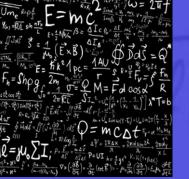
Materials informatics: the 4th paradigm

Hong Guo


RQMP, Center for the Physics of Materials, and Department of Physics,

McGill University, Montreal, Canada

Experiment

 $\int \frac{\left\{\frac{k}{k_{0}}\right\}^{2} \frac{2\omega_{0}\xi_{0}\omega_{0}\xi_{0}}{\omega_{0}(\xi_{0}-\xi_{0})} + \frac{1}{2}\sqrt{\xi_{0}} \frac{\xi_{0}}{\xi_{0}} = \frac$

Material informatics

Acknowledgements

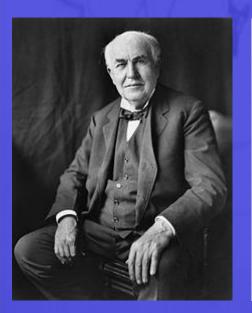
The iMAT platform:

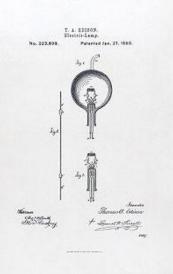
Dr. Eric Zhu, Nanoacademic Technologies Inc., Montreal, machine learning Dr. Zhongli Liu, McGill, code/platform design/development, superconductivity Dr. Peter Kang, McGill, code/platform development, energetic materials, spectroscopy

Applications:

Dan Abarbanel, PhD student, McGill, X-ray spectroscopy, AIMD Dustin Lebiadowski, undergraduate student, McGill, 2D ferroelectric materials Yi-Li Lin, undergraduate student, McGill, material descriptors Prof. Mark Sutton, McGill, X-ray spectroscopy Dr. Xianghua Kong, McGill, photocatalysts

Thanks to: NSERC, FQRNT




- > Introduction: materials informatics & machine learning
- Search for solid lithium-ion conductors
- Search for high Tc superconductors
- > Search for energetic materials
- > Summary

Introduction to materials informatics (MI)

Materials informatics (MI): data-driven approach for materials screening and design. Input: some data and physical intuition (databases, experimental or computation). Tools: machine learning, informatics toolkits ... iMAT

Advantage 1: MI has larger searching space

Human: Thomas Edison performed ~3000 experiments to find an acceptable material for the filament of electric bulb (10³)

MI: ~200,000 experimentally existing materials in the Inorganic Crystal Structure Database (ICSD, **10**⁵)

Introduction (cont.)

Advantage 2: MI can search unknown territory

053213-2 Gaultois et al. APL Mater. 4, 053213 (2016) thermoelectric materials Si_{0.8}Ge_{0.2} Н He Li Be Ν 0 F Ne Zn, Sb Ca₂Co₂O₆ S CI Ar TAGS-85 Na Mg Mg₂Si К Sc Ti V Cr Mn Fe Se Br Ca Kr Gd₁₂Co₅Bi Er₁₂Co₅Bi Ru Rh Rb Sr Nb Mo Tc Pd Xe Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Ρt Cs Ba Tm Yb W Re Os ١r ΤI Pb Po Rn La Au | Hg | l r Ta At Np Pu Am Cm Bk Cf Es Fm Md No Lr Rf Hg Sq Mt Ds Rg Cn Uut Fl Fr Ra Ac Th Pa U Nś Bi₂Te₃ Uup Llv Yb14MnSb11 CeFe₄Sb₁₂ Na_{0.02}PbTe

Human: tend to search around known materials

MI: search all places - no bias toward any material class

6/13/2022

Advantage 3: MI presents huge opportunities

Human have discovered or synthesized ~400,000 compounds and over 140 million molecules and sequences, but what do we know about them?

- Elastic constants: ~500 compounds
- Dielectric constant: ~400
- Heat conductivity: ~200
- Superconductor transition temperature: ~30,000
- Topological insulators: ~50

Conclusion: we have the materials but don't know properties for most of them

Where to find materials data?

experimental data

computational data

database

Table I. A list of some notable materials-data resources.							
Name	URL	Category	Free/Non-Free				
3D Materials Atlas	cosmicweb.mse.iastate.edu/wiki/display/home/ Materials+Atlas+Home	3D Characterization	Free				
AFLOWLIB	aflowlib.org	Computational	Free				
AIST Research Information Databases	www.aist.go.jp/aist_e/list/database/riodb	General Materials Data	Free				
American Mineralogist Crystal Structure Database	rruff.geo.arizona.edu/AMS/amcsd.phP	Minerals	Free				
ASM Alloy Center Database	mio.asminternational.org/ac	Alloys	Non-Free				
ASM Phase Diagrams	www1.asminternational.org/AsmEnterprise/APD	Thermodynamics	Non-Free				
CALPHAD databases (e.g., Thermocalc SGTE)	www.thermocalc.com/products-services/ databases/thermodynamic	Thermodynamics	Non-Free				
Cambridge Crystallographic Data Centre	www.ccdc.cam.ac.uk/pages/Home.aspx	Crystallography	Non-Free				
CatApp	suncat.stanford.edu/catapp	Catalysts	Free				
Chemspider	www.chemspider.com	Chemical data	Free				
CINDAS High-Performance Alloys Database	cindasdata.com/products/hpad	Alloys	Non-Free				
Citrination	citrination.com	General Materials Data	Free				
Computational Materials Repository	cmr.fysik.dtu.dk	Computational	Free				
CRC Handbook	www.hbcpnetbase.com	General Materials Data	Non-Free				
CrystMet	cds.dl.ac.uk/cgi-bin/news/disp?crystmet	Crystallography	Non-Free				
Crystallography Open Database	http://www.crystallography.net	Crystallography	Free				
DOE Hydrogen Storage Materials Database	www.hydrogenmaterialssearch.govtools.us	Hydrogen Storage	Free				
Granta CES Selector	www.grantadesign.com/products/ces	General Materials Data	Non-Free				
Handbook of Optical Constants of Solids, Palik	N/A	Hard-Copy Sources	Non-Free				
Harvard Clean Energy Project	cepdb.molecularspace.org	Computational	Free				
Inorganic Crystal Structure Database	cds.dl.ac.uk/cds/datasets/crys/icsd/llicsd.html	Crystallography	Non-Free				
International Glass Database System	www.newglass.jp/interglad_n/gaiyo/info_e.html	Glass	Non-Free				
Knovel	app.knovel.com/web/browse.v	General Materials Data	Non-Free				
Matbase	www.matbase.com	General Materials Data	Free				
MatDat	www.matdat.com	General Materials Data	Non-Free				
Materials Project	www.materialsproject.org	Computational	Free				
MatNavi (NIMS)	mits.nims.go.jp/index_en.html	General Materials Data	Free				
MatWeb	www.matweb.com	General Materials Data	Free				
Mindat	www.mindat.org	Minerals	Free				
NanoHUB	nanohub.org	Nanomaterials	Free				
Nanomaterials Registry	www.nanomaterialregistry.org	Nanomaterials	Free				
NIST Materials Data Repository (DSpace)	materialsdata.nist.gov/dspace/xmlui	General Materials Data	Free				
NIST Interatomic Potentials Repository	www.ctcms.nist.gov/potentials	Computational	Free				
NIST Standard Reference Data	www.nist.gov/srd/dblistpcdatabases.cfm	General Materials Data	Non-Free				
NIST Standard Reference Data	www.nist.gov/srd/onlinelist.cfm	General Materials Data	Free				
NoMaD	nomad-repository.eu/cms	Computational	Free				
Open Knowledge Database of Interatomic Models (Open KIM)	openkim.org	Computational	Free				
Open Quantum Materials Database	oqmd.org	Computational	Free				
M RS RILLIETIN • VOLUME A1 • MAX 2016 • www.mrs.org/bulletin 💻 🖞							

MRS BULLETIN • VOLUME 41 • MAY 2016 • www.mrs.org/bulletin 🔳 399

Informatics: 3 simplest examples

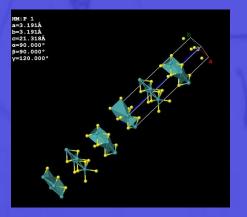
USA: materials genome

A

Harnessing the power of supercomputing and state of the art electronic structure methods, the Materials Project provides open web-based access to computed information on known and predicted materials as well as powerful analysis tools to inspire and design novel materials.

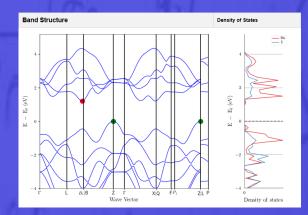
Home

About -


Apps -

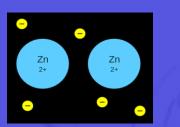
Documentation -

API Login


Learn more Tutorials

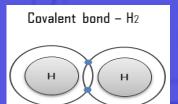
Sign In or Register to start using

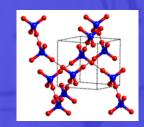
ංදිස්දිත


structure: 67483

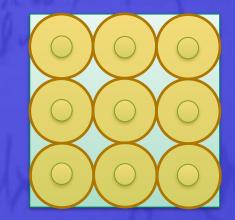

electronic structure: 47087

Ex.1 Can we determine crystal types by simple informatics ?

