Quantum-embedding formulation of the GA/RISB equations

Introduction to DFT+GA/RISB

June 16, 2022

Nicola Lanatà (Aarhus University) (lanata.nicola@gmail.com)

INTERNATIONAL SUMMER SCHOOL on COMPUTATIONAL 2022

Why is it useful?

1. Orders of magnitude less computationally demanding than DMFT (note also recent combination with ML).

2. Variational (T=0).

 Extensions to finite ten problems.

3. Extensions to finite temperature & time-dependent

Limitations

1. No accurate description of the Mott phase.

2. No access to high-energy excitations (Hubbard bands).

3. Mott metal-insulator transition-point can be overestimated.

(Note: recent extension g-GA resolve these problems...)

Why is computational speed important?

Exploring large chemical spaces

Why is computational speed important?

Increase of scientific programs prioritising research that can benefit society

Pathways to Impact

Outline

- A. Quantum Embedding (QE) methods.
- B. GA method (multi-orbital models): QE formulation.
- C. DFT+GA algorithmic structure.
- D. Spectral properties.
- E. Examples of applications.
- F. Recent formalism extensions (g-GA).

Strongly Correlated Materials

Systems with localized *d*- or *f*-electrons: Single-particle picture not sufficient!

		9		10		11		12		13		14		15		16		17		18	2	к
Nonmetals																		273		He Helium		
nmetals			Haloge	Noble gase		gases		5	23	6 ²	7	7 2		8		9 7	ĺ	10	28	ĸ		
Metals										Boron 10.81		Carbon 12.011		Nitrogen 14.007		Dxygen		Fluorine 18.998		Neon 20.1797		
inthanoids xtinoids				Transiti metals	Post- transition metals				13 Al Auminium 26.981	283	14 28 Si 4 Silicon 28.085	1 F	15 ² P ⁵ Phosphorus 10.973	1 00 00 00	16 S Sulfur 32.06	286	17 28 Cl Chlorine 35.45		18 Ar Argon 39.948	288	K L M	
2842	27 Co Coba 58.93	lt 13	2 8 15 2	28 Ni Nickel 58.6934	28 18 2 (6	29 Cu Copper 33.546	2 8 18 1	30 Zn ¹ Zinc 65.38	28824	31 Ga Gallium 69.723	2 18 3	32 8 Ge 4 Germanium 72.63	3	33 ² As ¹⁸ Arsenic 74.921	21.00.007	34 Se Selenium 78.971	2 8 18 6	35 28 Br 18 Bromine 79.904		36 Kr ¹ Krypton 83.798	20.00	K L M N
28851	45 Rh Rhod 102.9	ium 10	2 8 18 16 1	46 Pd Palladium 106.42	2 8 18 18	47 Ag Silver 107.8682	2 8 18 18 1	48 Cd Cadmium 112.414	288824	49 In Indium 114.818	2 8 18 18 3	50 28 Sn 18 Tin 4 118.710	5	51 28 Sb 18 Antimony 121.760	11	52 Te Tellurium 127.60	2 8 18 6	53 28 8 18 18 18 7 10dine 126.90		54 Xe Xenon 131.293	200000	KLMNO
288242	77 Ir Iridiu 192.2	m 217	28182152	78 Pt Platinum 195.084	2 8 18 32 17 1	79 Au 3old 196.96	2 8 18 32 18 11	80 Hg Mercury 200.59	288282	81 TI Thallium 204.38	281832183	82 28 Pb 32 Lead 4 207.2	8	33 ² Bi ¹⁸ 32 3ismuth ¹⁸ 208.98	E F C	84 Po Potonium 209)	281832186	85 2 At 18 32 Astatine 7 (210)		86 Rn Radon 1 (222)	1007000	KLMNOP
28822942	109 Mt Meitre (276)	nun	2 8 18 32 32 15 2	110 Ds Darmstaditu (281)	2 8 18 32 32 17 1 (111 Rg Roentgeniu (280)	2 8 18 32 32 18 18	112 Cn Coperticium (285)	2882282	113 Nh Nihonium (284)	2 8 18 2 3 2 8 3 3 2 8 3 3 2 8 3 3 2 8 3 3 2 8 3 3 2 8 3 3 2 8 3 3 2 8 3 3 3 3	114 28 FI 32 Flerovium 18 (289) 4		115 28 Mc 32 Moscovium 18 288) 5		116 LV Jvermorium 293)	2 8 18 32 32 18 6	117 28 TS 18 Temessne 18 (294) 7		118 Og 3 Oganesson 1 (294)	2802288	KLMNOPQ

For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses.

rfa	face Copyright © 1997 Michael Dayah. Ptable.com Last updated Sep 10, 2016													
2883382	62 Sm Samarium 150.36	2 8 18 24 8 2	63 Eu Europium 151.964	2 8 18 25 8 2	64 Gd Gadolinium 157.25	28182592	65 28 Tb 18 27 Terbium 2 158.92	66 Dy Dysprosium 162.500	2 8 18 28 2 8 2	67 ² Ho ¹⁸ ²⁹ Holmium ² 164.93	68 28 Er 30 Erbium 2 167.259		69 2 70 2 71 2 Tm 18 Yb 18 18 18 18 Thulium 2 Ytterbium 2 Lu 32 168.93 173.054 174.9668 174.9668	
20000000	94 Pu Plutonium (244)	2 8 18 32 24 8 2	95 Am Americium (243)	2 8 18 32 25 8 2	96 Cm Curium (247)	281832592	97 8 Bk 32 Berkelium 8 (247) 2	98 Cf Californium (251)	28 18 32 8 2 8 2	99 8 Es 18 Ensteinium 8 (252) 2	100 30 Fm 32 Fermium 8 (257) 2		101 2 102 103 2 Md 32 No 32 Lr 32 Mendeleviu 8 2 Nobelium 8 Lawrencium 8 32 (258) 2 (259) 2 (262) 3	

Example: DMFT

Self-consistency: $\rightarrow \Sigma(\omega)$

$\Sigma(\omega)$

Impurity *i*

Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions

Antoine Georges

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France

Gabriel Kotliar

Serin Physics Laboratory, Rutgers University, Piscataway, New Jersey 08854

Werner Krauth and Marcelo J. Rozenberg

Laboratoire de Physique Statistique de l'Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France

$(\Delta(\omega), E, U, J)$

GA/RISB (QE formulation)

Self-consistency: $\rightarrow \Sigma_0, Z$

E, U, J

$\begin{bmatrix} \langle c_{\alpha}^{\dagger} c_{\beta} \rangle & \langle c_{\alpha}^{\dagger} f_{a} \rangle \\ \langle f_{a}^{\dagger} c_{\alpha} \rangle & \langle f_{a}^{\dagger} f_{b} \rangle \end{bmatrix}$

Embedding Hamiltonian

PHYSICAL REVIEW X 5, 011008 (2015)

Phase Diagram and Electronic Structure of Praseodymium and Plutonium

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Cai-Zhuang Wang,² Kai-Ming Ho,² and Gabriel Kotliar¹

PHYSICAL REVIEW LETTERS PRL 118, 126401 (2017)

> Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO₂

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Xiaoyu Deng,³ Vladimir Dobrosavljević,¹ and Gabriel Kotliar^{3,4}

 λ^{c}

 (D, λ^c, E, U, J)

 $\hat{H}_{emb} = \hat{H}_{int}(U,J) + \sum E_{\alpha\beta} c_{\alpha}^{\dagger} c_{\beta}$ $\alpha\beta$

+ $\sum \left(D_{a\alpha} c_{\alpha}^{\dagger} f_{a} + H.c. \right) + \sum \lambda_{aa}^{c} f_{a} f_{a}^{\dagger}$

g-GA/g-RISB (QE formulation)

Self-consistency: $\rightarrow \Sigma(\omega)$

E, U, J

$\begin{bmatrix} \langle c_{\alpha}^{\dagger} c_{\beta} \rangle & \langle c_{\alpha}^{\dagger} f_{a} \rangle \\ \langle f_{a}^{\dagger} c_{\alpha} \rangle & \langle f_{a}^{\dagger} f_{b} \rangle \end{bmatrix}$

Embedding Hamiltonian

PHYSICAL REVIEW B 96, 195126 (2017)

Emergent Bloch excitations in Mott matter

Nicola Lanatà,¹ Tsung-Han Lee,¹ Yong-Xin Yao,² and Vladimir Dobrosavljević¹

PHYSICAL REVIEW B 104, L081103 (2021)

Letter

Quantum embedding description of the Anderson lattice model with the ghost **Gutzwiller approximation**

Marius S. Frank¹, Tsung-Han Lee¹, Gargee Bhattacharyya¹, Pak Ki Henry Tsang, Victor L. Quito^{4,3}, Vladimir Dobrosavljević, Ove Christiansen⁵, and Nicola Lanatà^{1,6,*}

 λ^{c}

 (D, λ^c, E, U, J)

 $\hat{H}_{emb} = \hat{H}_{int}(U,J) + \sum E_{\alpha\beta} c_{\alpha}^{\dagger} c_{\beta}$

+ $\sum \left(D_{a\alpha} c_{\alpha}^{\dagger} f_{a} + H.c. \right) + \sum \lambda_{aa}^{c} f_{a} f_{a}^{\dagger}$ αα

Example: DMET

Self-consistency: $\rightarrow \Sigma_0$

E, U, J

$\begin{bmatrix} \langle c_{\alpha}^{\dagger} c_{\beta} \rangle & \langle c_{\alpha}^{\dagger} f_{a} \rangle \\ \langle f_{a}^{\dagger} c_{\alpha} \rangle & \langle f_{a}^{\dagger} f_{b} \rangle \end{bmatrix}$

Embedding Hamiltonian

 λ^{c}

Density Matrix Embedding: A Simple Alternative to Dynamical Mean-Field Theory

Gerald Knizia and Garnet Kin-Lic Chan

 (D, λ^c, E, U, J)

