. The arrows indicate the values of the magnetization expected for the thermal-

ized state in the long-time limit. The thermal magnetization, which can be calculated

independently from the energy injected into the system by the quench, becomes zero for

Uf ≤ Uc,thermal = 1.42. Remarkably, however, even for some Uf ≤ Uc,thermal, the order pa-

rameter shows coherent oscillations (“amplitude mode”) around a non-zero value, followed

by a slow decay. If we plot the frequency of the amplitude oscillations as a function of Uf

(see middle panel), we find a roughly linear curve which extrapolates to zero at Uf ≈ 1.22.

This suggests that a nonthermal magnetized state persists up to some “nonthermal critical



22

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  50  100  150  200

m

t

u=2 → 1.2
u=2 → 1.3
u=2 → 1.4
u=2 → 1.6

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.9  1  1.1  1.2  1.3  1.4  1.5  1.6  1.7
Ufinal

Uc,thermal

nonthermal
critical point

τ-1 (inv. dephasing time)
ω (amplitude mode)

nonthermal FP

stable FP

unstable FP

FIG. 6: Quench out of the antiferromagnetic phase in the weak-coupling regime. Left panel: Time

evolution of the magnetization after a quench from Ui = 2, T = 0.08 to Uf = 1.6, 1.4, 1.3, 1.2.

For Uf ≤ Uc,thermal = 1.42, the system will thermalize in the paramagnetic phase. Middle panel:

Frequency of the amplitude mode and inverse dephasing time as a function of Uf . The correspond-

ing time-scales diverge near Uf ≈ 1.22 (“nonthermal critical point”). Right panel: Sketch of the

“RG flow” after the quench, from the unstable antiferromagnetic fixed point (FP) to the stable

paramagnetic fixed point. At intermediate times, the properties of the system are controlled by a

nonthermal “Hartree” fixed point.

point” Uc,nonthermal < Uc,thermal, where the frequency of the amplitude mode vanishes. For

Uf < Uc,nonthermal the time-evolution is characterized by two exponentials, a slow exponential

“dephasing” followed by a faster exponential thermalization. If we plot the inverse dephasing

time as a function of Uf , we again find a diverging behavior proportional to |Uf−Uc,nonthermal|.

The dynamics of the system in the trapped state is similar to the solution in the Hartree ap-

proximation, so that at intermediate times the system may be considered as evolving in the

vicinity of a nonthermal “Hartree” fixed point (right hand panel of Fig. 6).22 The life-time

of the trapped state is finite and strongly depends on the initial value of the interaction (the

larger Ui, the shorter the life-time).

Trapping phenomena of a different origin are found after quenches to large U . The left

panel of Fig. 7 shows the magnetization for quenches from Ui = 4, T = 0.1 to Uf = 6, 7

and 8, with arrows indicating the expected values after thermalization.23 After the quench

to U = 8, the system will thermalize in the paramagnetic phase, but the magnetization does

not immediately decay to zero. It remains trapped at a remarkably large value, and also the
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FIG. 7: Quench out of the antiferromagnetic phase in the strong-coupling regime. Left panel:

Time evolution of the magnetization after quenches from Ui = 4 to Uf = 6, 7, 8. For Uf = 8, the

system will thermalize in the paramagnetic phase, but is trapped for a long time in a transient

state with a large magnetization. Right panel: Time evolution of the total spectral function for

the minority spin. (From Ref. 23.)

time-resolved spectral function in the trapped state, shown in the right hand panel, shows

the features (e. g. spin-polaron peaks) of an antiferromagnetically ordered system. The

state after an interaction quench to U = 8 is similar to a photo-doped state, because double

occupancies which existed as quantum-fluctuations in the initial state are “frozen” by the

quench and become long-lived doublons. The trapping of the magnetization in the large-

interaction regime may thus be linked to the exponentially long life-time (∼ Aeα(U/2) log(U/2))

of artificially created doublons in a Mott insulator with large gap. If the density of frozen-in

(or “photo-doped”) carriers is larger than some critical value, the trapping disappears, and

the magnetization relaxes to zero exponentially, with a relaxation time which depends like

a power law on the distance from the trapped phase.23
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