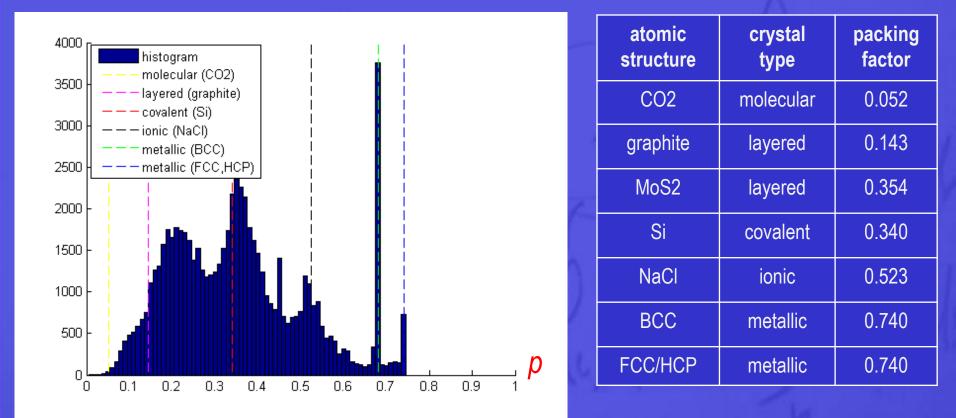

Metallic crystal,


ionic crystal,

covalent crystal,

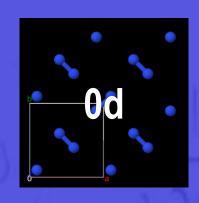


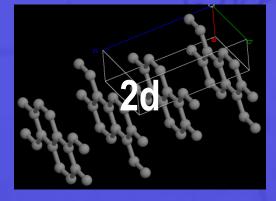
molecular crystal

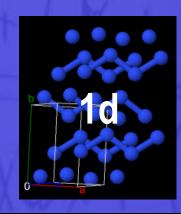


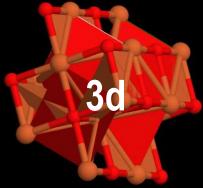
Packing factor

$$p = \frac{\sum V_{sphere}}{V_{unitcell}}$$

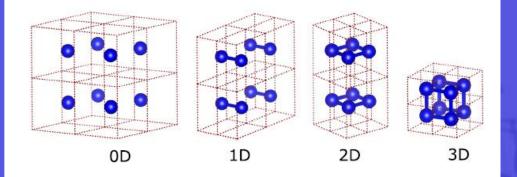

Result: histogram of packing factor (for 67483 crystals in Materials Project)



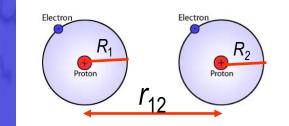

Conclusion by informatics - packing factor can *roughly* distinguish crystal types


Ex.2: can we determine dimensionality by informatics ?

0d, 1d, 2d, 3d and layered structures?



Algorithm for determining dimensionality of a crystal


Count the connected atom number in a 2 x 2 x 2 supercell

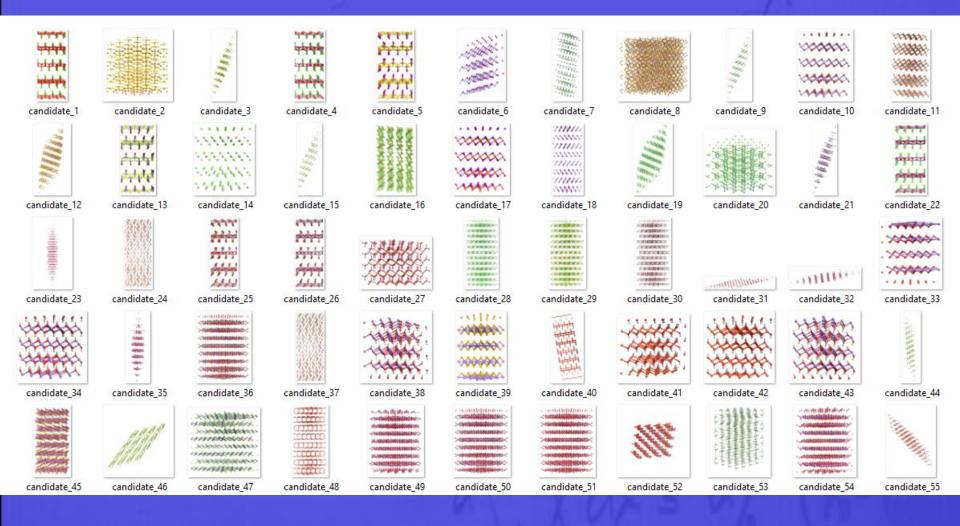
$$2^d = \frac{N_{2 \times 2 \times 2}}{N_{1 \times 1 \times 1}}$$

How do we know if two atoms are "connected" ?

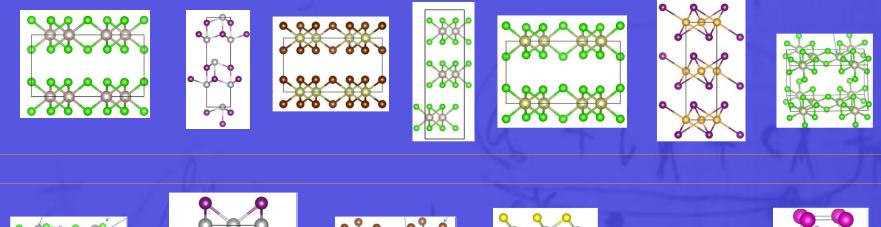
$$r_{12} < R_1 + R_2 + \delta R$$

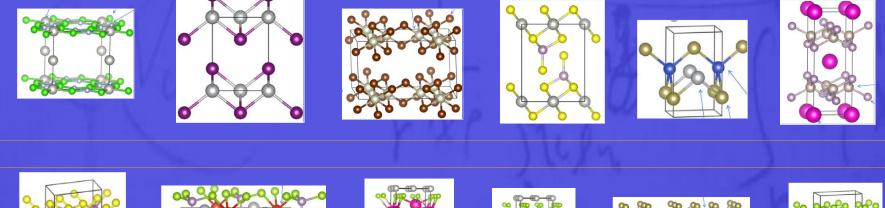
R: covalent radius extrapolated from 426,000 crystal structures (Cambridge structure database).

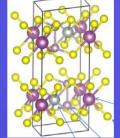
6/13/2022

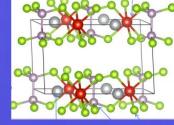

Results: dimensionality of materials (67483 crystals in Materials Project)

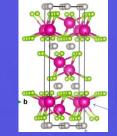
$r_{12} < R_1 + R_2 + \delta R$

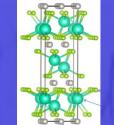

dimensionality	$\delta R = 0.5$	$\delta R = 1.0$	$\delta R = 1.5$
Od	3,506	1,839	910
1d	1,257	867	577
2d	3,531	2,510	1,802
3d	59,188	62,266	64,194

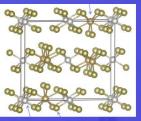

Conclusion: by simple informatics, we roughly find all the possible materials from 0d to 3d, from a database

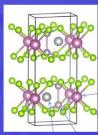

Results: possible magnetic materials with layered structure

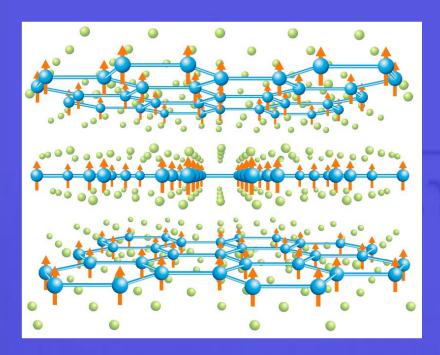



Results: noble metal with layered structures









6/13/2022

Ex.3 Search 2d ferromagnets by materials informatics

Thanks to: Dr. Eric Zhu, Dr. Xianghua Kong, Dr. Trevor David Rhone

Ferromagnetism was found in 2d materials experimentally

LETTER

doi:10.1038/nature22060

Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals

Cheng Gong¹*, Lin Li²*, Zhenglu Li^{3,4}*, Huiwen Ji⁵, Alex Stern², Yang Xia¹, Ting Cao^{3,4}, Wei Bao¹, Chenzhe Wang¹, Yuan Wang^{1,4}, Z. Q. Qiu³, R. J. Cava⁵, Steven G. Louie^{3,4}, Jing Xia² & Xiang Zhang^{1,4}

LETTER

doi:10.1038/nature22391

Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit

Bevin Huang¹*, Genevieve Clark²*, Efrén Navarro-Moratalla³*, Dahlia R. Klein³, Ran Cheng⁴, Kyle L. Seyler¹, Ding Zhong¹, Emma Schmidgall¹, Michael A. McGuire⁵, David H. Cobden¹, Wang Yao⁶, Di Xiao⁴, Pablo Jarillo-Herrero³ & Xiaodong Xu^{1,2}

