Diagrammatic Quantum (Quasi-)Monte Carlo Out of equilibrium / in real time

Olivier Parcollet

Center for Computational Quantum Physics (CCQ)
Flatiron Institute, Simons Foundation
New York

Out of equilibrium \& strong correlations

- Many experiments : Pump probe, quantum dots, ultra-cold atoms, cavities.

Pump probe

Nano-electronics

Ultra-cold atoms

- Computational physics challenge :
- Exact methods for out of equilibrium systems, at strong coupling
- Control, speed and precision
- Long time (after quench), steady state. Resolve various energy/time scales.

Early Monte Carlo have sign problem Muelbacher et al. PRB 2009; Werner et al PRB 2009; Schiro PRB 2009.

Example : a simple model for a quantum dot

- Anderson model with two leads (L, R).

$$
\begin{array}{cc}
\text { Bath } & \text { Local orbital } \\
\sum_{\substack{k \sigma \\
\alpha=L, R}} \varepsilon_{k \alpha} c_{k \sigma \alpha}^{\dagger} c_{k \sigma \alpha}+\sum_{\sigma} \varepsilon_{d} d_{\sigma}^{\dagger} d_{\sigma}+U n_{d \uparrow} n_{d \downarrow}+\sum_{\substack{k \sigma \\
\alpha=L, R}} g_{k \sigma \alpha}\left(c_{k \sigma \alpha}^{\dagger} d_{\sigma}+h . c .\right)
\end{array} \begin{gathered}
\text { Hybridization } \\
\text { Level width at } U=0 \\
\Gamma=\pi \rho_{E_{F}} g^{2}
\end{gathered}
$$

- Questions: Spectral function ? Kondo temperature ? Current ?

We want a precise solution, at low temperature, any V_{b}, in steady state

Summary of the approach

- Perturbation theory in interaction U (I0-I5 orders) for physical quantities.

$$
Q(t, U)=\sum_{\substack{\text { Time }}}^{K} Q_{n}(t) U^{n}{ }_{\text {Interaction }}^{n}
$$

I. Works even at long time, even in strong coupling regime (e.g. Kondo effect)
2. How to compute $\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$? Cost $\mathrm{O}\left(2^{\mathrm{n}}\right)$.

High dimensional integrals.
Real time "diagrammatic" Quantum Monte Carlo Beyond stochastic methods : Quasi-Monte Carlo (QQMC)
3. How to sum the series ?

- See also : Expansion around atomic limit.
"Inchworm" approach. Cohen, Gull, Reichman, Millis PRL (2015)

Schwinger-Keldysh
I- Notations

Three diagrammatic techniques.

- $\mathrm{T}=0$: Ground state
- Matsubara : finite T, in thermal equilibrium
- Schwinger-Keldysh
- General. Equilibrium or out of equilibrium. Real time.
- A bit more complex technically. It is not possible to write diagrams with only one Green function.
- Conceptually simpler. Bath are explicitly included, no hidden relaxation (or Gell-Man Low theorem).

Notations

- Canonical fermion operator
- $\mathrm{a}, \mathrm{b}=$ multi-index $: \mathrm{k}, \mathrm{x}$, spin,.. everything but time.

$$
\left\{c_{a}, c_{b}^{\dagger}\right\}=\delta_{a b}
$$

- Chronological product

$$
\begin{aligned}
& T A(t) B\left(t^{\prime}\right)=\theta\left(t-t^{\prime}\right) A(t) B\left(t^{\prime}\right)+\zeta_{A B} \theta\left(t^{\prime}-t\right) B\left(t^{\prime}\right) A(t) \\
& \check{T} A(t) B\left(t^{\prime}\right)=\theta\left(t^{\prime}-t\right) A(t) B\left(t^{\prime}\right)+\zeta_{A B} \theta\left(t-t^{\prime}\right) B\left(t^{\prime}\right) A(t)
\end{aligned}
$$

$$
\zeta_{A B}= \pm 1 \quad \text { A }, \mathrm{B} \text { both fermionic } ?-\mathrm{I} \text { else }+\mathrm{I}
$$