 $\hat{H}_{emb} = \hat{H}_{int}(U,J) + \sum E_{\alpha\beta} c_{\alpha}^{\dagger} c_{\beta}$ $\alpha\beta$

 $+ \sum \left(D_{a\alpha} c_{\alpha}^{\dagger} f_{a} + H.c. \right) + \sum \lambda_{aa}^{c} f_{a} f_{a}^{\dagger}$

GA/RISB (connection with DMET)

PHYSICAL REVIEW X 5, 011008 (2015)

Phase Diagram and Electronic Structure of Praseodymium and Plutonium

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Cai-Zhuang Wang,² Kai-Ming Ho,² and Gabriel Kotliar¹

PRL 118, 126401 (2017) PHYSICAL REVIEW LETTERS

week ending 24 MARCH 2017

Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO₂

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Xiaoyu Deng,³ Vladimir Dobrosavljević,¹ and Gabriel Kotliar^{3,4}

PHYSICAL REVIEW B 96, 235139 (2017)

Dynamical mean-field theory, density-matrix embedding theory, and rotationally invariant slave bosons: A unified perspective

Thomas Ayral,¹ Tsung-Han Lee,¹ and Gabriel Kotliar^{1,2}

PHYSICAL REVIEW B 99, 115129 (2019)

Rotationally invariant slave-boson and density matrix embedding theory: Unified framework and comparative study on the one-dimensional and two-dimensional Hubbard model

Tsung-Han Lee,^{1,*} Thomas Ayral,^{1,2} Yong-Xin Yao,³ Nicola Lanata,⁴ and Gabriel Kotliar^{1,5}

Formulation of GA/RISB as QE theory

Comparison between GA/RISB & DMET QE equations & performance

Outline

- A. Quantum Embedding (QE) methods.
- B. GA method (multi-orbital models): QE formulation.
- C. DFT+GA algorithmic structure.
- D. Spectral properties.
- E. Examples of applications.
- F. Recent formalism extensions.

The Hamiltonian:

$\hat{H} = \sum \sum \sum t_{\mathbf{k},ij}^{\alpha\beta} c_{\mathbf{k}i\alpha}^{\dagger} c_{\mathbf{k}j\beta} + \sum \sum t_{\mathbf{k},ij}^{\alpha\beta} c_{\mathbf{k}i\alpha}^{\dagger} c_{\mathbf{k}j\beta} + \sum t_{\mathbf{k},ij}^{\alpha\beta} c_{\mathbf{k}j\beta}^{\dagger} c_{\mathbf{k}j\beta}^{\dagger} + \sum t_{\mathbf{k},ij}^{\alpha\beta} c_{\mathbf{k}j\beta}^{\dagger} c_{\mathbf{k}$ **R** $i \ge 1$ k $i,j \ge 0 \alpha = 1 \beta = 1$ **R**: Unit cell

k: Crystal momentum

- - -

- *i*: Projector information:
- i = 0: Uncorrelated modes

i = 1: First subset of correlated modes (e.g. d orbitals of atom 1 in unit cell) i = 2: Second subset of correlated modes (e.g. f orbitals of atom 1 in unit cell)

The GA variational wave function:

$|\Psi_G\rangle = \mathcal{P}|\Psi_0\rangle = \qquad \mathcal{P}_{\mathbf{R}i}|\Psi_0\rangle$

$\mathcal{P}_{\mathbf{R}i} = \sum_{\Gamma n} [\Lambda_i]_{\Gamma n} |\Gamma; \mathbf{R}, i\rangle \langle n; \mathbf{R}, i|$

The GA variational wave function:

$|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle = \qquad \mathscr{P}_{\mathbf{R}i}|\Psi_0\rangle$

$\mathcal{P}_{\mathbf{R}i} = \sum \left[\Lambda_i \right]_{\Gamma_n} |\Gamma; \mathbf{R}, i\rangle \langle n; \mathbf{R}, i| \Gamma n$ $|\Gamma; \mathbf{R}, i\rangle = [c_{\mathbf{R}i1}^{\dagger}]^{q_1(\Gamma)} \dots [c_{\mathbf{R}i\nu_i}^{\dagger}]^{q_{\nu_i}(\Gamma)} |0\rangle$

Our goal is to minimize $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ w.r.t. $\{\Lambda_i | i \ge 1\}, |\Psi_0\rangle$.

 $2^{\nu_i} \times 2^{\nu_i}$

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Cai-Zhuang Wang,² Kai-Ming Ho,² and Gabriel Kotliar¹

PHYSICAL REVIEW LETTERS PRL 118, 126401 (2017)

> Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO_2

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Xiaoyu Deng,³ Vladimir Dobrosavljević,¹ and Gabriel Kotliar^{3,4}

PHYSICAL REVIEW X 5, 011008 (2015)

Phase Diagram and Electronic Structure of Praseodymium and Plutonium

week ending 24 MARCH 2017

Our goal is to minimize $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ w.r.t. $\{\Lambda_i | i \ge 1\}, |\Psi_0\rangle$. **Quantum-embedding** $2^{\nu_i} \times 2^{\nu}$ formulation **Self-consistency** $2^{\nu_i} \times 2^{\nu_i}$ Impurity *i* Bath *i*

Necessary steps:

- 1. Definition of approximations (GA and G. constraints).
- 2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_{i \ge 1}\}, |\Psi_0\rangle$.
- 3. Definition of slave-boson (SB) amplitudes.
- 4. Mapping from SB amplitudes to embedding states.
- 5. Lagrange formulation of the optimization problem.

Gutzwiller approximation:

 $|\Psi_G\rangle$ can be treated only numerically in general:

We will exploit simplifications that become exact in the limit of ∞ -coordination lattices. In this sense, the GA is a variational approximation to DMFT.

Gutzwiller constraints: $\langle \Psi_0 | \mathscr{P}^{\dagger}_{\mathbf{R}i} \mathscr{P}_{\mathbf{R}i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \mathscr{P}^{\dagger}_{\mathbf{R}i} \mathscr{P}_{\mathbf{R}i} f^{\dagger}_{\mathbf{R}ia} f_{\mathbf{R}ib} | \Psi_0 \rangle = \langle \Psi_0 | f^{\dagger}_{\mathbf{R}ia} f_{\mathbf{R}ib} | \Psi_0 \rangle \qquad \forall a, b \in \{1, ..., \nu_i\}$

Gutzwiller approximation:

 $|\Psi_G\rangle$ can be treated only numerically in general:

We will exploit simplifications that become exact in the limit of ∞ -coordination lattices. In this sense, the GA is a variational approximation to DMFT.

Gutzwiller constraints: $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}_i}^{\dagger} \mathscr{P}_{\mathbf{R}_i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \mathcal{P}_{\mathbf{R}_i}^{\dagger} \mathcal{P}_{\mathbf{R}_i} f_{\mathbf{R}_i o}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle = \langle \Psi_0 | f_{\mathbf{R}_i o}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle$ $\forall a, b \in \{1, ..., \nu_i\}$

Wick's theorem: $\langle \Psi_0 | c_a^{\dagger} c_b^{\dagger} c_c c_d | \Psi_0 \rangle = \langle \Psi_0 | c_a^{\dagger} c_d | \Psi_0 \rangle \langle \Psi_0 | c_b^{\dagger} c_c | \Psi_0 \rangle - \langle \Psi_0 | c_a^{\dagger} c_c | \Psi_0 \rangle \langle \Psi_0 | c_b^{\dagger} c_d | \Psi_0 \rangle$

Gutzwiller constraints: $\langle \Psi_0 | \mathcal{P}_{\mathbf{R}_i}^{\dagger} \mathcal{P}_{\mathbf{R}_i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}_i}^{\dagger} \mathscr{P}_{\mathbf{R}_i} f_{\mathbf{R}_i a}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle = \langle \Psi_0 | f_{\mathbf{R}_i a}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle \qquad \forall a, b \in \{1, ..., \nu_i\}$

Key consequence:

 $\langle \Psi_0 | \mathcal{P}_{\mathbf{R}_i}^{\dagger} \mathcal{P}_{\mathbf{R}_i} f_{\mathbf{R}_i a}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle = \langle \Psi_0 | \mathcal{P}_{\mathbf{R}_i}^{\dagger} \mathcal{P}_{\mathbf{R}_i} | \Psi_0 \rangle \langle \Psi_0 | f_{\mathbf{R}_i a}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle$

+ $\langle \Psi_0 | \mathcal{P}_{\mathbf{P}_i}^{\dagger} \mathcal{P}_{\mathbf{P}_i} f_{\mathbf{P}_i}^{\dagger} f_{\mathbf{P}_i} | \Psi_0 \rangle_{2-legs}$

Gutzwiller constraints: $\langle \Psi_0 | \mathcal{P}_{\mathbf{R}_i}^{\dagger} \mathcal{P}_{\mathbf{R}_i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \mathcal{P}_{\mathbf{R}i}^{\dagger} \mathcal{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle$

Key consequence:

 $\langle \Psi_{0} | \mathcal{P}_{\mathbf{R}i}^{\dagger} \mathcal{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_{0} \rangle = \langle \Psi_{0} | \mathcal{P}_{\mathbf{R}i}^{\dagger} \mathcal{P}_{\mathbf{R}i} | \Psi_{0} \rangle \langle \Psi_{0} | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_{0} \rangle$

Gutzwiller constraints: $\langle \Psi_0 | \mathcal{P}_{\mathbf{R}_i}^{\dagger} \mathcal{P}_{\mathbf{R}_i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle \qquad \forall a, b \in \{1, ..., \nu_i\}$ Key consequence: $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle$

+ $\langle \Psi_0 | [\mathcal{P}_{\mathbf{R}}^{\dagger}, \mathcal{P}_{\mathbf{R}}] f_{\mathbf{R}}^{\dagger} f_{\mathbf{R}} | \Psi_0 \rangle_{2-legs}$

Gutzwiller constraints: $\langle \Psi_0 | \mathcal{P}_{\mathbf{R}_i}^{\dagger} \mathcal{P}_{\mathbf{R}_i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}_i}^{\dagger} \mathscr{P}_{\mathbf{R}_i} f_{\mathbf{R}_i a}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle = \langle \Psi_0 | f_{\mathbf{R}_i a}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle \qquad \forall a, b \in \{1, ..., \nu_i\}$

Key consequence:

$\langle \Psi_0 | \mathcal{P}_{\mathbf{R}i}^{\dagger} \mathcal{P}_{\mathbf{R}i} f_{\mathbf{R}i}^{\dagger} f_{\mathbf{R}ih} | \Psi_0 \rangle_{2-legs} = 0$ $\forall a.b$

Gutzwiller constraints: $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle$

Key consequence:

 $\langle \Psi_0 | \left[\mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} \right] f_{\mathbf{R}'ja}^{\dagger} f_{\mathbf{R}'jb} | \Psi_0 \rangle_{2-legs} = 0$ $\forall a, b$

$\forall a, b \in \{1, \dots, \nu_i\}$

Necessary steps:

- 1. Definition of approximations (GA and G. constraints).
- 2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_{i \ge 1}\}, |\Psi_0\rangle$.
- 3. Definition of slave-boson (SB) amplitudes.
- 4. Mapping from SB amplitudes to embedding states.
- 5. Lagrange formulation of the optimization problem.