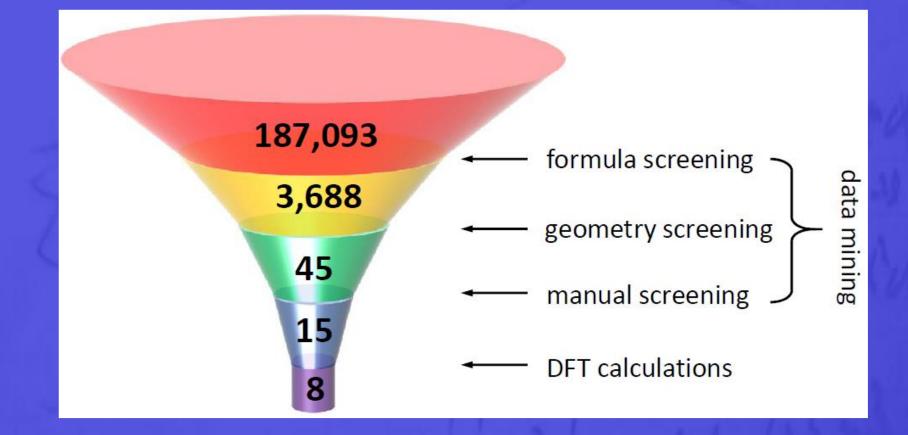
UC-Berkeley group	Cr ₂ Ge ₂ Te ₆		
UW and MIT group	Crl ₃		

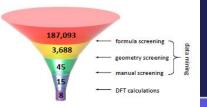
Fundamental: why 2d ferromagnetism is interesting?

Fundamental physics: can ferromagnetism exist in 2d materials?

2d Heisenberg	$H = -J \sum_{\langle ij \rangle} (S_i^x S_j^x + S_i^y S_j^y + S_i^z S_j^z) - B \sum_i S_i^z$	No	thermal fluctuations
2d Ising	$H = -J \sum_{\langle ij \rangle} S_i^z S_j^z - B \sum_i S_i^z$	Yes	magnetic anisotropy

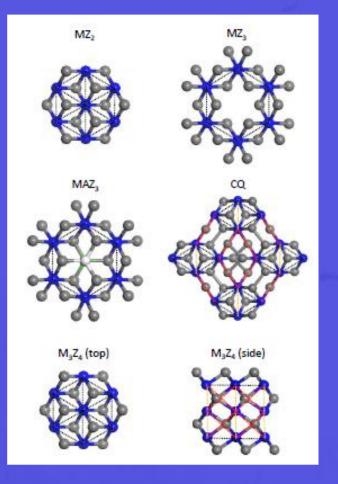
Mermin-Wagner theorem: Continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions $d \le 2$.


Device application: ultra-compact spintronics, magneto-optoelectronics


Simple and physics based descriptors:

Descriptor: parameter that describes some physical property

Descriptors:	materials	mp-id	quantity
1) Material exited (use ICSD)	diamond	mp-66	δE = 0.136
 2) dimension = 2 3) packing factor < 0.354 	graphite	mp-568286	p = 0.143
4) magnetic moment per atom > $0.625 \mu_B$	MoS ₂	mp-1434	p = 0.354
5) Must have M-Z-M network:	Fe	mp-13	μ = 2.332
M = transition metal atom,	Со	mp-54	μ = 3.319
Z=heavy atom ($Z > 49$). This ensures some super-exchange.	Ni	mp-23	μ = 0.625


Mining ICSD (Inorganic Crystal Structure Database):

We calculate the 15 material candidates

$$H = -\sum_{\langle ij \rangle} J_{ij} \sigma_i \sigma_j$$

#	ICSD	formula	structure	ordering	J(meV)	$T_c(K)$
1	52368	CoI ₂	-	AFM	-	-
2	52369	FeI ₂	-	AFM	-	-
3	33673	MnI_2	MZ_2	FM	0.3	15
4	22108	NiI ₂	MZ_2	FM	1.5	63
5	246907	VI_2	-	AFM	-	-
6	603582	VTe ₂	MZ_2	FM	3.0	128
7	626809	CrSiTe ₃	MAZ ₃	FM	12.2	214
8	252343	$CrGeTe_3$	MAZ ₃	FM	17.8	314
9	251655	CrI_3	MZ ₃	FM	9.1	161
10	180602	FeTe	-	AFM	-	-
11	66958	MnCaSn	-	AFM	-	-
12	4073	CrI_2	-	AFM	-	-
13	76730	NiTe	-	AFM	-	-
14	35266	CrTe ₃	CQ	FM	5.0	71
					16.5	
					1.5	
15	626873	Cr_3Te_4	sMZ_2	FM	16.6	2057
					18.8	
					12.0	

Using the 2 experimental data, get a heuristic scaling factor of T_c : 0.2 ~ 0.4.

PHYSIQUE DES SOLIDES. — Étude par diffraction neutronique du composé ferromagnétique TiCr₂Te₄. Note (*) de M^{11e} BERNADETTE ANDRON, MM. GILBERT BÉRODIAS, MAURICE CHÈVRETON et PAUL MOLLARD, transmise par M. Louis Néel.

For bulk Cr_3Te_4 , an old measurement reported ferromagnetic transition at $T_c = 320$ K.

Our Ising simulation produced ~400K after applying the heuristic factor.

PHYSICAL REVIEW MATERIALS 2, 081001(R) (2018)

Rapid Communications Editors' Suggestion

Systematic search for two-dimensional ferromagnetic materials

Yu Zhu,¹ Xianghua Kong,² Trevor David Rhone,³ and Hong Guo^{1,2,4}

2019: Prof. C.G. Zeng of USTC synthesized Cr_2Te_3 : $T_c=220K$. Work on Cr_3Te_4 on going.

Advanced data analysis tools – machine learning methods

Old days: a very old work on computer optimization:

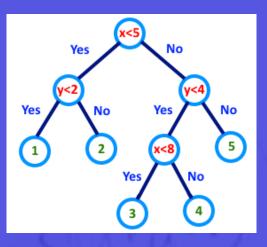
Physica Scripta. Vol. T38, 40-44, 1991.

A Fast Algorithm for Simulated Annealing

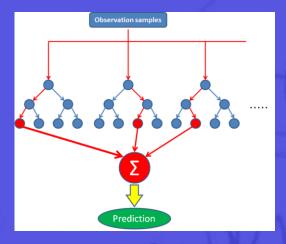
Hong Guo, Martin Zuckermann, R. Harris and Martin Grant

Centre for the Physics of Materials, Department of Physics, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2T8

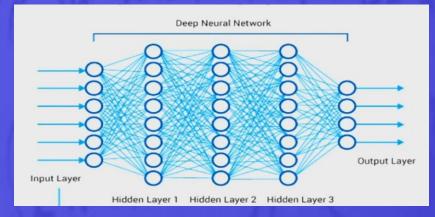
Received September 24, 1990; accepted October 26, 1990


2.3. Restoration of corrupted binary images

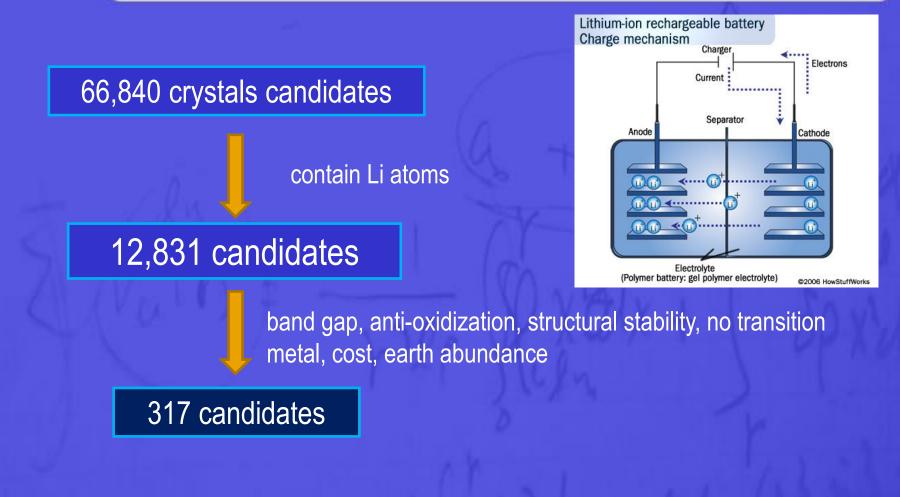
In addition to the two examples discussed above, there are many other practical problems which can be studied with this algorithm. For example, a large class of computer vision and image interpretation problems can be described and discussed within the framework of optimization theory

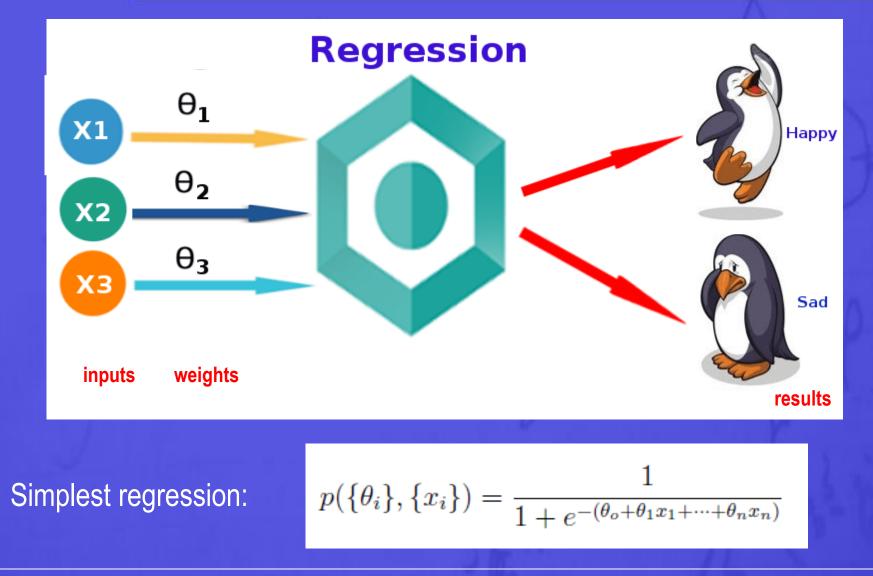

For an image (a Chinese character) of 50 000 pixels corrupted with noise strength p = 0.25 (25% of the pixels are corrupted), only 3% noise is left after 120 trials per pixel (6 annealing stages with 20 trials each).