Hamiltonian evolution

- Total Hamiltonian of the system, e.g.

$$
\mathrm{H}=\mathrm{H}_{\text {dot }}+\mathrm{H}_{\text {bath }}+\mathrm{H}_{\text {dot-bath }}
$$

- $\mathrm{H}(\mathrm{t})$ determines the dynamics in real time. Can be time dependent.
- Evolution operator U_{H} : evolves the state of the system from t_{0} to t

$$
|\psi(t)\rangle=U_{H}\left(t, t_{0}\right)\left|\psi\left(t_{0}\right)\right\rangle
$$

- Heisenberg representation for operator A

$$
A(t) \equiv U_{H}^{\dagger}\left(t, t_{0}\right) A\left(t_{0}\right) U_{H}\left(t, t_{0}\right)
$$

Reminder : density matrix

- For the whole system (e.g. dot + baths)
- Describes the occupation of the levels.

$$
\begin{array}{rlr}
\operatorname{Tr} \rho & =1 & \\
\rho^{\dagger} & =\rho & \\
\rho & \geq 0 & \\
i \partial_{t} \rho(t) & =[H(t), \rho(t)] & \\
\rho(t) & =U_{H}\left(t, t_{0}\right) \rho\left(t_{0}\right) U_{H}^{\dagger}\left(t, t_{0}\right) & \\
\langle A(t)\rangle & \equiv \operatorname{Tr}\left(\rho(t) A\left(t_{0}\right)\right)=\operatorname{Tr}\left(\rho\left(t_{0}\right) A(t)\right) & \text { for correlataors } \rho
\end{array}
$$

- Out of equilibrium : 2 independents objects. H and ρ.
- Thermal equilibrium :

$$
\begin{aligned}
& \bar{\rho}=\frac{1}{Z} e^{-\beta H}, \quad Z=\operatorname{Tr} e^{-\beta H} \\
& \bar{\rho}=\frac{1}{Z} e^{-\beta(H-\mu \hat{N})}, \quad Z=\operatorname{Tr}^{-\beta(H-\mu \hat{N})}
\end{aligned}
$$

One particle Green functions

- Definitions
+,- : just notations
for the moment

$$
\begin{aligned}
G_{a b}^{++}\left(t, t^{\prime}\right) & \equiv-i\left\langle T c_{a}(t) c_{b}^{\dagger}\left(t^{\prime}\right)\right\rangle \\
G_{a b}^{--}\left(t, t^{\prime}\right) & \equiv-i\left\langle\check{T} c_{a}(t) c_{b}^{\dagger}\left(t^{\prime}\right)\right\rangle \\
G_{a b}^{+-}\left(t, t^{\prime}\right)=G_{a b}^{<}\left(t, t^{\prime}\right) & \equiv i\left\langle c_{b}^{\dagger}\left(t^{\prime}\right) c_{a}(t)\right\rangle \\
G_{a b}^{-+}\left(t, t^{\prime}\right)=G_{a b}^{>}\left(t, t^{\prime}\right) & \equiv-i\left\langle c_{a}(t) c_{b}^{\dagger}\left(t^{\prime}\right)\right\rangle
\end{aligned}
$$

- Only 2 Green functions are independents (from the definition of T)

$$
\begin{aligned}
& G_{a b}^{++}\left(t, t^{\prime}\right)=\theta\left(t-t^{\prime}\right) G_{a b}^{>}\left(t, t^{\prime}\right)+\theta\left(t^{\prime}-t\right) G_{a b}^{<}\left(t, t^{\prime}\right) \\
& G_{a b}^{--}\left(t, t^{\prime}\right)=\theta\left(t^{\prime}-t\right) G_{a b}^{>}\left(t, t^{\prime}\right)+\theta\left(t-t^{\prime}\right) G_{a b}^{<}\left(t, t^{\prime}\right)
\end{aligned}
$$

- In equilibrium, only one!