The Hamiltonian: ij $\alpha = 1 \beta = 1$ k

k: Crystal momentum

- - -

- *i*: Projector information:
- i = 0: Uncorrelated modes

 $\forall i \geq 1$ k $\hat{H} = \sum \sum \sum t_{\mathbf{k},ij}^{\alpha\beta} c_{\mathbf{k}i\alpha}^{\dagger} c_{\mathbf{k}j\beta} + \sum \sum \hat{H}_{\mathbf{R}i}^{loc}$ $\mathbf{R} \quad i > 1$

R: Unit cell

i = 1: First subset of correlated modes (e.g. d orbitals of atom 1 in unit cell) i = 2: Second subset of correlated modes (e.g. f orbitals of atom 1 in unit cell)

Local operators:

$\langle \Psi_{G} | \hat{\mathcal{O}} [c_{\mathbf{R}i\alpha}^{\dagger}, c_{\mathbf{R}i\alpha}^{\dagger}] | \Psi_{G} \rangle = \langle \Psi_{0} | \mathcal{P}^{\dagger} \hat{\mathcal{O}} [c_{\mathbf{R}i\alpha}^{\dagger}, c_{\mathbf{R}i\alpha}^{\dagger}] \mathcal{P} | \Psi_{0} \rangle$

$= \langle \Psi_{0} | \left[\prod_{(\mathbf{R}',i')\neq(\mathbf{R},i)} \mathcal{P}_{\mathbf{R}'i'}^{\dagger} \mathcal{P}_{\mathbf{R}'i'} \right] \left[\mathcal{P}_{\mathbf{R}i}^{\dagger} \hat{\mathcal{O}} [c_{\mathbf{R}i\alpha}^{\dagger}, c_{\mathbf{R}i\alpha}^{\dagger}] \mathcal{P}_{\mathbf{R}i} | \Psi_{0} \rangle \right]$

$\int \mathcal{P}_{\mathbf{R}'i'}^{\dagger} \mathcal{P}_{\mathbf{R}'i'} | \Psi_0 \rangle \times \langle \Psi_0 | \mathcal{P}_{\mathbf{R}i}^{\dagger} \hat{\mathcal{O}} [c_{\mathbf{R}i\alpha}^{\dagger}, c_{\mathbf{R}i\alpha}^{\dagger}] \mathcal{P}_{\mathbf{R}i} | \Psi_0 \rangle$ $=\langle \Psi_0 |$ $(\mathbf{R}',i')\neq(\mathbf{R},i)$

(GA and G. constraints)

Local operators: (connected terms)

$\langle \Psi_{0} | \left[\prod_{(\mathbf{R}',i')\neq(\mathbf{R},i)} \mathcal{P}_{\mathbf{R}'i'}^{\dagger} \mathcal{P}_{\mathbf{R}'i'} \right] \mathcal{P}_{\mathbf{R}i}^{\dagger} \hat{\mathcal{O}} \left[c_{\mathbf{R}i\alpha}^{\dagger}, c_{\mathbf{R}i\alpha}^{\dagger} \right] \mathcal{P}_{\mathbf{R}i} | \Psi_{0} \rangle$

Local operators:

 $\langle \Psi_{G} | \hat{\mathcal{O}} [c_{\mathbf{R}i\alpha}^{\dagger}, c_{\mathbf{R}i\alpha}^{\dagger}] | \Psi_{G} \rangle = \langle \Psi_{0} | \mathcal{P}_{\mathbf{R}i}^{\dagger} \hat{\mathcal{O}} [c_{\mathbf{R}i\alpha}^{\dagger}, c_{\mathbf{R}i\alpha}^{\dagger}] \mathcal{P}_{\mathbf{R}i}^{} | \Psi_{0} \rangle$

Non-local 1-body operators, i.e., $(\mathbf{R}, i) \neq (\mathbf{R}', i')$:

 $\langle \Psi_{G} | c_{\mathbf{R}i\alpha}^{\dagger} c_{\mathbf{R}'i'\beta}^{\dagger} | \Psi_{G} \rangle = \langle \Psi_{0} | \left[\mathcal{P}_{\mathbf{R}i}^{\dagger} c_{\mathbf{R}i\alpha}^{\dagger} \mathcal{P}_{\mathbf{R}i}^{\dagger} \right] \left[\mathcal{P}_{\mathbf{R}'i'}^{\dagger} c_{\mathbf{R}'i'\beta}^{\dagger} \mathcal{P}_{\mathbf{R}'i'}^{\dagger} \right] | \Psi_{0} \rangle$

Non-local quadratic operators:

 $\langle \Psi_{G} | c_{\mathbf{R}i\alpha}^{\dagger} c_{\mathbf{R}'i'\beta}^{\dagger} | \Psi_{G} \rangle = \langle \Psi_{0} | \left[\mathscr{P}_{\mathbf{R}i}^{\dagger} c_{\mathbf{R}i\alpha}^{\dagger} \mathscr{P}_{\mathbf{R}i}^{\dagger} \right] \left[\mathscr{P}_{\mathbf{R}'i'}^{\dagger} c_{\mathbf{R}'i'\beta}^{\dagger} \mathscr{P}_{\mathbf{R}'i'}^{\dagger} \right] | \Psi_{0} \rangle$ $= \langle \Psi_0 | \left[\sum_{\alpha} \left[\mathcal{R}_i \right]_{a\alpha} f_{\mathbf{R}ia}^{\dagger} \right] \left[\sum_{\beta} \left[\mathcal{R}_i \right]_{\beta b}^{\dagger} f_{\mathbf{R}'i'b} \right] | \Psi_0 \rangle$ С Where \mathcal{R}_i is determined by:

 $\langle \Psi_{0} | \mathcal{P}_{\mathbf{R}i}^{\dagger} c_{\mathbf{R}i\alpha}^{\dagger} \mathcal{P}_{\mathbf{R}i} f_{\mathbf{R}ia} | \Psi_{0} \rangle = \sum \left[\mathcal{R}_{i} \right]_{a'\alpha} \langle \Psi_{0} | f_{\mathbf{R}ia'}^{\dagger} f_{\mathbf{R}ia} | \Psi_{0} \rangle$

a'

Non-local quadratic operators:

 $\mathcal{P}_{\mathbf{R}i}^{\dagger} \mathcal{C}_{\mathbf{R}i\alpha}^{\dagger} \mathcal{P}_{\mathbf{R}i} \rightarrow \sum [\mathcal{R}_{i}]_{a\alpha} f_{\mathbf{R}i\alpha}^{\dagger}$ a $\mathcal{P}_{\mathbf{R}i} = \sum \left[\Lambda_i \right]_{\Gamma,n} |\Gamma; \mathbf{R}, i\rangle \langle n; \mathbf{R}, i|$ Γ,n

 $|\Gamma; \mathbf{R}, i\rangle = \left[c_{\mathbf{R}i1}^{\dagger}\right]^{q_1(\Gamma)} \dots \left[c_{\mathbf{R}i\nu}^{\dagger}\right]^{q_{\nu_i}(\Gamma)} |0\rangle$ $|n; \mathbf{R}, i\rangle = [f_{\mathbf{R}i1}^{\dagger}]^{q_1(n)} \dots [f_{\mathbf{R}i\nu_i}^{\dagger}]^{q_{\nu_i}(n)} |0\rangle$

Variational energy:

 $\hat{H} = \sum \sum \sum i \sum t_{\mathbf{k},ij}^{\alpha\beta} c_{\mathbf{k}i\alpha}^{\dagger} c_{\mathbf{k}i\beta} + \sum \sum \hat{H}_{\mathbf{R}i}^{loc}$ k ij $\alpha = 1 \beta = 1$ $\mathbf{R} \quad i > 1$

 $\mathscr{E} = \sum \sum \left[\mathscr{R}_{i} t_{\mathbf{k},ij} \mathscr{R}_{j}^{\dagger} \right]_{ab} \langle \Psi_{0} | f_{\mathbf{k}ia}^{\dagger} f_{\mathbf{k}jb} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle \right]_{ab} \langle \Psi_{0} | f_{\mathbf{k}ia}^{\dagger} f_{\mathbf{k}jb} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle \right]_{ab} \langle \Psi_{0} | f_{\mathbf{k}ia}^{\dagger} f_{\mathbf{k}jb} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle \right]_{ab} \langle \Psi_{0} | f_{\mathbf{k}ia}^{\dagger} f_{\mathbf{k}jb} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \Psi_{0} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \Psi_{0} | \Psi_{0} | \Psi_{0} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \Psi_{0} | \Psi_{0} | \Psi_{0} | \Psi_{0} | \Psi_{0} \rangle + \sum \left\langle \Psi_{0} | \Psi_{0} |$ kij ab

Where: $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}_i}^{\dagger} c_{\mathbf{R}_i \alpha}^{\dagger} \mathscr{P}_{\mathbf{R}_i} f_{\mathbf{R}_i \alpha} | \Psi_0 \rangle = \sum [\mathscr{R}_i]_{a' \alpha} \langle \Psi_0 | f_{\mathbf{R}_i \alpha'}^{\dagger} f_{\mathbf{R}_i \alpha} | \Psi_0 \rangle$

 $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \mathcal{P}_{\mathbf{R}_i}^{\dagger} \mathcal{P}_{\mathbf{R}_i} f_{\mathbf{R}_i a}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle = \langle \Psi_0 | f_{\mathbf{R}_i a}^{\dagger} f_{\mathbf{R}_i b} | \Psi_0 \rangle$ $\forall a, b \in \{1, ..., \nu_i\}$

R.*i*>1

Necessary steps:

- 1. Definition of approximations (GA and G. constraints).
- 2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_{i \ge 1}\}, |\Psi_0\rangle$.
- 3. Definition of slave-boson (SB) amplitudes.
- 4. Mapping from SB amplitudes to embedding states.
- 5. Lagrange formulation of the optimization problem.