Today: many machine learning algorithms


Decision Tree

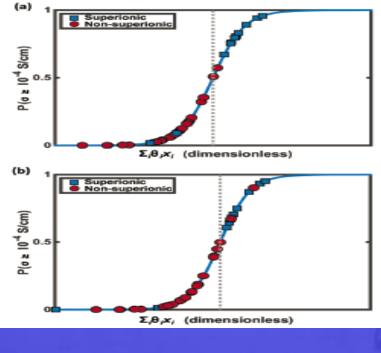
Random Forest


For materials informatics - supervised learning


- Introduction: materials informatics & machine learning
- > Search for solid lithium-ion conductors
- Search for high Tc superconductors
- Search for energetic materials
- ➢ Summary

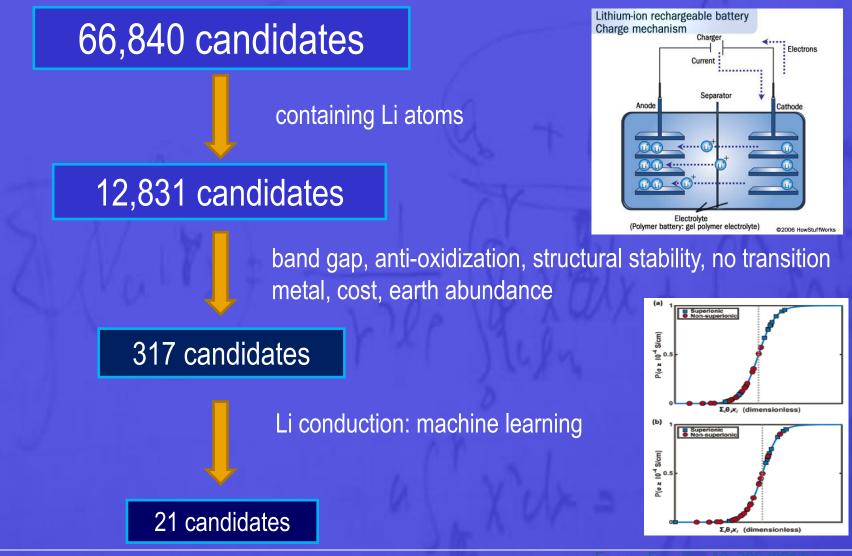
Search for solid Lithium-ion conductors (from Materials Project) Sandek et al. Ener. & Environ. Sci. (2017)

Next? Machine Learning to further narrow down the list


Machine learning: build a classifier for "good" Li-conductor

Statistical Learning (SL): experimental property data

Training set: Li ionic conductivity of 40 measured materials


lonic conductivity of training set differs by ten orders. Both good and bad ionic conductors are valuable for training.

Sandek	et al.	Ener.	& Environ.	Sci.	(2017)
					()

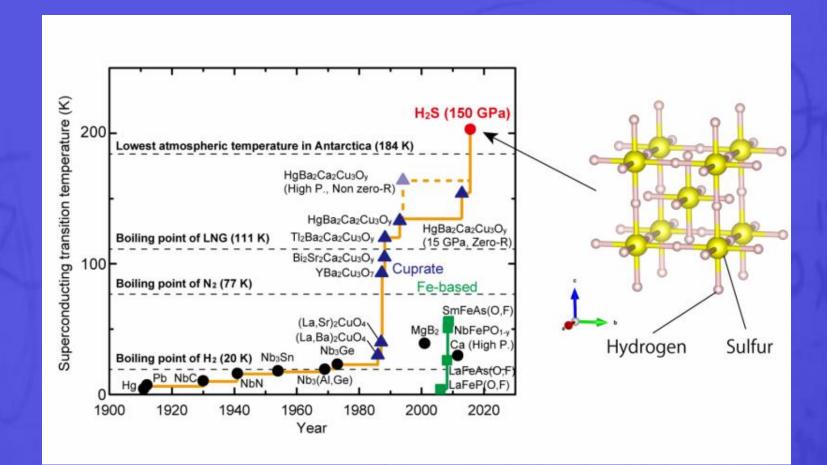
Composition	RT bulk ionic conductivity (S cm ⁻¹)	Ionic conductivity ref.	Structure ref.
LiLa(TiO ₃) ₂	$1 imes 10^{-3}$	17	29
Li _{9.81} Sn _{0.81} P _{2.19} S ₁₂		30	30
$Li_{10}Ge(PS_6)_2$	$1.4 imes 10^{-2}$	7	31
Li _{10.35} Si _{1.35} P _{1.65} S ₁₂	$6.5 imes 10^{-3}$	30	30
$Li_{14}ZnGe_4O_{16}(2)$	$1.0 imes 10^{-6}$	32	33 and 34
Li ₂ Ca(NH) ₂	$6.4 imes 10^{-6}$	35	36
Li ₂ Ge ₇ O ₁₅	$5.0 imes10^{-6}$	37	38
Li ₂ NH	$2.5 imes 10^{-4}$	35	39
Li ₂ S	$1.0 imes10^{-13}$	40	41
Li _{13.6} Si _{2.8} S _{1.2} O ₁₆	6.0×10^{-7}	42	43
$Li_{14}Ge_2V_2O_{16}$	$7.0 imes 10^{-5}$	44	45
$Li_{15}Ge_3V_2O_4$	6.03×10^{-6}	46	47
Li _{14.8} Ge _{3.4} W _{0.6} O ₄	4.0×10^{-5}	46	47
$Li_3Fe_2P_3O_{12}$	$1.0 imes 10^{-7}$	48	49
Li ₃ N	5.75×10^{-4}	50	51
Li ₃ P	$1.0 imes10^{-3}$	8	52
γ -Li ₃ PS ₄	3.0×10^{-7}	53	54
Li ₃ Sc ₂ P ₃ O ₁₂	$1.0 imes10^{-10}$	55	56
β_{II} -Li ₃ VO ₄	$4.4 imes 10^{-8}$	57	58
Li ₄ B ₇ O ₁₂ Cl	$1.0 imes 10^{-7}$	59	59
Li ₄ BN ₃ H ₁₀	$2.0 imes 10^{-4}$	60	61
γ -Li ₄ GeO ₄	$3.1 imes 10^{-12}$	37	62
Li ₄ SiO ₄	$2.4 imes10^{-10}$	37	63
Li ₅ La ₃ Bi ₂ O ₁₂	$2.0 imes10^{-5}$	64	64
Li ₅ La ₃ Nb ₂ O ₁₂	$8.0 imes10^{-6}$	65	66
Li ₅ La ₃ Ta ₂ O ₁₂	$1.5 imes 10^{-6}$	65	66
Li ₅ NI ₂	$1.5 imes 10^{-7}$	67	68
Li ₆ BaLa ₂ Ta ₂ O ₁₂	$4.0 imes 10^{-5}$	69	70
Li ₆ FeCl ₈	$1.0 imes 10^{-4}$	71	72
Li ₆ NBr ₃	$1.5 imes 10^{-7}$	67	73
Li ₆ SrLa ₂ Ta ₂ O ₁₂	$7.0 imes 10^{-6}$	69	70
Li7La3Zr2O12	$3.5 imes 10^{-4}$	74	75
$Li_7P_3S_{11}$	$4.1 imes 10^{-3}$	9	76
$LiAlH_4$	$2.0 imes 10^{-9}$	77	78
LiAlSiO ₄	1.4×10^{-5}	79	80
LiBH ₄	$2.0 imes10^{-8}$	60	81
LiI	$1.0 imes 10^{-6}$	42	82
LiNH ₂	$4.0 imes 10^{-10}$	35	83
α' -LiZr ₂ P ₃ O ₁₂	$5.0 imes10^{-8}$	84	84