Fluctuation-Dissipation theorem, Kubo-Martin-Schwinger relation

$$
\left\langle c_{b}^{\dagger}\left(t^{\prime}\right) c_{a}(t)\right\rangle=\left\langle c_{a}(t) c_{b}^{\dagger}\left(t^{\prime}+i \beta\right)\right\rangle \quad G_{a b}^{<}(\omega)=-e^{-\beta \omega} G_{a b}^{>}(\omega)
$$

Schwinger-Keldysh
2- Diagrammatic expansion

General strategy

- Start at $\mathrm{t}=\mathrm{t}_{0}$ (=0 in most slides below)
- With initial condition:
$\rho=\rho_{0}$ at thermal equilibrium with non interacting Hamiltonian H_{0} at a temperature β
- NB : it is possible to start with interacting equilibrium. Baym-Kadanoff contour. Not covered here.
- Study the expansion of correlators at finite time.

$$
\operatorname{Tr}\left(\rho_{0} A(t) B\left(t^{\prime}\right) \ldots\right)
$$

- Build the diagrammatic at finite time.
- If needed, take the limit

$$
t, t^{\prime} \rightarrow \infty
$$

or $\quad t_{0} \rightarrow-\infty$

- Separate diagrams technique \& thermalization/relaxation/bath questions.

Interaction picture

- Hamiltonian evolution of whole system (dot + bath)

- Operator in interaction picture (\neq Heisenberg picture).

$$
\hat{A}(t) \equiv e^{i H_{0} t} A e^{-i H_{0} t}
$$

- Evolution operator in interaction picture

$$
\begin{aligned}
& \quad U(t) \equiv e^{i H_{0} t} U_{H}(t) \\
& i \partial_{t} U(t)=\hat{V}(t) U(t) \longrightarrow U(t)=T \exp \left(-i \int_{0}^{t} \hat{V}(u) d u\right) \\
& U(0) \longrightarrow 1
\end{aligned}
$$

Time evolution of a physical quantity

- Start at $\mathrm{t}=0(\mathrm{t} 0)$ from a non-interacting equilibrium density matrix ρ_{0}
- Average of an operator A

$$
U(t)=T \exp \left(-i \int_{0}^{t} \hat{V}(u) d u\right)
$$

Average in

$$
\begin{aligned}
\langle A(t)\rangle & =\operatorname{Tr}\left(\rho_{0} A(t)\right) \quad \text { initial state } \\
& =\operatorname{Tr}\left(\rho_{0}(U(t))^{\dagger} \hat{A}(t) U(t)\right) \\
& =\operatorname{Tr}\left(\rho_{0} \check{T} \exp \left(+i \int_{0}^{t} \hat{V}(u) d u\right) \hat{A}(t) T \exp \left(-i \int_{0}^{t} \hat{V}(u) d u\right)\right)
\end{aligned}
$$

- Expand the exp.
- Problem : not a T ordered product! How to use a Wick theorem ?

Wick theorem : reminder

- H_{0} a quadratic (gaussian) Hamiltonian for fermions

$$
H_{0}=c_{a}^{\dagger} M_{a b} c_{b}
$$

- Then the N body correlator is given by $(\zeta(P)$ is the signature of $P)$

$$
\begin{aligned}
&\left\langle T c_{a_{1}}\left(t_{1}\right) \ldots c_{a_{n}}\left(t_{n}\right) c_{a_{n}^{\prime}}^{\dagger}\left(t_{n}^{\prime}\right) \ldots c_{a_{1}^{\prime}}^{\dagger}\left(t_{1}^{\prime}\right)\right\rangle_{0}=\sum_{P \in S_{n}} \zeta(P) \prod_{k=1}^{n}\left\langle T c_{a_{k}}\left(t_{k}\right) c_{a_{P(k)}^{\prime}}^{\dagger}\left(t_{P(k)}^{\prime}\right)\right\rangle_{0} \\
&=\operatorname{det}_{1 \leq i, j \leq n}\left[\left\langle T c_{a_{i}}\left(t_{i}\right) c_{a_{j}^{\prime}}^{\dagger}\left(t_{j}^{\prime}\right)\right\rangle_{0}\right] \\
&\langle X\rangle_{0} \equiv \frac{1}{Z_{0}} \operatorname{Tr}\left(e^{-\beta H_{0}} X\right) \\
& Z_{0}=\operatorname{Tr}\left(e^{-\beta H_{0}}\right)
\end{aligned}
$$

- Requires a "gaussian" density matrix ρ_{0}
- Wick theorem is valid on any contour, as long as a time ordering is defined.