Variational energy:

 $\mathscr{E} = \sum_{\mathbf{k},ij} \sum_{\mathbf{k},ij} \mathscr{R}_{i}^{\dagger} \Big|_{ab} \langle \Psi_{0} | f_{\mathbf{k}i\alpha}^{\dagger} f_{\mathbf{k}j\beta} | \Psi_{0} \rangle + \sum_{\mathbf{k},ij} \langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle$ kij ab

Where: $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}i}^{\dagger} c_{\mathbf{R}i\alpha}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia} | \Psi_0 \rangle = \sum [\mathscr{R}_i]_{a'\alpha} \langle \Psi_0 | f_{\mathbf{R}ia'}^{\dagger} f_{\mathbf{R}ia} | \Psi_0 \rangle$

 $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}_i}^{\dagger} \mathscr{P}_{\mathbf{R}_i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle = \langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle$

R.*i*>1

$\forall a, b \in \{1, ..., \nu_i\}$

Variational energy:

 $\mathscr{E} = \sum \sum \left[\mathscr{R}_{i} t_{\mathbf{k}, ij} \mathscr{R}_{j}^{\dagger} \right]_{ab} \langle \Psi_{0} | f_{\mathbf{k}i\alpha}^{\dagger} f_{\mathbf{k}i\alpha}^{$ kij ab

Where: $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}i}^{\dagger} c_{\mathbf{R}i\alpha}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia} | \Psi_0 \rangle = \sum_{i} [\mathscr{R}_i]_{a'\alpha} \langle \Psi_0 | f_{\mathbf{R}ia'}^{\dagger} f_{\mathbf{R}ia} | \Psi_0 \rangle$

 $\langle \Psi_0 | \mathcal{P}_{\mathbf{R}i}^{\dagger} \mathcal{P}_{\mathbf{R}i} | \Psi_0 \rangle = \langle \Psi_0 | \Psi_0 \rangle = 1$ $\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_{0} \rangle = \langle \Psi_{0} | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_{0} \rangle$

$$\sum_{\mathbf{k}j\beta} |\Psi_{0}\rangle + \sum_{\mathbf{R},i\geq 1} \langle \Psi_{0} | \mathcal{P}_{\mathbf{R}i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \mathcal{P}_{\mathbf{R}i} | \Psi_{0}$$

$\forall a, b \in \{1, ..., \nu_i\}$

$$\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle = Tr[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i}] =$$

$$\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_{0} \rangle = Tr[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i}]$$

$$\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \hat{\mathcal{O}} [c_{\mathbf{R}ia}^{\dagger}, c_{\mathbf{R}ia}] \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle = Tr[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i}]$$

$$\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} c_{\mathbf{R}ia}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia} | \Psi_{0} \rangle = Tr[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i}]$$

$$Where:$$

$$[F_{ia}]_{\Gamma\Gamma'} = \langle \Gamma; \mathbf{R}, i | c_{\mathbf{R}ia} | \Gamma'; \mathbf{R}, i \rangle$$

 $[F_{ia}]_{nn'} = \langle n; \mathbf{R}, i | f_{\mathbf{R}ia} | n'; \mathbf{R}, i \rangle$

1

$\Lambda_i F_{ia}^{\dagger} F_{ib}^{\dagger} = \langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib}^{\dagger} | \Psi_0 \rangle =: [\Delta_i]_{ab}$

$Tr[P_i^0\Lambda_i^{\dagger}\hat{\mathcal{O}}[F_{i\alpha}^{\dagger},F_{i\alpha}]\Lambda_i]$

 $F_{i\alpha}^{\dagger}\Lambda_{i}F_{ia}$

 $\mathcal{P}_{\mathbf{R}i} = \sum_{\Gamma n} [\Lambda_i]_{\Gamma n} |\Gamma; \mathbf{R}, i\rangle \langle n; \mathbf{R}, i|$ $|\Gamma; \mathbf{R}, i\rangle = [c_{\mathbf{R}i1}^{\dagger}]^{q_1(\Gamma)} \dots [c_{\mathbf{R}i\nu_i}^{\dagger}]^{q_{\nu_i}(\Gamma)} |0\rangle$ $|n; \mathbf{R}, i\rangle = [f_{\mathbf{R}i1}^{\dagger}]^{q_1(n)} \dots [f_{\mathbf{R}i\nu_i}^{\dagger}]^{q_{\nu_i}(n)} |0\rangle$

$$\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} | \Psi_{0} \rangle = Tr \left[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i} \right] =$$

$$\langle \Psi_{0} | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_{0} \rangle = Tr \left[P_{i}^{0} \Lambda_{i}^{\dagger} \Lambda_{i}^$$

 $[F_{i\alpha}]_{\Gamma\Gamma'} = \langle \Gamma; \mathbf{R}, i | c_{\mathbf{R}i\alpha} | \Gamma'; \mathbf{R}, i \rangle$ $[F_{ia}]_{nn'} = \langle n; \mathbf{R}, i | f_{\mathbf{R}ia} | n'; \mathbf{R}, i \rangle$

1

$\Lambda_i F_{ia}^{\dagger} F_{ib}^{\dagger} = \langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib}^{\dagger} | \Psi_0 \rangle =: [\Delta_i]_{ab}$

$Tr[P_i^0\Lambda_i^{\dagger}\hat{\mathcal{O}}[F_{i\alpha}^{\dagger},F_{i\alpha}]\Lambda_i]$

 $F_{i\alpha}^{\dagger}\Lambda_{i}F_{i\alpha}$

Matrix of SB amplitudes: $\phi_i = \Lambda_i \sqrt{P_i^0}$

 $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}_i}^{\dagger} \mathscr{P}_{\mathbf{R}_i} | \Psi_0 \rangle = Tr[\phi_i^{\dagger} \phi_i^{\dagger}] = 1$

 $\langle \Psi_0 | \mathscr{P}_{\mathbf{R}i}^{\dagger} \mathscr{P}_{\mathbf{R}i} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib}^{\dagger} | \Psi_0 \rangle = Tr \left[\phi_i^{\dagger} \phi_i F_{ia}^{\dagger} F_{ib} \right] = \langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib}^{\dagger} | \Psi_0 \rangle =: [\Delta_i]_{ab}$

 $\langle \Psi_0 | \mathscr{P}^{\dagger}_{\mathbf{R}i} \hat{\mathscr{O}} [c^{\dagger}_{\mathbf{R}i\alpha}, c^{\dagger}_{\mathbf{R}i\alpha}] \mathscr{P}_{\mathbf{R}i} | \Psi_0 \rangle = Tr [\phi_i \phi_i^{\dagger} \hat{\mathscr{O}} [F^{\dagger}_{i\alpha}, F_{i\alpha}]]$

 $Tr[\phi_i^{\dagger}F_{i\alpha}^{\dagger}\phi_i^{}F_{ia}^{}] = \sum \left[\mathcal{R}_i\right]_{c\alpha} \left[\Delta_i(1-\Delta_i)\right]_{ca}^{\frac{1}{2}}$

 $\phi_i = \Lambda_i / P_i^0$

Variational energy:

 $\hat{H} = \sum \sum \sum i \sum t_{\mathbf{k},ij}^{\alpha\beta} c_{\mathbf{k}i\alpha}^{\dagger} c_{\mathbf{k}j\beta} + \sum \sum \hat{H}_{\mathbf{R}i}^{loc}$ k ij $\alpha = 1 \beta = 1$ **R** i > 1

 $\mathscr{E} = \sum \sum \left[\mathscr{R}_{i} t_{\mathbf{k}, ij} \mathscr{R}_{j}^{\dagger} \right]_{ab} \langle \Psi_{0} | f_{\mathbf{k}ia}^{\dagger} f_{\mathbf{k}jb} | \Psi_{0} \rangle + \sum Tr \left[\phi_{i} \phi_{i}^{\dagger} \hat{H}_{\mathbf{R}i}^{loc} \left[F_{i\alpha}^{\dagger}, F_{i\alpha} \right] \right]$ kij ab

Where: $Tr[\phi_i^{\dagger}F_{i\sigma}^{\dagger}\phi_i F_{i\sigma}] = \sum_{i} [S_{i\sigma}]^{i\sigma}$

 $Tr[\phi_i^{\dagger}\phi_i] = \langle \Psi_0 | \Psi_0 \rangle = 1$ $Tr\left[\phi_{i}^{\dagger}\phi_{i}F_{ia}^{\dagger}F_{ib}\right] = \langle \Psi_{0}|f_{\mathbf{R}ia}^{\dagger}f_{\mathbf{R}ib}|\Psi_{0}\rangle =: [\Delta_{i}]_{ab}$ $\forall a, b \in \{1, ..., \nu_i\}$

R.*i*>1

$$\mathcal{R}_i]_{c\alpha} \left[\Delta_i (1 - \Delta_i) \right]_{c\alpha}^{\frac{1}{2}}$$

Necessary steps:

- 1. Definition of approximations (GA and G. constraints).
- 2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_{i \ge 1}\}, |\Psi_0\rangle$.
- 3. Definition of slave-boson (SB) amplitudes.
- 4. Mapping from SB amplitudes to embedding states.
- 5. Lagrange formulation of the optimization problem.