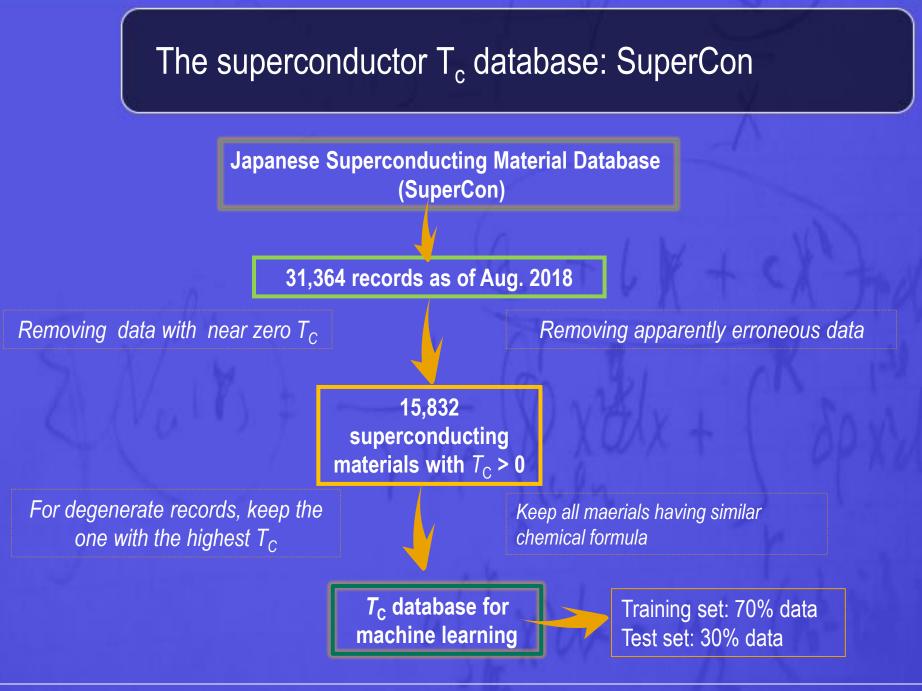
Search for Lithium-ion conductors (from Materials Project) Sandek et al. Ener. & Environ. Sci. (2017)

Results: compare to Sendek, all are the same or similar

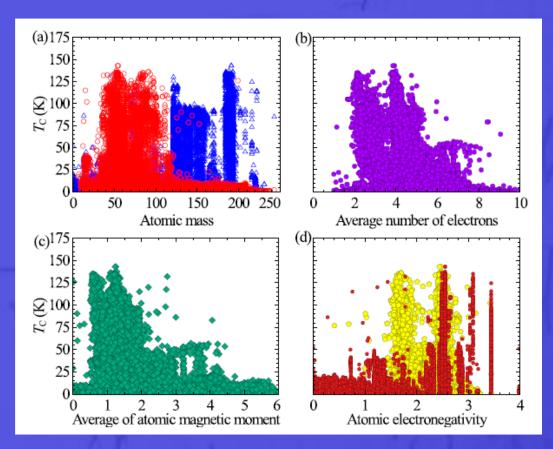
MPID	Chemical formula		[1]	mp-22905	Li(1)Cl(1)	
mp-554076	BaLiBS ₃		[2] [3]	mp-34477 mp-532413	Sm(1)Li(1)S(2) Li(5)B(7)S(13)	
mp-532413	$Li_5B_7S_{13}$		[4]	mp-676361		
mp-569782 ^{<i>a</i>} mp-558219	$Sr_2LiCBr_3N_2$ $SrLi(BS_2)_3$		[5]	mp-8751	Rb(1)Li(1)S(1)	
mp-15797	LiErSe ₂		[6]	mp-29410	Li(2)B(2)S(5)	
mp-29410	Li ₂ B ₂ S ₅ Sendek		[7]	mp-15797	Er(1)Li(1)Se(2)	ours
mp-676361	Li ₃ ErCl ₆		[8]	mp-15790	Ho(1)L1(1)S(2)	Juis
mp-643069 ^a	Li ₂ HIO		[9]	mp-8430	Li(1)K(1)S(1)	
mp-19896	Li2GePbS4		[10]	mp-676109	Li(3)In(1)Cl(6)	
mp-7744 ^{a}	LiSO ₃ F		[11]	mp-15789	Li(1)S(2)Dy(1)	
mp-22905 ^b	LiCl	5 31	[12]	mp-15791	Er(1)Li(1)S(2)	
mp-34477	LiSmS ₂	V 14	[13]	mp-643069	0(1)H(1)I(1)Li(2)	
mp-676109 mp-559238	Li ₃ InCl ₆ CsLi ₂ BS ₃	1 0	[14]	mp-558219	Sr(1)Li(1)B(3)S(6)	
mp-866665 ^{<i>a</i>}	$LiMgB_3(H_9N)_2$		[15]	mp-559238	Li(2)Cs(1)B(1)S(3)	
mp-8751	RbLiS		[16]	mp-554076	Li(1)B(1)S(3)Ba(1)	
mp-15789	$LiDyS_2$		[17]	mp-19896	Pb(1)Li(2)S(4)Ge(1)
mp-15790	LiHoS ₂		[18]	mp-7744	0(3)Li(1)S(1)F(1)	
mp-15791	LiErS ₂	11	[19]	mp-569782	Br(3)Sr(2)N(2)Li(1)C(1)
mp-561095 ^{<i>a</i>}	$LiHo_3Ge_2(O_4F)_2$	1 V.	[20]	mp-866665	Mg(1)N(2)H(18)B(3)	Li(1)
mp-8430	KLiS		[21]	mp-561095	Ho(3)Li(1)F(2)Ge(2)0(8)

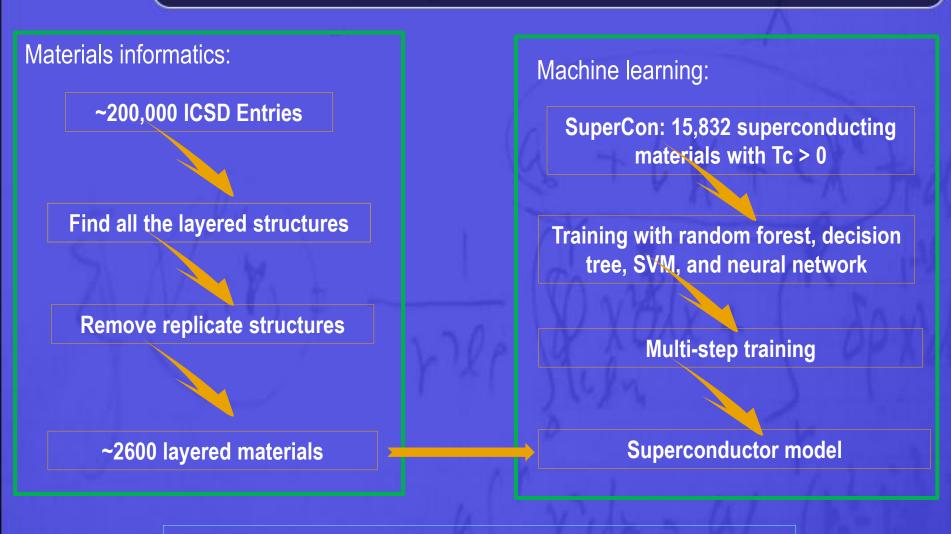
For the newly found materials, calculate Li ionic conductivity.


> For those with high conductivity, seek experimental verification.


We collaborate with manufacturing firms

- Introduction: materials informatics & machine learning
- Search for solid lithium-ion conductors
- > Search for high Tc superconductors
- Search for energetic materials
- ➢ Summary


History of superconductors

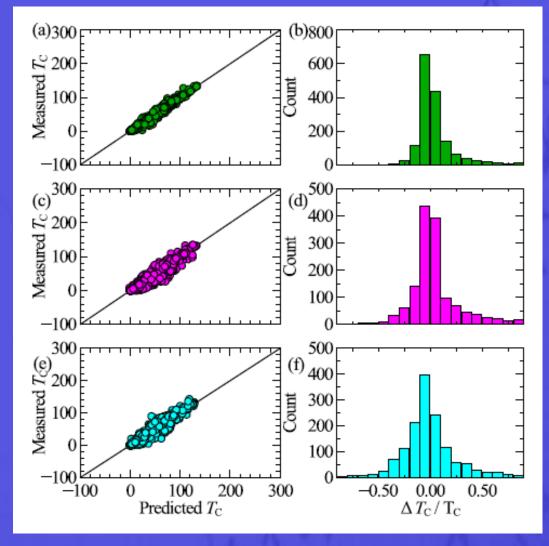


Descriptors from SuperCon (informatics)

- Average atomic mass and largest difference in atomic mass
- Average number of valence electrons
- Atomic magnetic moment
- Atomic electronegativity
- Largest difference in atomic number
- Average atomic number
- Average valence radius
- Largest difference of valence radius