Schwinger Keldysh double contour

- Every times is now a couple (t, a), $\mathrm{a}= \pm \mathrm{I}$ (Keldysh indices)

$$
\begin{aligned}
0 & \xrightarrow[-]{\stackrel{\mathcal{C}}{\rightleftarrows} t} \\
\langle A(t)\rangle & =\operatorname{Tr}\left(\rho_{0} \check{T} \exp \left(+i \int_{0}^{t} \hat{V}(u) d u\right) \hat{A}(t) T \exp \left(-i \int_{0}^{t} \hat{V}(u) d u\right)\right) \\
& =\left\langle T_{\mathcal{C}} \hat{A}(t) \exp \left(-i \int_{\mathcal{C}} \hat{V}(u) d u\right)\right\rangle
\end{aligned}
$$

- Correlation function

$$
\left\langle T_{\mathcal{C}} A(t, \alpha) B\left(t^{\prime}, \alpha^{\prime}\right)\right\rangle=\left\langle T_{\mathcal{C}} \hat{A}(t, \alpha) \hat{B}\left(t^{\prime}, \alpha^{\prime}\right) \exp \left(-i \int_{\mathcal{C}} \hat{V}(u) d u\right)\right\rangle
$$

- Diagrams : expand the exponential.

Fundamental relation

- Connect the notations + - to the double contour

$$
\mathbf{G} \equiv-i\left\langle T_{\mathcal{C}} c_{a}(t, \alpha) c_{b}^{\dagger}\left(t^{\prime}, \alpha^{\prime}\right)\right\rangle=\left(\begin{array}{cc}
G_{a b}^{++}\left(t, t^{\prime}\right) & G_{a b}^{+-}\left(t, t^{\prime}\right) \\
G_{a b}^{-+}\left(t, t^{\prime}\right) & G_{a b}^{---\left(t, t^{\prime}\right)}
\end{array}\right)
$$

$$
\begin{aligned}
& G_{a b}^{++}\left(t, t^{\prime}\right) \equiv-i\left\langle T c_{a}(t) c_{b}^{\dagger}\left(t^{\prime}\right)\right\rangle \\
& G_{a b}^{--}\left(t, t^{\prime}\right) \equiv-i\left\langle\check{T} c_{a}(t) c_{b}^{\dagger}\left(t^{\prime}\right)\right\rangle \\
& G_{a b}^{+-}\left(t, t^{\prime}\right) \equiv i\left\langle c_{b}^{\dagger}\left(t^{\prime}\right) c_{a}(t)\right\rangle \\
& G_{a b}^{-+}\left(t, t^{\prime}\right) \equiv-i\left\langle c_{a}(t) c_{b}^{\dagger}\left(t^{\prime}\right)\right\rangle
\end{aligned}
$$

Diagrammatics

- Same diagrams (topology, ...) as ordinary T=0 (or Matsubara) diagrams.

But with an additional index a for each time

- Any diagrammatic approximation (large N, DMFT,) can be generalized to non equilibrium
$T=0$ "ordinary formalism"

- Vacuum diagrams canceled by denominator
- NoVacuum diagram Z=I

$$
Z=1
$$

$$
\begin{aligned}
\langle A(t)\rangle & =\operatorname{Tr}\left(\rho_{0} A(t)\right) \\
& =\operatorname{Tr}\left(\rho_{0}(U(t))^{\dagger} \hat{A}(t) U(t)\right) \\
& =\operatorname{Tr}\left(\rho_{0} \check{T} \exp \left(+i \int_{0}^{t} \hat{V}(u) d u\right) \hat{A}(t) T \exp \left(-i \int_{0}^{t} \hat{V}(u) d u\right)\right)
\end{aligned}
$$

- $A=1 .<1>=1$
- No "partition function", no "vacuum diagrams"

How to compute $\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$?