Quantum-embedding

 $[\phi_i]_{\Gamma n} \longrightarrow |\Phi_i\rangle := \sum e^{i\frac{\pi}{2}N(i)}$ $2^{\nu_i} \times 2^{\nu_i}$ Γn

formulation

$$2^{\nu_{i}} \times 2^{\nu_{i}}$$

$$n)(N(n)-1)[\phi_{i}]_{\Gamma n} | \Gamma; i \rangle \otimes U_{PH} | n; i \rangle$$

$$V(n) = \sum_{a=1}^{\nu_{i}} q_{a}(n)$$
Impurity *i* Bath *i*

$$|\Gamma; i\rangle = [\hat{c}_{i1}^{\dagger}]^{q_1(\Gamma)} \dots [\hat{c}_{i\nu_i}^{\dagger}]^{q_{\nu_i}(\Gamma)}$$

$$|n; i\rangle = [\hat{f}_{i1}^{\dagger}]^{q_1(n)} \dots [\hat{f}_{i\nu_i}^{\dagger}]^{q_{\nu_i}(n)}$$

Quantum-embedding f

 $[\phi_i]_{\Gamma n} \longrightarrow |\Phi_i\rangle := \sum e^{i\frac{\pi}{2}N(e^{i$ Γn $\gamma_{\nu_i} \times 2^{\nu_i}$

Formulation

$$2^{\nu_{i}} \times 2^{\nu_{i}}$$

$$n)(N(n)-1)[\phi_{i}]_{\Gamma n} | \Gamma; i \rangle \otimes U_{PH} | n; i \rangle$$

$$V(n) = \sum_{a=1}^{\nu_{i}} q_{a}(n)$$
Impurity *i* Bath *i*

$$|\Gamma; i\rangle = [\hat{c}_{i1}^{\dagger}]^{q_1(\Gamma)} \dots [\hat{c}_{i\nu_i}^{\dagger}]^{q_{\nu_i}(\Gamma)}$$

$$|n; i\rangle = [\hat{f}_{i1}^{\dagger}]^{q_1(n)} \dots [\hat{f}_{i\nu_i}^{\dagger}]^{q_{\nu_i}(r)}$$

Quantum-embedding f

 $[\phi_i]_{\Gamma n} \longrightarrow |\Phi_i\rangle := \sum e^{i\frac{\pi}{2}N(r)}$ $2^{\nu_i} \times 2^{\nu_i}$ Γn

 $\left[\mathscr{P}_{\mathbf{R}i}, \hat{N}_{\mathbf{R}, \mathbf{i}}\right] = 0 \iff \sum_{\alpha=1}^{\nu_i} \hat{c}_{\alpha}^{\dagger} \hat{c}_{\alpha} + \sum_{\alpha=1}^{\nu_i} \hat{c}_{\alpha}^{\dagger}$

$$2^{\nu_{i}} \times 2^{\nu_{i}}$$

$$x^{(n)(n)-1)} [\phi_{i}]_{\Gamma n} |\Gamma; i\rangle \otimes U_{PH} |n; i\rangle$$

$$y^{(n)} = \sum_{a=1}^{\nu_{i}} q_{a}(n)$$

$$(f_{a})^{\dagger} = \int_{a=1}^{\mu_{i}} q_{a}(n)$$

$$(f_{a})^{\dagger} = \nu_{i} |\Phi_{i}\rangle$$

$$|\Gamma; i\rangle = [\hat{c}_{i1}^{\dagger}]^{q_{1}(\Gamma)} \dots [\hat{c}_{i\nu_{i}}^{\dagger}]^{q_{\nu_{i}}(\Gamma)}$$

$$|n; i\rangle = [\hat{f}_{i1}^{\dagger}]^{q_{1}(n)} \dots [\hat{f}_{i\nu_{i}}^{\dagger}]^{q_{\nu_{i}}(n)}$$

Quantum-embedding formulation $2^{\nu_i} \times 2^{\nu_i}$ $N(n) = \sum_{i=1}^{\nu_i} q_a(n)$ Bath *i* Impurity *i*

 $Tr[\phi_i^{\dagger}\phi_i F_{ia}^{\dagger}F_{ib}] = \langle \Phi_i | \hat{f}_{ib} \hat{f}_{ia}^{\dagger} | \Phi_i \rangle = [\Delta_i]_{ab}$ $Tr[\phi_i \phi_i^{\dagger} \hat{\mathcal{O}}[F_{i\alpha}^{\dagger}, F_{i\alpha}]] = \langle \Phi_i | \hat{\mathcal{O}}[\hat{c}_{i\alpha}^{\dagger}, \hat{c}_{i\alpha}] | \Phi_i \rangle$ $Tr\left[\phi_{i}^{\dagger}F_{i\alpha}^{\dagger}\phi_{i}F_{ia}\right] = \langle \Phi_{i} | \hat{c}_{i\alpha}^{\dagger}\hat{f}_{ia} | \Phi_{i} \rangle$

Variational energy:

 $\hat{H} = \sum \sum \sum i \sum t_{\mathbf{k},ij}^{\alpha\beta} c_{\mathbf{k}i\alpha}^{\dagger} c_{\mathbf{k}i\beta} + \sum \sum \hat{H}_{\mathbf{R}i}^{loc}$ k ij $\alpha = 1 \beta = 1$ $\mathbf{R} \quad i > 1$

 $\mathscr{E} = \sum \sum \left| \mathscr{R}_{i} t_{\mathbf{k},ij} \mathscr{R}_{j}^{\dagger} \right|_{ab} \langle \Psi_{0} | f_{\mathbf{k}ia}^{\dagger} f_{\mathbf{k}jb} | \Psi_{0} \rangle + \sum \left\langle \Phi_{i} | \hat{H}_{\mathbf{R}i}^{loc} [\hat{c}_{i\alpha}^{\dagger}, \hat{c}_{i\alpha}^{\dagger}] | \Phi_{i} \right\rangle$ kij ab **R**.*i*>1

Where: $\langle \Phi_i | \hat{c}_{i\alpha}^{\dagger} \hat{f}_{ia} | \Phi_i \rangle = \sum_{i} [$

$$\begin{split} \langle \Phi_i | \Phi_i \rangle &= \langle \Psi_0 | \Psi_0 \rangle = 1 \\ \langle \Phi_i | \hat{f}_{ib} \hat{f}_{ia}^{\dagger} | \Phi_i \rangle &= \langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle =: [\Delta_i]_{ab} \qquad \forall a, b \in \{1, ..., \nu_i\} \end{split}$$

$$[\mathcal{R}_i]_{c\alpha} \left[\Delta_i (1 - \Delta_i) \right]_{c\alpha}^{\frac{1}{2}}$$

Necessary steps:

- 1. Definition of approximations (GA and G. constraints).
- 2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_{i \ge 1}\}, |\Psi_0\rangle$.
- 3. Definition of slave-boson (SB) amplitudes.
- 4. Mapping from SB amplitudes to embedding states.
- 5. Lagrange formulation of the optimization problem.

Variational energy:

 $\mathscr{E} = \sum \sum \left[\mathscr{R}_{i} t_{\mathbf{k}, ij} \mathscr{R}_{j}^{\dagger} \right]_{ab} \langle \Psi_{0} | f_{\mathbf{k} ia}^{\dagger}$ kij ab

Where: $\langle \Phi_i | \hat{c}_{i\alpha}^{\dagger} \hat{f}_{i\alpha} | \Phi_i \rangle =: \sum_{i \in \mathcal{X}} \sum_{i \in \mathcal{X}} \left\{ \Phi_i | \hat{c}_{i\alpha}^{\dagger} \hat{f}_{i\alpha} | \Phi_i \right\}$

- $\langle \Psi_0 | \Psi_0 \rangle = 1$
- $\langle \Phi_i | \Phi_i \rangle = 1$
- $\langle \Psi_0 | \hat{f}_{\mathbf{R}ia}^{\dagger} \hat{f}_{\mathbf{R}ib}^{\dagger} | \Psi_0 \rangle =: [\Delta_i]_{ab}$ $\langle \Phi_i | \hat{f}_{ib}^{\dagger} \hat{f}_{ia}^{\dagger} | \Phi_i \rangle = [\Delta_i]_{ab}$

$$\int_{\mathbf{k},i \geq 1} |\Psi_0\rangle + \sum_{\mathbf{R},i \geq 1} \langle \Phi_i | \hat{H}_{\mathbf{R}i}^{loc} [\hat{c}_{i\alpha}^{\dagger}, \hat{c}_{i\alpha}^{\dagger}] |$$

$$\left[\mathcal{R}_{i}\right]_{c\alpha}\left[\Delta_{i}(1-\Delta_{i})\right]_{c\alpha}^{\frac{1}{2}}$$

Variational energy:

 $\mathscr{E} = \sum \sum \left[\mathscr{R}_{i} t_{\mathbf{k}, ij} \mathscr{R}_{j}^{\dagger} \right] \left[\langle \Psi_{0} | f_{\mathbf{k} ia}^{\dagger} \right]$ kij ab

Where: $\langle \Phi_i | \hat{c}_{i\alpha}^{\dagger} \hat{f}_{ia} | \Phi_i \rangle =: \sum_{\alpha} \left[\mathcal{R}_i \right]_{c\alpha} \left[\Delta_i (1 - \Delta_i) \right]_{c\alpha}^{\frac{1}{2}}$

 $\langle \Psi_0 | \Psi_0 \rangle = 1 \qquad E$ $\langle \Phi_i | \Phi_i \rangle = 1 \qquad E_i^c$

 $\langle \Psi_0 | f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}ib} | \Psi_0 \rangle =: [\Delta_i]_{ab}$