Search high Tc materials by machine learning

Found 38 layered materials with T_c from 30 K to > 110K


6/13/2022

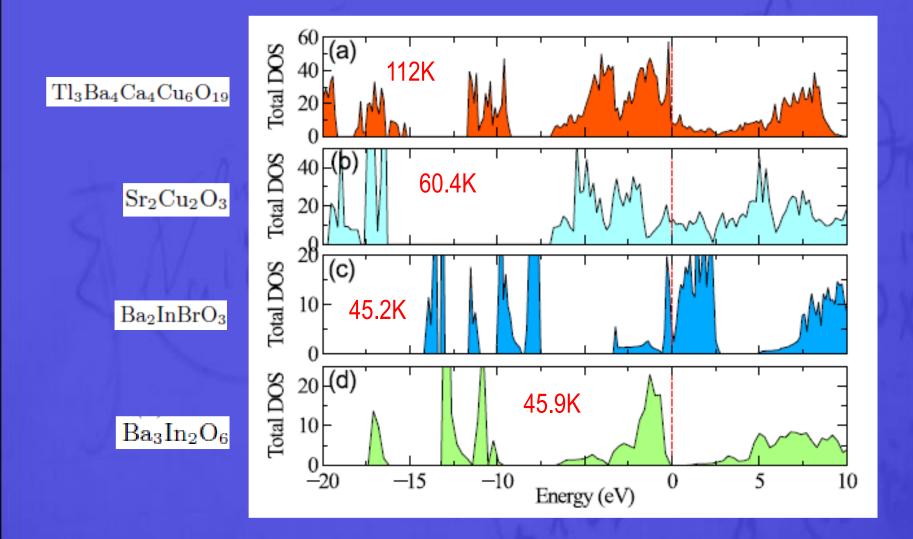
Testing the regression:

Random forest regression

Support vector machine

Artificial neural network

Results: 3 ML and experiments


Of the 38 predicted materials, 13 were already known to be superconductors:

Chemical formula	ICSD entry	SGN	RFR (K)	SVR (K)	DLR (K)	Measured (K)	Heuristic (K)
HgBa ₂ Ca ₂ Cu ₃ O ₈	075730	123	134.2	125.3	119.0	135.7	133.6
$HgBa_2CaCu_2O_6$	075727	123	124.7	123.1	103.7	134.0	111.3
$HgBa_2CuO_4$	075720	123	95.5	92.4	87.6	98.0	80.0
$Tl_2Ba_2Ca_3Cu_4O_{12}$	068585	139	119.0	115.1	109.8	120.0	140.2
$Tl_2Ba_2CuO_6$	067334	139	94.1	68.0	59.4	117.0	79.5
$Tl_2Ba_2CaCu_2O_8$	065554	139	107.6	110.2	98.7	114.1	114.5
$TlBa_2CaCu_2O_7$	067128	123	94.2	113.0	105.0	93.0	109.5
$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}\mathrm{Cu}_{2}\mathrm{O}_{8}$	068188	139	94.4	84.2	78.0	88.5	142.9
$EuSr_2Pb_2Cu_3O_8$	071481	65	60.8	70.9	70.2	71.0	71.0
La_2CuO_4	041643	139	38.2	33.9	38.8	41.2	85.4
$Ca_2KF_2Fe_4As_4$	239952	139	31.7	31.2	32.7	33.4	48.3
$CaRbFe_4As_4$	252344	123	34.2	34.5	35.4	35.0	55.6
KFe_2Se_2	186573	139	37.5	31.4	33.0	40.0	36.0

25 new materials are predicted to be high T_c superconductors

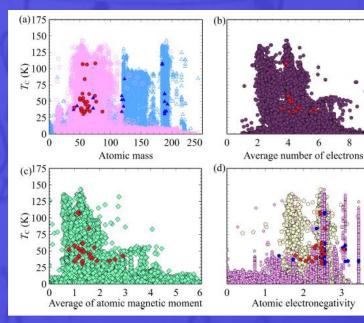
Chemical formula	ICSD entry	SGN	RFR (K)	SVR (K)	DLR (K)	Average (K)	Heuristic (K)
$Tl_3Ba_4Ca_4Cu_6O_{19}$	094965	139	113.6	114.3	108.0	112.0	132.8
$Tl_5Ba_6Ca_6Cu_9O_{29}$	094966	123	113.3	113.8	106.9	111.3	137.2
$Tl_7Ba_8Ca_8Cu_{12}O_{39}$	094967	139	113.5	113.6	106.3	111.1	138.3
TlYBa ₂ Cu ₂ O ₇	074163	123	48.4	65.6	61.7	58.6	88.8
Ba_2CuF_6	021055	69	49.5	47.9	49.5	49.0	77.2
$Ba_2Cl_2Cu_3O_4$	081196	139	70.3	60.8	37.1	56.1	80.6
$Ba_2Cu_3Br_2O_4$	036128	139	55.3	67.7	45.4	56.1	55.6
BaCuFSe	075585	129	64.1	46.2	35.0	48.4	
TeBaCuF	245624	129	54.5	30.4	33.6	39.5	
$Sr_2ZnS_2Cu_2O_2$	084735	139	56.8	35.4	34.8	42.3	
GdSeCuO	080358	129	37.3	33.4	34.2	35.0	46.9
$Sr_2Cu_2O_3$	150912	64	60.1	37.1	84.0	60.4	87.8
$Sr_3Cu_2O_5Fe_2Se_2$	154203	139	32.1	50.0	30.5	37.5	
$Sr_2F_2OFe_2Se_2$	249690	139	34.8	46.3	34.5	38.5	35.5
Ca_2CuO_3FeSe	169993	129	53.7	48.7	42.1	48.2	
NdOFeAs	164676	129	37.2	48.1	49.3	44.9	42.9
NdOFeAs	236650	67	37.2	48.1	49.3	44.9	34.1
GdOFeAs	422003	129	39.5	48.0	52.2	46.6	44.6
GdOFeAs	425015	67	39.5	48.0	52.2	46.6	31.7
$Ba_3In_2O_6$	065258	139	36.9	42.4	58.3	45.9	78.0
$Ba_3In_2Cl_2O_5$	069636	139	39.0	38.2	39.0	38.7	83.7
Ba_2InClO_3	081877	129	39.7	38.2	39.4	39.1	81.8
$\operatorname{Ba_3In_2Br_2O_5}$	071603	139	39.4	40.3	54.7	44.8	82.6
Ba ₂ InBrO ₃	081878	129	40.3	40.3	55.0	45.2	82.0
Ba ₂ N	067510	166	42.6	31.3	40.4	38.1	

Calculated density of states of some predicted materials:

Role and location of the descriptors:

Material informatics for layered high-*T*_C superconductors [©]

Cite as: APL Mater. **8**, 061104 (2020); https://doi.org/10.1063/5.0004641 Submitted: 13 February 2020 . Accepted: 04 May 2020 . Published Online: 04 June 2020


Zhong-Li Liu 跑, Peng Kang 跑, Yu Zhu, Lei Liu, and Hong Guo

COLLECTIONS

F This paper was selected as Featured

(OPES	$\bar{M}(\%)$	\bar{N} (%)	$\bar{\mu}$ (%)	$\bar{\eta}$ (%)	ΔM (%)	$\delta\eta$ (%)
	Yes	6.5	3.5	12.5	2.0	3.6	30.7
	No	11.3	6.0	16.6	3.2	6.8	56.1

1st place winner of the 2020 APL Materials Excellence in Research Award. https://aip.scitation.org/apm/info/excellence

10

- Introduction: materials informatics & machine learning
- Search for solid lithium-ion conductors
- Search for high Tc superconductors
- Search for energetic materials
- > Summary

Energetic materials:

Combustion

- Burning with flame
- Slow process
- Fully oxidized

Deflagration

- Subsonic combustion
- Energy propagate through heat transfer
- External oxygen involved

Detonation

- Supersonic combustion
- Energy propagate though shock wave
- External oxygen not involved

Finding energetic materials can be a dangerous process. Let's try to find them by materials informatics and machine learning, verify by thermal chemistry.

What are the proper descriptors for energetic materials?

WILEY-VCH

Roberto Todeschini, Viviana Consonni

Handbook of Molecular Descriptors

Methods and Principles in Medicinal Chemistry

Volume 11

Edited by R. Mannhold, H. Kubinyi,

H. Timmerman

Some thermal chemistry of decomposition of C_aH_bN_cO_d

Oxygen balance (OB):

Decomposition reaction:

Example: Trinitrotoluene (TNT)

$$\begin{split} & C_7 H_5 N_3 O_6 \rightarrow x C O_2 + y H_2 O + z N_2 \\ & C_7 H_5 N_3 O_6 \rightarrow 7 C O_2 + 2.5 H_2 O + 1.5 N_2 - 10.5 O \\ & OB = (-10.5 \times 16)/227 \times 100\% = -74\% \end{split}$$

Step	Conditions (K-W rules)
1	Carbon atoms are converted to CO
2	If any oxygen remains, then hydrogen is oxidized into H ₂ O
3	If any oxygen still remains, then CO is oxidized into CO ₂
4	All the nitrogen atoms are converted to nitrogen gas N2
	Conditions (Modified K-W rules)
1	Hydrogen atoms are converted to H ₂ O
2	If any oxygen remains, then carbon is converted to CO
3	If any oxygen still remains, then CO is oxidized into CO ₂
4	All the nitrogen atoms are converted to nitrogen gas $\ensuremath{N_2}$

Some thermal chemistry of decomposition of C_aH_bN_cO_d (cont.)

Heat of explosion & formation:

$$\Delta H_e = \left(\sum_{\text{products}} \Delta H_f - \sum_{\text{reactants}} \Delta H_f\right)/M$$

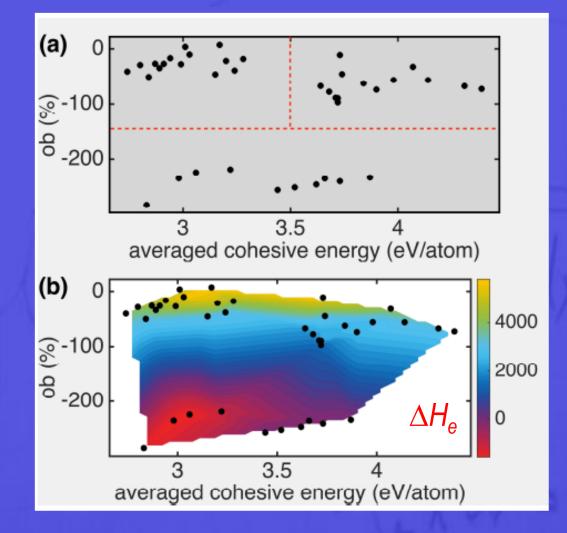
Volume of gas products:

 $\mathrm{C_3H_6N_6O_6} \rightarrow \mathrm{3CO} + \mathrm{3H_2O} + \mathrm{3N_2}$

 $V_a = 9$ moles

Explosive power:

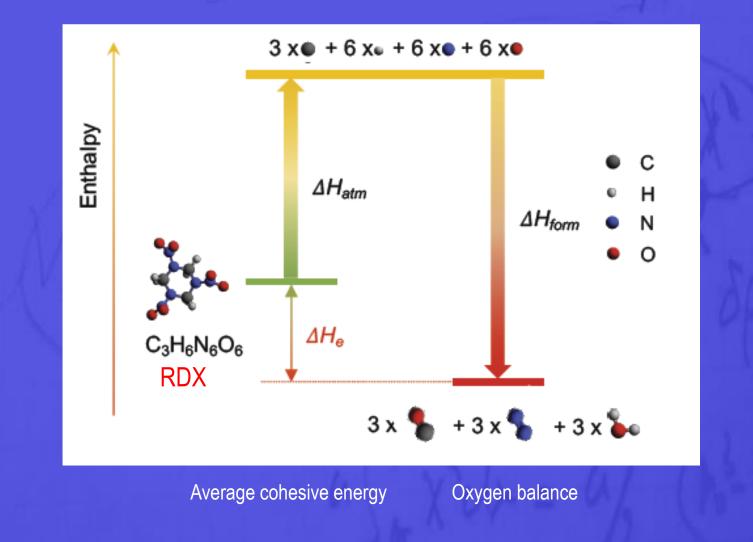
$$P_{e(\text{TNT})} = \frac{\Delta H_e \times V_g}{\Delta H_e(\text{TNT}) \times \text{V}_g(\text{TNT})}$$

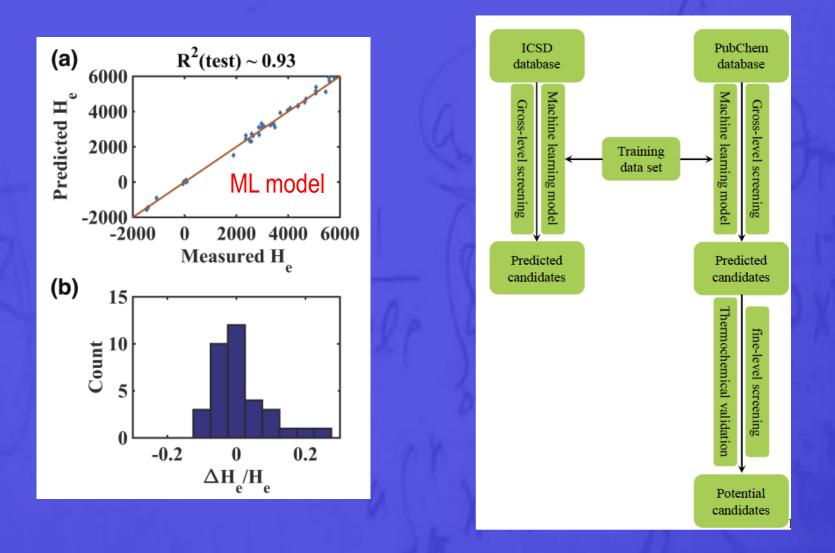

The training set: 41 experimental data

PubChem CID	Chemical formula	OB %	ΔH_e
2537	$C_{10}H_{16}O$	-283.76	-1436.25
3026	$C_{16}H_{22}O_4$	-224.17	-1557.95
4510	$C_3H_5N_3O_9$	3.52	5117.78
6518	$C_5H_8N_4O_{12}$	-10.13	5725.39
6828	$C_{17}H_{20}N_2O$	-256.72	5.62
7434	$C_6H_3N_3O_6$	-56.34	3174.81
8376	$C_7H_5N_3O_6$	-74.01	2732.48
8490	$C_3H_6N_6O_6$	-21.62	5041.58
8561	$C_{18}H_{26}O_4$	-234.98	-1550.49
10271	$C_6H_4N_4O_6$	-56.14	2685.4
10800	$C_7H_6N_2O_5$	-96.97	1521.06
11817	$C_7H_5N_3O_7$	-62.55	2623.24
11917	$C_{15}H_{16}N_2O$	-246.67	-102.01
15353	$C_5H_9N_3O_{10}$	-26.57	4310.33
17596	$C_4H_8N_8O_8$	-21.62	5159.29
19431	$C_6H_3N_5O_8$	-32.23	4194.96
20150	$C_4H_8N_4O_8$	-26.67	4342.4
22933	$C_3H_6N_2O_6$	-28.92	4306.96
25711	$C_{14}H_{14}N_2O$	-240.71	13.69
26872	$C_4H_6N_4O_6$	-38.83	3113.79
28929	$C_{16}H_{15}N_2O$	-246.67	236.1
33603	$C_{13}H_{12}N_2O$	-233.96	6.32
34385	$C_{10}H_4N_4O_8$	-72.73	3107.86
43960	$C_6H_8N_6O_{12}$	-17.98	4525.58
61198	$C_4H_8N_2O_7$	-40.82	3929.39
61818	$C_6H_8N_6O_{18}$	7.08	5880.72
66261	$C_6H_{11}N_3O_9$	-50.56	3292.29
69050	$C_{15}H_{15}NO_2$	-235.68	-35.34
69442	$C_8H_7N_3O_6$	-89.63	2439.11
75802	$C_{13}H_{12}NO_2$	-218.99	-903.18
76423	$C_5H_9N_3O_9$	-34.51	4064.68
78227	$C_{16}H_{18}N_2O$	-251.97	114.5
83215	$C_{10}H_{16}N_6O_{19}$	-27.48	4725.03
143858	$C_8H_6N_4O_{10}$	-45.28	3316.94
143859	$C_8H_7N_3O_8$	-67.4	2306.11
267173	$C_8H_7N_3O_7$	-77.82	2334.06
522216	$C_4H_7N_3O_9$	-16.6	5381.1
3772977	$C_6H_6N_4O_4$	-88.89	2638.8
4166622	$\mathrm{C_9H_{12}N_4O_{13}}$	-45.83	3229.11
5462985	$\mathrm{C}_{14}\mathrm{H}_{6}\mathrm{N}_{6}\mathrm{O}_{12}$	-67.56	3106.99
9889323	$C_6H_6N_{12}O_{12}$	-10.96	5910

Descriptors: > Oxygen balance; > Cohesive energy averaged over all constituent elements' Target: ΔH_{ρ} - heat of explosion

Cohen, N., and S. W. Benson. "Estimation of heats of formation of organic compounds by additivity methods." Chemical Reviews 93.7 (1993): 2419-2438.


Training data distribution in descriptor space


Training data are nicely partitioned in 3 (or more) regions naturally.

Tree based ML should be good

Why are OB and average cohesive energy good descriptors ?

ICSD (185000 compounds) & PubChem (~140M molecules)

Screening ICSD: 116 CHNO molecular crystals are found

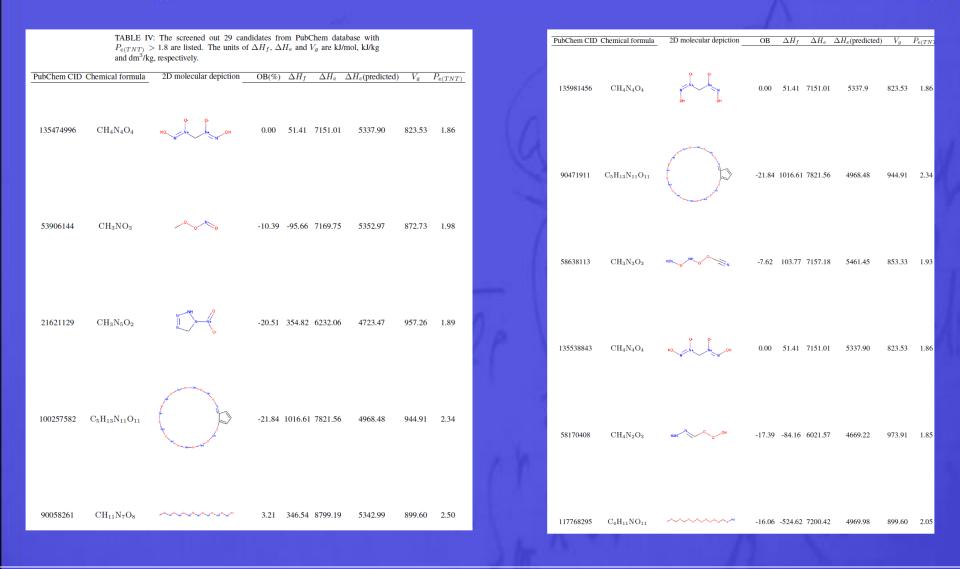
Machine learning predicts 15 of the 116 to have $\Delta H_e > 4500 \text{ kJ/kg}$, and some of them are well-known explosives:

TABLE III: The predicted and reported ΔH_e of explosive candidates screened out from ICSD database. The unit of ΔH_e is kJ/kg. ^{<i>a</i>} reported data from Ref.[61-68]										
ICSD id	Chemical formula	Compound name	Predicted ΔH_e	Reported ΔH_e						
161203	$C_3H_6N_6O_6$	RDX	5065.99	5075.5 ^a						
172533	$C_2H_4N_4O_4$	FOX-7	5065.99	3881.13 ^a						
417771	$C_2H_7N_7O_6$	AGNF	5510.75	5617 ^a						
417768	$CH_5N_5O_6$	HNF	5393.63	$5443 \sim 5451^a$						
417769	$C_2H_8N_6O_7$	GNFH	5391.43	5250^{a}						
417772	$C_2H_8N_8O_6$	DAGNF	5357.92	5853 ^a						
417770	$C_2H_9N_9O_6$	TAGNF	4982.49	6274^{a}						
281338	$CH_3N_5O_4$	1,2-Dinitroguanidine	5600.27							
170681	CH_2N_6O	Nitroguanyl azide	5576.16							
084595	$C_2H_9N_{11}O_8$	$(BIGH_2)(DN)_2$	5449.78							
034697	$\rm CH_5N_3O_4$	Urea nitrate	5371.68							
250532	$CH_6N_4O_4$	HDM	5362.20							
281711	$CH_6N_6O_4$	Guanidinium Dinitramide	5352.97							
281712	$CH_6N_6O_5$	Hydroxyguanidinium Dinitramide	5342.99							
082738	$C_2H_9N_7O_6$	$(BIGH_2)(NO_3)_2$	4669.22							

So, our machine learning model of energetic materials works

Screening PubChem: ~140 million molecules

ML model predicts 2732 CHNO candidates to have $\Delta H_e > 4500 \text{ kJ/kg}$!


Next: do thermal chemistry validation (since there are no experimental data).

Results: equivalent power of explosion to TNT

f
$$P_{e(\text{TNT})} = \frac{\Delta H_e \times V_g}{\Delta H_e(\text{TNT}) \times V_g(\text{TNT})}$$
 > 1.5, 162 candidates remain;

If requiring 1.8 power of explosion of TNT, 29 candidates remain.

29 energetic materials not known before:

29 energetic materials not known before (cont.):

PubChem CID	Chemical formula	2D molecular depiction	OB $\Delta H_f \Delta H_e \Delta H_e$	ΔH_e (predicted	l) V _g P	e(TNT)	PubChem CID	Chemical formula	2D molecular depiction	OB	$\Delta H_f = \Delta$	$H_e \Delta H_e$ (predicted	1) V _g	$P_{e(TNT)}$
129689476	$\mathrm{CH}_5\mathrm{N}_3\mathrm{O}_3$	NHE 0	-22.43 21.89 6168.55	4641.80	1046.73	2.04	117787017	$\mathrm{CH_3N_3O_3}$	Market Contract	-7.62	83.05 695	9.85 5461.45	853.33	1.88
117768110	$\rm C_2H_5NO_5$	0,00,00,00, MHZ	-19.51 -217.42 6541.84	4655.67	910.57	1.88	57500267	$\mathrm{CH}_4\mathrm{N}_2\mathrm{O}_3$	- the	-17.39	-49.32 640	0.24 4669.22	973.91	1.97
129691886	$\mathrm{CH}_3\mathrm{N}_5\mathrm{O}_2$		-20.51 344.72 6145.74	4723.47	957.26	1.86	134861857	$\mathrm{C_{2}H_{2}N_{8}O_{4}}$		-7.92	720.43 736	7.71 5564.05	776.24	1.81
21494569	$\mathrm{CH}_3\mathrm{NO}_3$	To So	-10.39 -49.01 7775.65	5352.97	872.73	2.14	71319450	$\mathrm{CH}_2\mathrm{N}_2\mathrm{O}_3$		0.00	47.65 783	2.93 5708.30	746.67	1.85
129634872	$\rm CH_2N_2O_2$	Du - 10	-21.62 121.75 6703.89	5065.99	908.11	1.92	18402732	$\mathrm{CH}_2\mathrm{N}_2\mathrm{O}_2$	o=↓ ₩	-21.62	117.90 665	1.76 5065.99	908.11	1.91
123320779	$\mathrm{CH_4N_2O_4}$	0 0 0 NE	0.00 -116.23 7452.79	5342.99	829.63	1.95	89774793	$\mathrm{CH}_4\mathrm{N}_6\mathrm{O}_2$		-24.24	513.94 672	9.31 4780.01	1018.18	2.17

 \succ First principles calculation to further validate these 29 candidates.

Calculate other useful properties (sensitivity...).

 \succ Speaking to experimentalists.

THE JOURNAL OF PHYSICAL CHEMISTRY

pubs.acs.org/JPCA

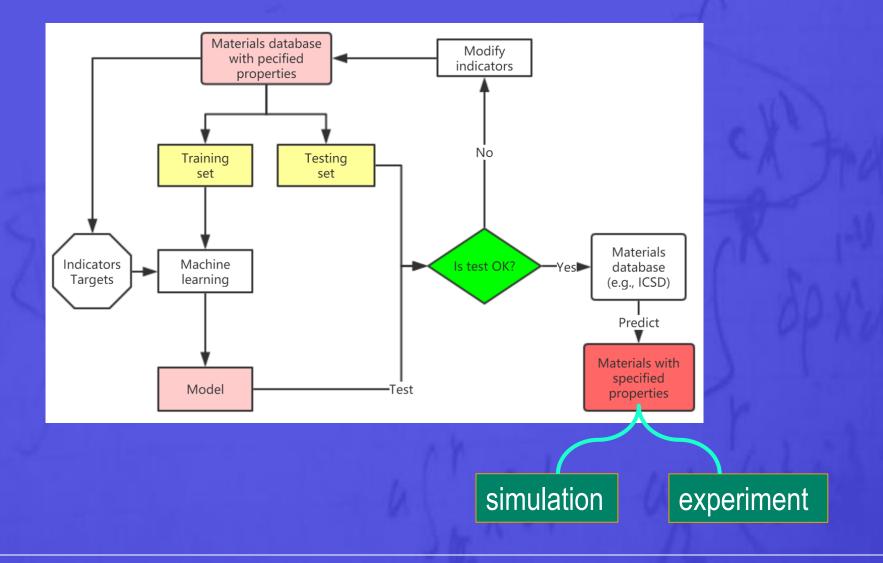
Article

Machine-Learning Assisted Screening of Energetic Materials

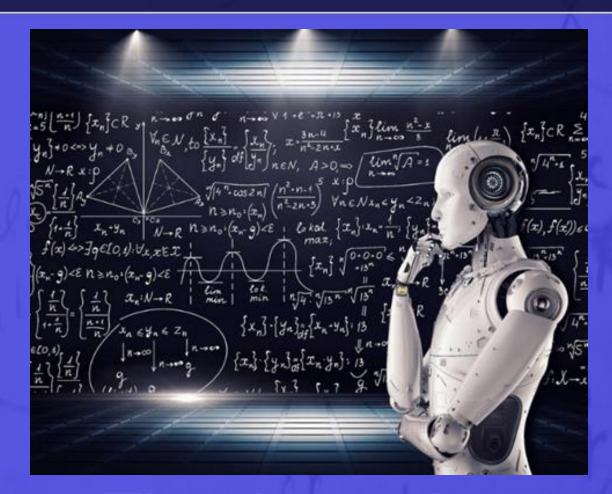
Published as part of The Journal of Physical Chemistry virtual special issue "Machine Learning in Physical Chemistry".

Peng Kang, Zhongli Liu, Hakima Abou-Rachid, and Hong Guo*

Materials informatics is the 4th paradigm of scientific exploration. It is NOT for finding very precise numbers, but for efficiently classifying materials.


Three important ingredients:

- Data: those who have data are the winners
- Methods to analyze data: so far standard and public domain
- Physical indicators: critical !


• **IMAT:** pre-screening + machine learning + simulation

Simulation + experimental verification

Technical summary: **iMAT**

What will be the 5th paradigm ?

Thank you !