- Schwinger-Keldysh formalism Q_{n} is a n -dimensional integral

Vertices.Times u_{i} Keldysh indices $a=-I$,I

Profumo, Messio, OP, Waintal PRB 91, 245 I54 (2015)
(Quasi) Monte Carlo Explicit sum

- f_{n} is centered around t. Massive cancellations in the sum.

Interaction expansion of the Green function

$$
\begin{aligned}
& G_{\uparrow}^{\alpha, \alpha^{\prime}}\left(t, t^{\prime}\right)=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} \int d u_{1} d u_{2} \ldots d u_{n}\left(\prod_{i=1}^{n} U\left(u_{i}\right)\right) \times \\
& \text { Keldysh indices } \sum_{\alpha_{i}= \pm 1} \prod_{i=1}^{n} \alpha_{i} \operatorname{det} M_{\uparrow}\left(\left\{u_{i}\right\},\left\{\alpha_{i}\right\}\right) \operatorname{det} P_{\downarrow}\left(\left\{u_{i}\right\},\left\{\alpha_{i}\right\}\right) \\
& M_{\sigma}\left(\left\{u_{k}\right\},\left\{\alpha_{k}\right\}\right)=\left[\begin{array}{cccc|c}
g_{\sigma}^{<}\left(u_{1}, u_{1}\right) & g_{\sigma}^{\alpha_{1} \alpha_{2}}\left(u_{1}, u_{2}\right) & \ldots & g_{\sigma}^{\alpha_{1} \alpha_{n}}\left(u_{1}, u_{n}\right) & g_{\sigma}^{\alpha_{1} \alpha^{\prime}}\left(u_{1}, t^{\prime}\right) \\
\vdots & & & \vdots & \vdots \\
g_{\sigma}^{\alpha_{n} \alpha_{1}}\left(u_{n}, u_{1}\right) & g_{\sigma}^{\alpha_{n} \alpha_{2}}\left(u_{n}, u_{2}\right) & \ldots & g_{\sigma}^{<}\left(u_{1}, u_{n}\right) & g_{\sigma}^{\alpha_{n} \alpha^{\prime}}\left(u_{n}, t^{\prime}\right) \\
\hline g_{\sigma}^{\alpha \alpha_{1}}\left(t, u_{1}\right) & g_{\sigma}^{\alpha \alpha_{2}}\left(t, u_{2}\right) & \ldots & g_{\sigma}^{<}\left(t, u_{n}\right) & g_{\sigma}^{\alpha \alpha^{\prime}}\left(t, t^{\prime}\right)
\end{array}\right] \\
& P_{\sigma}\left(\left\{u_{k}\right\},\left\{\alpha_{k}\right\}\right)=\left[\begin{array}{cccc}
g_{\sigma}^{<}\left(u_{1}, u_{1}\right) & g_{\sigma}^{\alpha_{1} \alpha_{2}}\left(u_{1}, u_{2}\right) & \ldots & g_{\sigma}^{\alpha_{1} \alpha_{n}}\left(u_{1}, u_{n}\right) \\
\vdots & & & \vdots \\
g_{\sigma}^{\alpha_{n} \alpha_{1}}\left(u_{n}, u_{1}\right) & g_{\sigma}^{\alpha_{n} \alpha_{2}}\left(u_{n}, u_{2}\right) & \ldots & g_{\sigma}^{<}\left(u_{1}, u_{n}\right)
\end{array}\right]
\end{aligned}
$$

- Integrand cancels except if u_{i} are close to $t=t$ '

Clusterization around time $\mathrm{t}=\mathrm{t}^{\prime}$. Cancellations.

 Illustration at $\mathrm{n}=2$
${ }^{2}$

Z=| Revisited

- Expand Z

$$
\begin{aligned}
& 1=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} \int d u_{1} d u_{2} \ldots d u_{n}\left(\prod_{i=1}^{n} U\left(u_{i}\right)\right) \times \\
& \underbrace{\sum_{\alpha_{i}= \pm 1} \prod_{i=1}^{n} \alpha_{i} \operatorname{det} P_{\uparrow}\left(\left\{u_{i}\right\},\left\{\alpha_{i}\right\}\right) \operatorname{det} P_{\downarrow}\left(\left\{u_{i}\right\},\left\{\alpha_{i}\right\}\right)}_{=0}
\end{aligned}
$$

$$
P_{\sigma}\left(\left\{u_{k}\right\},\left\{\alpha_{k}\right\}\right)=\left[\begin{array}{cccc}
g_{\sigma}^{<}\left(u_{1}, u_{1}\right) & g_{\sigma}^{\alpha_{1} \alpha_{2}}\left(u_{1}, u_{2}\right) & \ldots & g_{\sigma}^{\alpha_{1} \alpha_{n}}\left(u_{1}, u_{n}\right) \\
\vdots & & & \vdots \\
g_{\sigma}^{\alpha_{n} \alpha_{1}}\left(u_{n}, u_{1}\right) & g_{\sigma}^{\alpha_{n} \alpha_{2}}\left(u_{n}, u_{2}\right) & \ldots & g_{\sigma}^{<}\left(u_{1}, u_{n}\right)
\end{array}\right]
$$

$Z=\mid$ Revisited

- Expand Z

$$
\begin{aligned}
& 1=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} \int d u_{1} d u_{2} \ldots d u_{n}\left(\prod_{i=1}^{n} U\left(u_{i}\right)\right) \times \\
& \underbrace{\sum_{\alpha_{i}= \pm 1} \prod_{i=1}^{n} \alpha_{i} \operatorname{det} P_{\uparrow}\left(\left\{u_{i}\right\},\left\{\alpha_{i}\right\}\right) \operatorname{det} P_{\downarrow}\left(\left\{u_{i}\right\},\left\{\alpha_{i}\right\}\right)}_{=0}
\end{aligned}
$$

- Proof: For fixed u_{i}, cancellation. Take $u_{\text {max }}$ the largest u_{i}.

$$
\begin{array}{ll}
g^{\alpha_{i}+}\left(u_{i}, u_{\max }\right)=g^{\alpha_{i}-}\left(u_{i}, u_{\max }\right) & \forall i \\
g^{+\alpha_{i}}\left(u_{\max }, u_{i}\right)=g^{-\alpha_{i}}\left(u_{\max }, u_{i}\right) & \forall i \\
G_{a b}^{++}\left(t, t^{\prime}\right)=\theta\left(t-t^{\prime}\right) G_{a b}^{-+}\left(t, t^{\prime}\right)+\theta\left(t^{\prime}-t\right) G_{a b}^{+-}\left(t, t^{\prime}\right) \\
G_{a b}^{--}\left(t, t^{\prime}\right)=\theta\left(t^{\prime}-t\right) G_{a b}^{-+}\left(t, t^{\prime}\right)+\theta\left(t-t^{\prime}\right) G_{a b}^{+-}\left(t, t^{\prime}\right)
\end{array}
$$

- The dets do not depend on $a_{\text {max }}$ so it cancels the sum.

How to compute $\mathrm{Q}_{\mathrm{n}}(\mathrm{t})$?

- Schwinger-Keldysh formalism Q_{n} is a n -dimensional integral

Vertices.Times u_{i}. Keldysh indices $a=-1,1$

Profumo, Messio, OP, Waintal PRB 91, 245I54 (2015) (Quasi) Monte Carlo Explicit sum

- Long time limit $\mathrm{t} \rightarrow \infty$ is easy. f_{n} is centered around t . Massive cancellations in the sum.
- $O\left(2^{n}\right)$ cost to compute $f_{n}(u)$. In practice, $n=10-15$.

How to sum the series?

Using the perturbative series: three possibilities

I. At finite time t, the series is convergent Bertrand et al. Phys. Rev. X 9, 041008 (2019)
2. A infinite \boldsymbol{t} (steady state), the series has a finite radius of convergence (for impurity, lattice models). Need re-summation technique
3. Change the starting point, cf M. Ferrero's talk, see also Profumo et al. PRB 91, 245154 (2015)

Resum with conformal maps

Profumo et al. PRB 91, 245154 (2015)
Bertrand et al. Phys. Rev. X 9, 041008 (2019)

A finite radius of convergence ! Singularities poles, branch cuts

- Change of variable $\mathrm{W}(\mathrm{U})$, with $\mathrm{W}(0)=0$

$$
Q=\sum_{n \geq 0} Q_{n} U^{n}=\sum_{p \geq 0} \bar{Q}_{p} W^{p}
$$

Let us end with some results (quantum dot)

I- Equilibrium. Benchmarks.

Reminder : model for the quantum dot

- Anderson model with two leads (L, R).

$$
H=\sum_{\substack{\text { Bath } \\ \alpha=L, R}} \varepsilon_{k \alpha} c_{k \sigma \alpha}^{\dagger} c_{k \sigma \alpha}+\sum_{\sigma} \varepsilon_{d} d_{\sigma}^{\dagger} d_{\sigma}+U n_{d \uparrow} n_{d \downarrow}+\sum_{\substack{k \sigma \\ \alpha=L, R}} g_{k \sigma \alpha}\left(c_{k \sigma \alpha}^{\dagger} d_{\sigma}+h . c .\right)
$$

- Questions: Spectral function ? Kondo temperature ? Current ?

We want a precise solution, at low temperature, any V_{b}, in steady state

Kondo effect in equilibrium

Spectral function on the dot

$$
A(\omega)=-\frac{1}{\pi} \operatorname{Im} G^{R}(\omega)
$$

- Sum the series for each frequency independently
- Resumption of the series using conformal maps
- Benchmark with NRG (numerical renormalisation group)

$$
\begin{array}{cc}
T=10^{-4} \Gamma & \text { C. Bertrand et al. } \\
\text { Phys. Rev. X 9,041008 (2019) }
\end{array}
$$

Kondo Temperature

$$
T_{K}(U) \equiv \frac{2 \Gamma}{1-\left.\partial_{\omega} \operatorname{Re} \Sigma^{R}(U, \omega)\right|_{\omega=0}}
$$

Kondo temperature

Naive sum
of the series

Fermi liquid at low energy

- Equilibrium. Self-energy, away from particle-hole symmetry

Self energy (Re)

Self energy (Im)

Benchmarks

- Steady state inchworm by A. Erpenbeck et al.

Figure from A. Erpenbeck

- Tensor network (MPS) + time evolution

C. Bertrand, D. Bauernfeind, P. Dumitrescu, M. Maček, X.Waintal, O.P.

2-Non equilibrium

Out of equilibrium

- Destruction of the Kondo resonance by voltage bias

$$
T=0
$$

$$
T=\Gamma / 50
$$

- Particle hole asymmetric case

Distribution function on the dot

- Equilibrium, for all U. Fermi function.

$$
f(\omega)=n_{F}\left(\omega-\mu_{R}\right)=\frac{1}{1+e^{\beta\left(\omega-\mu_{R}\right)}}
$$

- Out of equilibrium for $U=0$ (in the small g limit). Not a Fermi function

Out of equilibrium distribution function of the dot

- Finite $\mathrm{U}, \mathrm{T}=0$

$$
n(\omega) \equiv \frac{G^{<}(\omega)}{2 \pi i A(\omega)}
$$

Bertrand et al. 2019
Phys. Rev. X 9, 041008 (2019)

Conclusion

- Perturbation theory for real time/out of equilibrium systems.
- Success in quantum dots/nano-electronic systems.
- Beyond Monte-Carlo ...
- Next steps : lattice, DMFT solver out of equilibrium.

References

- Diagrammatic/determinantal QMC in Keldysh Phys. Rev. B 9I, 245I54 (2015)
- Quantum dot equilibrium/out of equilibrium, resummation with conformal maps Phys. Rev. X 9, 041008 (2019) Phys. Rev. B 100, I25I29 (2019)
- Quantum Quasi-Monte Carlo Phys. Rev. Lett. I25, 047702 (2020)
Phys. Rev. B I03, I55I04 (202I)

Thank you for your attention!