 $\langle \Phi_i | \hat{f}_{ib} \hat{f}_{ia}^{\dagger} | \Phi_i \rangle = [\Delta_i]_{ab}$

$$\int_{\mathbf{k},jb} |\Psi_{0}\rangle + \sum_{\mathbf{R},i\geq 1} \langle \Phi_{i} | \hat{H}_{\mathbf{R}i}^{loc} [\hat{c}_{i\alpha}^{\dagger}, \hat{c}_{i\alpha}^{\dagger}] |$$

 $-[\mathcal{D}_i]_{\alpha\alpha}$

 $- [\lambda_i]_{ab}$ $[\lambda_i^c]_{ab}$

Lagrange function:

 $\mathscr{L} = \frac{1}{\mathscr{N}} \langle \Psi_0 | \hat{H}_{qp}[\mathscr{R}, \lambda] | \Psi_0 \rangle + E(1 - \langle \Psi_0 | \Psi_0 \rangle)$ $+ \sum \langle \Phi_i | \hat{H}_i^{emb} [\mathcal{D}_i, \lambda_i^c] | \Phi_i \rangle + E_i^c (1 - \langle \Phi_i | \Phi_i \rangle)$ $i \geq 1$

Where:

 $\hat{H}_{qp}[\mathcal{R},\lambda] = \sum_{\mathbf{k},ij} \sum_{ab} \left[\mathcal{R}_i t_{\mathbf{k},ij} \mathcal{R}_j^{\dagger} \right]_{ab} f_{\mathbf{k}ia}^{\dagger} f_{\mathbf{k}jb} + \sum_{\mathbf{R}i} \sum_{ab} [\lambda_i]_{ab} f_{\mathbf{R}ia}^{\dagger} f_{\mathbf{R}jb}$ $\hat{H}_{i}^{emb}[\mathcal{D}_{i},\lambda_{i}^{c}] = \hat{H}_{\mathbf{R}i}^{loc}[\hat{c}_{i\alpha}^{\dagger},\hat{c}_{i\alpha}] + \sum \left([\mathcal{D}_{i}]_{a\alpha}\hat{c}_{i\alpha}^{\dagger}\hat{f}_{i\alpha} + \mathsf{H.C.} \right) + \sum \left[\lambda_{i}^{c} \right]_{ab}\hat{f}_{ib}\hat{f}_{ia}^{\dagger}$ ab $a\alpha$

 $-\sum_{i\geq 1} \sum_{ab} \left([\lambda_i]_{ab} + [\lambda_i^c]_{ab} \right) [\Delta_i]_{ab} + \sum_{caa} \left([\mathscr{D}_i]_{aa} [\mathscr{R}_i]_{ca} [\Delta_i (1-\Delta_i)]_{ca}^{\frac{1}{2}} + \text{c.c.} \right)$ $ca\alpha$

Lagrange equations:

$$(\mathcal{R},\lambda) \longrightarrow \frac{1}{\mathcal{N}} \left[\sum_{\mathbf{k}} \Pi_{i} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{ba} = \left[\Delta_{i} \right]_{ab}$$
$$\frac{1}{\mathcal{N}} \left[\sum_{\mathbf{k}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{\mathbf{k}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{\mathbf{k}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \prod_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \prod_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \prod_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \prod_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \prod_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \prod_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right] \prod_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{c} t_{c} \mathcal{R}^{\dagger} + \lambda\right] \prod_{c,a=1}^{\nu_{i}} \left[\sum_{c,a=1}^{\nu_{i}} \Pi_{i} t_{c} t_{c}$$

$$\frac{1}{\mathcal{N}} \left[\sum_{\mathbf{k}} \Pi_{i} t_{\mathbf{k}} \mathscr{R}^{\dagger} f\left(\mathscr{R} t_{\mathbf{k}} \mathscr{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{\alpha a} = \sum_{c,a=1}^{\nu_{i}} \sum_{a=1}^{\nu_{i}} \left[\mathscr{D}_{i} \right]_{ca} \left[\Delta_{i} \left(1 - \Delta_{i} \right) \right]^{\frac{1}{2}} \longrightarrow \left[\mathscr{D}_{i} \right]_{ca} \right]_{ca}$$

$$\sum_{c,b=1}^{\nu_{i}} \sum_{a=1}^{\nu_{i}} \frac{\partial}{\partial \left[d_{i}^{0} \right]_{s}} \left(\left[\Delta_{i} \left(1 - \Delta_{i} \right) \right]^{\frac{1}{2}} \left[\mathscr{D}_{i} \right]_{ba} \left[\mathscr{R}_{i} \right]_{ca} + c.c. \right) + \left[l_{i} + l_{i}^{c} \right]_{s} = 0 \longrightarrow l_{i}^{c}$$

$$\hat{H}_{i}^{\text{emb}} | \Phi_{i} \rangle = E_{i}^{c} | \Phi_{i} \rangle \longrightarrow | \Phi_{i} \rangle$$

$$\left[\mathscr{F}_{i}^{(1)} \right]_{aa} = \langle \Phi_{i} | \hat{c}_{ia}^{\dagger} \hat{f}_{id} | \Phi_{i} \rangle - \sum_{c=1}^{c} \left[\Delta_{i} \left(1 - \Delta_{i} \right) \right]^{\frac{1}{2}} \left[\mathscr{R}_{i} \right]_{ca} \stackrel{!}{=} 0$$

$$\left[\mathscr{F}_{i}^{(2)} \right]_{ab} = \langle \Phi_{i} | \hat{f}_{ib}^{\dagger} \hat{f}_{ia}^{\dagger} | \Phi_{i} \rangle - \left[\Delta_{i} \right]_{ab} \stackrel{!}{=} 0$$

 ID° IU

$$\left[\Delta_i\right]_{ab}$$

Lagrange equations:

$$(\mathcal{R},\lambda) \longrightarrow \frac{1}{\mathcal{N}} \left[\sum_{\mathbf{k}} \Pi_{i} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{ba} = \left[\Delta_{i} \right]_{ab} \longrightarrow \left[\Delta_{i} \right]_{ab}$$

$$\frac{1}{\mathcal{N}} \left[\sum_{\mathbf{k}} \Pi_{i} t_{\mathbf{k}} \mathcal{R}^{\dagger} f\left(\mathcal{R} t_{\mathbf{k}} \mathcal{R}^{\dagger} + \lambda\right) \Pi_{i} \right]_{ca} = \sum_{c,a=1}^{\nu_{i}} \sum_{a=1}^{\nu_{i}} \left[\mathcal{D}_{i} \right]_{ca} \left[\Delta_{i} \left(1 - \Delta_{i} \right) \right]^{\frac{1}{2}} \longrightarrow \left[\mathcal{D}_{i} \right]_{ca} \right]_{ca}$$

$$\sum_{c,b=1}^{\nu_{i}} \sum_{\alpha=1}^{\nu_{i}} \frac{\partial}{\partial \left[d_{i}^{0} \right]_{s}} \left(\left[\Delta_{i} \left(1 - \Delta_{i} \right) \right]^{\frac{1}{2}} \left[\mathcal{D}_{i} \right]_{ba} \left[\mathcal{R}_{i} \right]_{ca} + c.c. \right) + \left[t_{i} + t_{i}^{c} \right]_{s} = 0 \longrightarrow \left[\Lambda_{i}^{c} \right]_{ab} \right]_{s=1}^{\nu_{i}^{c}} \left[d_{i}^{0} \right]_{s}^{s} \left[\mathcal{R}_{i}^{0} \right]_{ca} + c.c. \right]_{s=1}^{\nu_{i}^{c}} \left[d_{i}^{0} \right]_{s}^{s} \left[d_{i}^{0} \right]_{s}^{s$$

$$\rightarrow \left[\Delta_i\right]_{ab}$$

Necessary steps:

- 1. Definition of approximations (GA and G. constraints).
- 2. Evaluation of $\langle \Psi_G | \hat{H} | \Psi_G \rangle$ in terms of $\{\Lambda_{i \ge 1}\}, |\Psi_0\rangle$.
- 3. Definition of slave-boson (SB) amplitudes.
- 4. Mapping from SB amplitudes to embedding states.
- 5. Lagrange formulation of the optimization problem.

Outline

- A. Quantum Embedding (QE) methods.
- B. GA method (multi-orbital models): QE formulation.
- C. DFT+GA algorithmic structure.
- D. Spectral properties.
- E. Examples of applications.
- F. Recent formalism extensions (g-GA).

DFT+GA: algorithmic structure

PHYSICAL REVIEW X 5, 011008 (2015)

Phase Diagram and Electronic Structure of Praseodymium and Plutonium

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Cai-Zhuang Wang,² Kai-Ming Ho,² and Gabriel Kotliar¹

Kohn-Sham scheme:

 $\mathscr{E}[\rho] = T_{KS}[\rho] + E_{HXC}[\rho] + \int \mathbf{dr} \, V(\mathbf{r}) \, \rho(\mathbf{r})$ $T_{KS}[\rho] = \min_{\Psi_0 \to \rho} \langle \Psi_0 | \, \hat{T} | \, \Psi_0 \rangle$

 $\min_{\rho} \mathscr{E}[\rho] = \min_{\Psi_0} \left| \langle \Psi_0 | \hat{T} + \left[\mathbf{dr} V(\mathbf{r}) \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle + E_{HXC} \left[\langle \Psi_0 | \hat{\rho} | \Psi_0 \rangle \right] \right|$

Kohn-Sham scheme:

 $\mathscr{E}[\rho] = T_{KS}[\rho] + E_{HXC}[\rho] + \int \mathbf{dr} \, V(\mathbf{r}) \, \rho(\mathbf{r})$ $T_{KS}[\rho] = \min_{\Psi_0 \to \rho} \langle \Psi_0 | \, \hat{T} | \, \Psi_0 \rangle$

 $\min_{\rho} \mathscr{E}[\rho] = \min_{\Psi_0} \left| \langle \Psi_0 | \hat{T} + \left[\mathbf{dr} V(\mathbf{r}) \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle + E_{HXC} \left[\langle \Psi_0 | \hat{\rho} | \Psi_0 \rangle \right] \right|$

 $\mathcal{S}[\Psi_0, \rho(\mathbf{r}), \mathcal{J}(\mathbf{r})] = \langle \Psi_0 | \hat{T} + | \mathbf{dr} V(\mathbf{r}) \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle + E_{HXC}[\rho]$

+ $d\mathbf{r} \mathcal{J}(\mathbf{r}) (\langle \Psi_0 | \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle - \rho(\mathbf{r}))$

Enforcing definition of $\rho(\mathbf{r})$

Kohn-Sham scheme:

 $\mathscr{E}[\rho] = T_{KS}[\rho] + E_{HXC}[\rho] + \mathbf{dr} V(\mathbf{r}) \rho(\mathbf{r})$ $T_{KS}[\rho] = \min_{\Psi_0 \to \rho} \langle \Psi_0 | \hat{T} | \Psi_0 \rangle$

 $\min_{\rho} \mathscr{E}[\rho] = \min_{\Psi_0} \left| \langle \Psi_0 | \hat{T} + \left[\mathbf{dr} V(\mathbf{r}) \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle + E_{HXC} \left[\langle \Psi_0 | \hat{\rho} | \Psi_0 \rangle \right] \right|$

 $\mathcal{S}[\Psi_0, \rho(\mathbf{r}), \mathcal{J}(\mathbf{r})] = \langle \Psi_0 | \hat{T} + \left[\mathbf{dr} \left(V(\mathbf{r}) + \mathcal{J}(\mathbf{r}) \right) \hat{\rho}(\mathbf{r}) | \Psi_0 \rangle + E_{HXC}[\rho] - \int \mathbf{dr} \mathcal{J}(\mathbf{r}) \rho(\mathbf{r}) \right] \hat{\mathcal{S}}(\mathbf{r}) \hat{\rho}(\mathbf{r})$ \hat{H}_{KS}

Kohn-Sham-Hubbard scheme:

 $\mathscr{E}[\rho] = T_{KSH}[\rho] + E_{HXC}[\rho] + \int \mathbf{dr} V(\mathbf{r}) \rho(\mathbf{r})$ $T_{KSH}[\rho] = \min_{\Psi_G \to \rho} \langle \Psi_G | \hat{T} | \Psi_G \rangle$ $+\sum_{i}\hat{H}_{i}^{U_{i},J_{i}}$

$\min_{\rho} \mathscr{E}[\rho] = \min_{\Psi_G} \left| \langle \Psi_G | \hat{T} + \int \mathbf{dr} V(\mathbf{r}) \hat{\rho}(\mathbf{r}) + \sum_{i \ge 1} \hat{H}_i^{U_i, J_i} | \Psi_G \rangle + \right|$

 $+E_{HXC}\left[\langle \Psi_G | \hat{\rho} | \Psi_G \rangle\right] + E_{dc}^{U,J}\left(\langle \Psi_G | \hat{N}_i | \Psi_G \rangle\right)$

 $i \geq 1$

i > 1

Projectors over "correlated" degrees of freedom

Kohn-Sham-Hubbard scheme:

$\min_{\rho} \mathscr{E}[\rho] = \min_{\Psi_G} \left| \langle \Psi_G | \hat{T} + \int \mathbf{dr} V(\mathbf{r}) \hat{\rho}(\mathbf{r}) + \sum_{i \ge 1} \hat{H}_i^{U_i, J_i} | \Psi_G \rangle + \right|$ $+E_{HXC}\left[\langle \Psi_{G} | \hat{\rho} | \Psi_{G} \rangle\right] + \sum_{i>1} E_{dc}^{U_{i},J_{i}}\left(\langle \Psi_{G} | \hat{N}_{i} | \Psi_{G} \rangle\right)$ i > 1

+ $\int d\mathbf{r} \mathcal{J}(\mathbf{r}) \left(\langle \Psi_G | \hat{\rho}(\mathbf{r}) | \Psi_G \rangle - \rho(\mathbf{r}) \right)$

 $+ \sum V_i^{dc} \left(\langle \Psi_G | \hat{N}_i | \Psi_G \rangle - N_i \right)$ *i*≥1

Enforcing definition of $\rho(\mathbf{r})$

Enforcing definition of N;

Algorithmic structure:

 $\hat{H}_{KSH} = \hat{T} + \left[\mathbf{dr} \left[V(\mathbf{r}) + \mathcal{J}(\mathbf{r}) \right] \hat{\rho}(\mathbf{r}) + \sum \left(\hat{H}_{i}^{U_{i},J_{i}} + V_{i}^{dc} \hat{N}_{i} \right) \right]$ *i*>1 $V^{dc}_{:}$ $\rho_0(\mathbf{r})$ $\mathcal{J}(\mathbf{r})$ Check $V_i^{dc} = \frac{dE_{dc}^{U,J}}{dc}$ Solve \hat{H}_{KSH} with GA & calculate $\rho(\mathbf{r})$ dN_i

Outline

- A. Quantum Embedding (QE) methods.
- B. GA method (multi-orbital models): QE formulation.
- C. DFT+GA algorithmic structure.
- D. Spectral properties.
- E. Examples of applications
- F. Recent formalism extensions.

Ground state:

Excited states: $|\Psi_{G}^{kn}\rangle = \mathscr{P}\xi_{kn}^{\dagger}|\Psi_{0}\rangle$

$A_{i\alpha,j\beta}(\mathbf{k},\omega) = \langle \Psi_G | c_{\mathbf{k}i\alpha} \,\delta(\omega - \hat{H}) \, c_{\mathbf{k}i\beta}^{\dagger} | \Psi_G \rangle + \langle \Psi_G | c_{\mathbf{k}j\beta}^{\dagger} \,\delta(\omega + \hat{H}) \, c_{\mathbf{k}i\alpha}^{} | \Psi_G \rangle$

PHYSICAL REVIEW B 67, 075103 (2003)

Landau-Gutzwiller quasiparticles

Jörg Bünemann Oxford University, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom

> Florian Gebhard Fachbereich Physik, Philipps–Universität Marburg, D-35032 Marburg, Germany

Rüdiger Thul Abteilung Theorie, Hahn-Meitner-Institut Berlin, D-14109 Berlin, Germany

Spectral properties

$|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle$

Ground state: $|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle$ Excited states: $|\Psi_{G}^{\mathbf{k}n}\rangle = \mathscr{P}\xi_{\mathbf{k}n}^{\dagger}|\Psi_{0}\rangle$ $A_{i\alpha,j\beta}(\mathbf{k},\omega) = \langle \Psi_G | c_{\mathbf{k}i\alpha} \delta(\omega - \hat{H}) c_{\mathbf{k}j\beta}^{\dagger} | \Psi_G \rangle + \langle \Psi_G | c_{\mathbf{k}j\beta}^{\dagger} \delta(\omega + \hat{H}) c_{\mathbf{k}i\alpha}^{\dagger} | \Psi_G \rangle$

Spectral properties

 $\mathscr{G}(\mathbf{k},\omega) = \int_{-\infty}^{\infty} d\epsilon \, \frac{A(\mathbf{k},\omega)}{\omega - \epsilon} \simeq \mathscr{R}^{\dagger} \frac{1}{\omega - [\mathscr{R}\epsilon_{\mathbf{k}}\mathscr{R}^{\dagger} + \lambda]} \mathscr{R} =: \frac{1}{\omega - t_{loc} - \Sigma(\omega)}$

Ground state: $|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle$

Excited states: $|\Psi_{G}^{kn}\rangle = \mathscr{P}\xi_{kn}^{\dagger}|\Psi_{0}\rangle$

 $\Sigma(\omega) = \begin{pmatrix} [\mathbf{0}]_{\nu_0 \times \nu_0} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \Sigma_1(\omega) & \dots & \vdots \end{pmatrix} \qquad \Sigma_i(\omega)$ $\dots \Sigma_{M}(\omega)$

Spectral properties

$A_{i\alpha,j\beta}(\mathbf{k},\omega) = \langle \Psi_G | c_{\mathbf{k}i\alpha} \,\delta(\omega - \hat{H}) \, c_{\mathbf{k}i\beta}^{\dagger} | \Psi_G \rangle + \langle \Psi_G | c_{\mathbf{k}i\beta}^{\dagger} \,\delta(\omega + \hat{H}) \, c_{\mathbf{k}i\alpha}^{} | \Psi_G \rangle$

$$= t_{loc} - \omega \frac{1 - \mathcal{R}_i^{\dagger} \mathcal{R}_i}{\mathcal{R}_i^{\dagger} \mathcal{R}_i} + \left[\mathcal{R}_i\right]^{-1} \lambda_i \left[\mathcal{R}_i^{\dagger}\right]$$

Outline

- A. Quantum Embedding (QE) methods.
- B. GA method (multi-orbital models): QE formulation.
- C. DFT+GA algorithmic structure.
- D. Spectral properties.
- E. Examples of applications.
- F. Recent formalism extensions.
Example: Structure, Density, Gap **Theory vs Experiments**

npj Computational Materials

ARTICLE **OPEN**

Connection between Mott physics and crystal structure in a series of transition metal binary compounds

Nicola Lanatà¹, Tsung-Han Lee^{2,3}, Yong-Xin Yao⁴, Vladan Stevanović⁵ and Vladimir Dobrosavljević²

Theory vs Experiments

Example: phase diagram of Pu 1000 LDA 1.5 (<u>ک</u>) 100 س LDA+GA (eV/atom) $E_{LDA+GA}-E_{LDA}$ 24 0.5 Ц P_{LDA+GA} - P_{LDA} 40 30 20 20 P (GPa) 24 16 20 24 28 -20 δ' 3 20 24 28 24 16 20 16 400 600 800 200 $V(Å^3/atom)$

Outline

- A. Quantum Embedding (QE) methods.
- B. GA method (multi-orbital models): QE formulation.
- C. DFT+GA algorithmic structure.
- D. Spectral properties.
- E. Examples of applications.
- F. Recent formalism extensions.

A more accurate extension: the g-GA method

PHYSICAL REVIEW B **96**, 195126 (2017)

Emergent Bloch excitations in Mott matter

Nicola Lanatà,¹ Tsung-Han Lee,¹ Yong-Xin Yao,² and Vladimir Dobrosavljević¹

PHYSICAL REVIEW B 104, L081103 (2021) Letter Quantum embedding description of the Anderson lattice model with the ghost **Gutzwiller approximation** Marius S. Frank¹, Tsung-Han Lee¹, Gargee Bhattacharyya¹, Pak Ki Henry Tsang, Victor L. Quito¹, Vladimir Dobrosavljević, Ove Christiansen⁵, and Nicola Lanatà^{1,6,*} PHYSICAL REVIEW B 105, 045111 (2022)

Operatorial formulation of the ghost rotationally invariant slave-boson theory

Nicola Lanatà^{®*}

PHYSICAL REVIEW MATERIALS 3, 054605 (2019)

Exciton Mott transition revisited

Daniele Guerci, Massimo Capone, and Michele Fabrizio

$|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle = \mathscr{P}_{\mathbf{R}i}|\Psi_0\rangle$ $\mathbf{R}, i \geq 1$ $\mathcal{P}_{\mathbf{R}i} = \sum \left[\Lambda_i \right]_{\Gamma_n} |\Gamma; \mathbf{R}, i\rangle \langle n; \mathbf{R}, i|$ Γn Square matrix: $2^{\nu_i} \times 2^{\nu_i}$

$|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle = \qquad \mathscr{P}_{\mathbf{R}i}|\Psi_0\rangle$ $\mathbf{R}, i \geq 1$ $\mathcal{P}_{\mathbf{R}i} = \sum \left[\Lambda_i \right]_{\Gamma_n} |\Gamma; \mathbf{R}, i\rangle \langle n; \mathbf{R}, i|$ Γn Rectangular matrix: $2^{\nu_i} \times 2^{\tilde{\nu}_i}$

$|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle = \mathscr{P}_{\mathbf{R}i}|\Psi_0\rangle$ $\mathbf{R}, i \geq 1$ $\mathcal{P}_{\mathbf{R}i} = \sum \left[\Lambda_i \right]_{\Gamma_n} |\Gamma; \mathbf{R}, i\rangle \langle n; \mathbf{R}, i|$ Γn Rectangular matrix: $2^{\nu_i} \times 2^{\tilde{\nu}_i}$ **Fermionic Wave Functions from Neural-Network Constrained Hidden States**

Javier Robledo Moreno,^{1,2,*} Giuseppe Carleo,^{3,†} Antoine Georges,^{4,5,6,7,‡} and James Stokes^{1,8,§}

$|\Psi_G\rangle = \mathscr{P}|\Psi_0\rangle = \qquad \mathscr{P}_{\mathbf{R}i}|\Psi_0\rangle$ $\mathbf{R}, i \geq 1$ $\mathcal{P}_{\mathbf{R}i} = \sum \left[\Lambda_i \right]_{\Gamma_n} |\Gamma; \mathbf{R}, i\rangle \langle n; \mathbf{R}, i|$ Γn Rectangular matrix: $2^{\nu_i} \times 2^{\tilde{\nu}_i}$

Self-consistency

 $-2^{\nu_i} \times 2^{\tilde{\nu}_i}$

Bath *i*

Impurity *i*

Benchmark calculations ALM:

Benchmark calculations ALM:

 $\hat{H} = \sum_{ij} \sum_{\sigma} \left(t_{ij} + \delta_{ij} \epsilon_p \right) p_{i\sigma}^{\dagger} p_{j\sigma} + \sum_{i} \frac{U}{2} \left(\hat{n}_{di} - 1 \right)^2$ $+ V \sum_{i} \left(p_{i\sigma}^{\dagger} d_{i\sigma}^{\dagger} + \text{H.c.} \right) - \mu \sum_{i} \hat{N}_{i}$

Analytical (approximate) expression for self-energy

Some useful references:

PHYSICAL REVIEW

VOLUME 137, NUMBER 6A

15 MARCH 1965

Correlation of Electrons in a Narrow s Band

MARTIN C. GUTZWILLER

J. Phys.: Condens. Matter 9 (1997) 7343-7358. Printed in the UK

PII: S0953-8984(97)83326-7

Gutzwiller-correlated wave functions for degenerate bands: exact results in infinite dimensions

J Bünemann[†], F Gebhard[‡] and W Weber[†]

PHYSICAL REVIEW B 67, 075103 (2003)

Landau-Gutzwiller quasiparticles

Jörg Bünemann Oxford University, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, United Kingdom

> Florian Gebhard Fachbereich Physik, Philipps–Universität Marburg, D-35032 Marburg, Germany

Rüdiger Thul Abteilung Theorie, Hahn-Meitner-Institut Berlin, D-14109 Berlin, Germany

PHYSICAL REVIEW X 5, 011008 (2015)

Phase Diagram and Electronic Structure of Praseodymium and Plutonium

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Cai-Zhuang Wang,² Kai-Ming Ho,² and Gabriel Kotliar¹

VOLUME 57, NUMBER 11

PHYSICAL REVIEW LETTERS

New Functional Integral Approach to Strongly Correlated Fermi Systems: The Gutzwiller Approximation as a Saddle Point

Gabriel Kotliar⁽¹⁾ and Andrei E. Ruckenstein⁽²⁾

PHYSICAL REVIEW B 76, 155102 (2007)

Rotationally invariant slave-boson formalism and momentum dependence of the quasiparticle weight

Frank Lechermann,^{1,2,*} Antoine Georges,² Gabriel Kotliar,^{2,3} and Olivier Parcollet⁴

PRL 118, 126401 (2017)

PHYSICAL REVIEW LETTERS

Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO₂

Nicola Lanatà,^{1,*} Yongxin Yao,^{2,†} Xiaoyu Deng,³ Vladimir Dobrosavljević,¹ and Gabriel Kotliar^{3,4}

PHYSICAL REVIEW B 76, 193104 (2007)

Equivalence of Gutzwiller and slave-boson mean-field theories for multiband Hubbard models

J. Bünemann and F. Gebhard

PHYSICAL REVIEW B 78, 155127 (2008)

Fermi-surface evolution across the magnetic phase transition in the Kondo lattice model

Nicola Lanatà,¹ Paolo Barone,¹ and Michele Fabrizio^{1,2}

PHYSICAL REVIEW B 96, 195126 (2017)

Emergent Bloch excitations in Mott matter

Nicola Lanatà,¹ Tsung-Han Lee,¹ Yong-Xin Yao,² and Vladimir Dobrosavljević¹

PHYSICAL REVIEW MATERIALS 3, 054605 (2019)

Exciton Mott transition revisited

Daniele Guerci, Massimo Capone, and Michele Fabrizio

PHYSICAL REVIEW B 105, 045111 (2022)

Operatorial formulation of the ghost rotationally invariant slave-boson theory

Nicola Lanatà 🗅*

PHYSICAL REVIEW B 104, L081103 (2021)

Letter

Quantum embedding description of the Anderson lattice model with the ghost **Gutzwiller approximation**

Marius S. Frank¹, Tsung-Han Lee¹, Gargee Bhattacharyya¹, Pak Ki Henry Tsang, Victor L. Quito^{4,3}, Vladimir Dobrosavljević,³ Ove Christiansen[®],⁵ and Nicola Lanatà[®],^{6,*}

PHYSICAL REVIEW RESEARCH 3, 013101 (2021)

Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning

John Rogers^(D),^{1,2} Tsung-Han Lee^(D),³ Sahar Pakdel^(D),⁴ Wenhu Xu^(D),⁵ Vladimir Dobrosavljević^(D),² Yong-Xin Yao^(D),⁶ Ove Christiansen^{,7,*} and Nicola Lanatà^{4,8,†}

PRL 105, 076401 (2010)

PHYSICAL REVIEW LETTERS

Time-Dependent Mean Field Theory for Quench Dynamics in Correlated Electron Systems

Marco Schiró¹ and Michele Fabrizio^{1,2}

PHYSICAL REVIEW B 86, 115310 (2012)

Time-dependent and steady-state Gutzwiller approach for nonequilibrium transport in nanostructures

Nicola Lanatà¹ and Hugo U. R. Strand²

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 92, 081108(R) (2015)

Finite-temperature Gutzwiller approximation from the time-dependent variational principle

Nicola Lanatà,^{*} Xiaoyu Deng, and Gabriel Kotliar

THANK YOU FOR YOUR ATTENTION !!!

PHYSICAL REVIEW B **90**, 155136 (2014)

Machine learning for many-body physics: The case of the Anderson impurity model

Louis-François Arsenault,^{1,*} Alejandro Lopez-Bezanilla,² O. Anatole von Lilienfeld,^{3,4} and Andrew J. Millis¹

Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning

John Rogers^(D),^{1,2} Tsung-Han Lee^(D),³ Sahar Pakdel^(D),⁴ Wenhu Xu^(D),⁵ Vladimir Dobrosavljević^(D),² Yong-Xin Yao^(D),⁶ Ove Christiansen^(D),^{7,*} and Nicola Lanatà^(D4,8,†)

Self-consistency

First exploratory benchmark: DFT+GA

PHYSICAL REVIEW RESEARCH 3, 013101 (2021)

Bypassing the computational bottleneck of quantum-embedding theories for strong electron correlations with machine learning

John Rogers ^(D),^{1,2} Tsung-Han Lee ^(D),³ Sahar Pakdel ^(D),⁴ Wenhu Xu ^(D),⁵ Vladimir Dobrosavljević ^(D),² Yong-Xin Yao ^(D),⁶ Ove Christiansen ^(D),^{7,*} and Nicola Lanatà ^(D),^{8,†}

Study of series of actinide systems.

Simplifications from prior knowledge imbued within the regression problem

~50 MB

~0.1 sec

Benchmark calculations ALM:

