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1. Context: Quantum Embedding Methods
• Quantum embedding methods share a general 

framework:
1. Treat the crystal with some itinerant model 

• (DFT, GW, …)
2. Project onto a local, correlated subspace
3. Treat subspace with local model 

• (Gutzwiller, DMFT, …) 
4. Solve impurity problem of local model

• (ED, CTQMC, NRG, …)
5. Embed local quantities into itinerant space 

and solve new itinerant problem
• (density, self-energy, polarizability)

6. Repeat until charge self-consist
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1. Why do methods proliferate?
• Each method has its particular evolutionary niche with unique capabilities and limitations 

• Lattice:
• DFT

• Great at weakly correlated materials, fast, forces, phonons
• G0W0, Quasiparticle-GW, self-consistent GW

• Band gaps, excitations, and long-range correlation

• Correlated Subspace:
• DMFT 

• T ≠ 0, lifetimes, great at capturing local (non-quasiparticle, Mott) physics
• Gutzwiller (RISB)

• T=0, Fast, full crystal fields, great at capturing correlated quasiparticles
• CDMFT/CGutz/DCA

• Long range correlations



1. Quantum impurity solvers
Quantum Impurity Solver Proliferation

Why choose CTQMC?
• Only exact quantum impurity solver which currently handles full d- and f-shell materials
• Extremely and easily parallelizable (near ideal weak scaling)

Why ComCTQMC?
• GPU accelerated (1 - 225x depending on the number of orbitals & symmetries)
• Worm Sampling (Full susceptibility tensor, atomic limit)
• Vertex asymptotics (Build two-particle vertices at any frequency)

Exact Approximate

Numerical renormalization group (NRG) One-crossing approximation (OCA)

Exact Diagonalization (ED) Hubbard-one

CTQMC



1. The quantum impurity problem
Anderson Impurity Model

• Hamiltonian:

𝑯𝑨𝑰𝑴 = ∑𝒌 𝝐𝒌𝒄𝒌
%𝒄𝒌

+𝝐𝒇𝒇"𝒇 + 𝑼𝒏↑𝒏↓ + ∑𝒌(𝑽𝒌 𝒄𝒌
"𝒇 + 𝑽𝒌∗𝒇"𝒄𝒌)

• Action:

𝑺 = ∑𝒊𝒋∬𝒇𝒊
% 𝝉 𝓖𝟎,𝒊𝒋*𝟏 (𝝉 − 𝝉′)𝒇𝒋 𝝉′ 𝒅𝝉𝒅𝝉,

+∑𝒊𝒋𝒌𝒍∬𝒇𝒊
" 𝝉 𝒇𝒋

" 𝝉′ 𝓤𝒊𝒋𝒌𝒍(𝝉 − 𝝉′)𝒇𝒌 𝝉′ 𝒇𝒍 𝝉 𝒅𝝉𝒅𝝉*

Ø A dynamical mean-field and a (dynamical) interaction



• Three main computations in CTQMC
• w(C) = whyb(C) wdyn(C) wimp(C)

• Local impurity trace

𝑤imp C = Tr 𝑒+,-!"#𝑇.8
/

0

𝑐1$%(𝜏/
* )𝑐1$

" (𝜏/) = Tr 𝑃,+.&𝐹1&
"𝑃.&+.&% 𝐹1&% …𝐹1'𝑃.'+.'%𝐹1'

"𝑃.'%

where 𝐹1 𝑚𝑛 = 𝑚 𝑐𝑖 𝑛 , 𝑃. = 𝑒+.-!"#
• 𝐹1 is a matrix of rank 2n

• n is the number of orbitals 
• Computation is of order O[k (2n )3]

• Even with GPUs, this is prohibitive for most real materials

2. Computational Bottleneck

P. Sémon, C.-H. Yee, K. Haule, and A.-M. S. Tremblay,
Phys. Rev. B, vol. 90, p. 75149, 2014.



• Store sub-products (binary tree, skip-list): 
• O(k (2n )3) → O(log k (2n )3)

• Less sensitive to expansion order (low temperature, strong hybridization)

• Evaluate the bounds of the calculation (Lazy-trace):
• Multiplication of the matrix norms establishes bounds 
• Many proposed moves can be easily discarded w/o full matrix multiplication

• Norm has cost O(log k (2n )2) 

2. Algorithmic Improvements 

P. Sémon, C.-H. Yee, K. Haule, and A.-M. S. Tremblay, 
Phys. Rev. B, vol. 90, p. 75149, 2014.
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2. Decomposing the Hilbert space
• Decompose the Hilbert space H   according to symmetries of the 

atomic Hamiltonian 
H =⊕234

5 H (q)
• Each sector q has unique set of quantum numbers that all 

Fock states in the sector share: 
• N, Sz, S 2, … 
• N, Jz, J 2 , …

• New basis:
[𝐹1(𝑞, 𝑗)]𝑚𝑛 = 𝑚(𝑞674) 𝑐𝑖 𝑛(𝑞6)

• The product 𝑃,+.(&𝐹8(& …𝐹8'𝑃.! traverses sectors of H
𝑞0 → 𝑞1 → ⋯ → 𝑞2𝑘= 𝑞0

• We can store this map and discard moves that pass 
through the unphysical sectors (prevented by pauli, e.g.)

Sectored
Hilbert  Space 

Illustration of
Block Diagonalized

Hilbert Space & 
Operators Fα(q) 

Local Trace 
∑q0

Tr[     ] 

Fi(q0) Fj(q1)

Fk(q2)

F†k(q3)

F†j(q4)

F†i(q5)

q0

H(1) H(2) H(n) 

N = 1, Sz = -1/2

N = 2, Sz = -1
N = 10, Sz = 0N = 1, Sz = 1/2

H(3) 

× × × × × =

PΔτ

q0

q0



2. Symmetries and Computational Cost
𝑤imp C = Tr 𝑃,+.(&𝐹8(& …𝐹8'𝑃.! →I

2"

Tr 𝑃,+.(& 𝑞2𝑘 𝐹8(& 𝑞90+4 …𝐹8' 𝑞: 𝑃.! 𝑞:

• 2k matrix multiplications means the burden scales as
𝑂 2𝑛 3𝑘 → 𝑂 𝑛𝑠𝑒𝑐𝑡𝑜𝑟𝑠(2;/;#$%&'(#)=𝑘

• The more symmetries (good quantum numbers) there are, the more sectors there are
Ø The more sectors there are, the smaller the sectors are
Ø The smaller the sectors are, the easier the local trace becomes
Ø The easier the local trace becomes, the faster the CTQMC is (time-per-step)

• Degeneracy within the sectors has no effect on the computational burden of the local trace, 
although such degeneracy can be used to combine measurements and reduce the number of 
steps required for convergence
• Time-per-step unaffected, but time-to-solution still improved



• From easy to impossible
• 2 orbitals (extremely easy) 

• Cuprates (dx2-y2 subspace)
• 4 orbitals (extremely easy)

• Nickelates (eg subspace)
• 6 orbitals (easy)

• SrVO3  and other early transition-metal oxides (t2g subspace)
• 8 orbitals (moderate)

• Cuprate CDMFT (2x2x1)
• 10 orbitals (moderate to difficult)

• Iron, iron pnictides/chalcogens, ruthenates (full d-shell) 
• 14 orbitals (very-difficult to impossible)

• Actinides & lanthanides
• 16 orbitals (impossible)

• Cuprate CDMFT (4x4x1), Nickelate CDMFT (2x2x1)

2. What Problems Can and Can’t We Solve?

GPU Acceleration!
Makes the impossible 

possible and the difficult a 
whole lot easier!
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• What is to be gained from understanding actinide systems?
• They are much more complex – while d-shell materials often can be described as Hund 

metals, Mott insulators, etc. actinides support a more diverse combination of physics
• E.g., Kondo + Mott + Hund + spin-orbit + crystal field effects are all important in 

Plutonium & UGe2
• As such, they offer insight into how these phenomenon interact in a material

• Practical interest
• Heavy fermion systems / heavy fermion superconductors 
• Uranium as nuclear energy material

• What is to be gained from simulating clusters?
• Long-range interactions! 

• Fermi arcs in cuprates
• Better Mott transitions
• ???

2. How much should we care?



• Improve or change quantum impurity solver
• Use a solver without the sign problem

• (if that’s the problem) 
• GPU acceleration

• Change Quantum Embedding Theory
• Use a faster method
• Use a method that does not care about the basis
• Use a method that can reach T=0

• DFT+G
• (No finite temperatures, yet)
• (Bad mott physics?)

2. What is to be done?
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• GPU’s excel at large matrix multiplication
• Impurity trace!

• O(1000) compute cores
• Fast memory access

• Limitations:
• CPU-GPU communication can bottleneck
• Less memory
• Slow at branching logic

• Right: A diagram of Summit’s GPUs
• Near exascale! 

docs.olcf.ornl.gov/systems/summit_user_guide.html

3. GPU Primer



• Handle all linear algebra for local impurity trace on the GPU
• Matrix multiplication 
• Matrix norm
• Time evolution operator
• Trace

• Store on GPU (to limit CPU-GPU communication)
• Operator Matrices
• Sub-products in data structure

• Communicate (to limit branching logic)
• Instructions 

• which matrices to multiply and in which order, but 
not the contents of these matrices!

• Results (wloc)

3. Accelerating ComCTQMC

GPU accerlated CPU
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• Density-Density or Ising interactions: 
• 2n log k matrices of rank 1
• Deceleration – communication dominates

• Spherically symmetric interaction in d-shell
• ~50 log k matrices of rank ~20
• Very little acceleration!

• Spherically symmetric interaction in f-shell
• ~200 log k matrices of rank ~100
• 15-20x acceleration of summit node 

• Delta-Pu interaction with crystal fields
• ~50 log k matrices of rank ~500
• 200x acceleration of summit node

• BUT! Large subspaces DO NOT HELP CTQMC. 
• CTQMC slows to a crawl with rmax > 300
• GPUs help alleviate some of the associated burden

3. GPU acceleration examples

A
cc

el
er

at
io

n 
of

 a
 si

ng
le

 C
PU

0

200

600

0
200 400 600 800 1000

800

400

Rank of largest matrix, n

~ 8(10-
4 ) n

2

d-shell (Fe at 600 K)

Crystal Fields
No | Yes

f-shell (Pu at 600 K)



• Plutonium is a fascinating material
• A lot of phases as we vary temperature
• Phase changes associated with dramatic 

volume changes
• Negative thermal expansion in δ-phase
• “Nearly magnetic”
• Why? Correlated 5f electrons!

• Very hard to study
• Experimentally

• Toxic & radioactive
• Controlled heavily

• Theoretically
• DFT fails to predict basic behaviors
• DMFT is extremely costly
• Gutzwiller cannot (currently) capture T≠0

4. Plutonium: “A physicist’s dream and a metallurgist’s nightmare.”

N. G. Cooper, D. R. Delano, and A. T. Loweree, “Challenges in 
Plutonium Science,” Los Alamos Sci., vol. 26, no. 1 and 2, pp. 
1–502, 2000.



• Pioneering DMFT w/CTQMC studies

• DFT/DFT+U/DFT+G/DFT+DMFT comparison

• Crystal fields in early actinides DMFT w/ OCA & CTQMC

4. Plutonium: Pioneering Works



• For a CPU, the f-shell of δ-Plutonium at 600 K with a spherically 
symmetric interaction is near the limit of what one reasonably wants     
to solve with CTQMC
• 500-1000 node hours per impurity problem solution
• 10,000-20,000 node hours per DFT+DMFT!

• nearly a million cpu-hours
• K. Haule’s very optimized CTQMC allowed for the first 

successful DMFT w/ CTQMC of Pu & other late actinides

• With GPU acceleration, it becomes (relatively) easy!
• 25-50 node hours per impurity problem
• 500-1000 node hours per DFT+DMFT

• Interactions which consider more crystal field effects become possible
• 20,000,0000 → 10,000 node hours per impurity problem 
• (DFT+G remains easy – we can see whether it is worth it!)

4. GPU acceleration of Plutonium



• Explore parameterization 
• The effects of spin-orbit coupling 
• Valence fluctuation

• Structural relaxation 
• Energy vs. volume curves – no forces in DFT+DMFT yet

• Thermal expansion and contraction!
• Energy volume curves as a function of temperature

• Each data point is 5+ runs 
• immense effort without GPU

4. What can we do with accelerated DFT+DMFT?
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6. Crystal field effects
1. Analyze the local symmetry group (what is the atom’s local environment?)
2. The symmetry group enforces

A. Which hopping elements in the one-body Hamiltonian vanish
B. Which elements  are members of same irreducible representation (irrep)

• Crystal fields (the local symmetry group) bring us from a spherically symmetric solution to 
one with some number of hopping elements, and some splitting of elements on the diagonal

In Jmz basis
Crystal fields



6. Crystal field effects: What can DMFT do?
• DMFT (with CTQMC as an impurity solver) cannot typically handle off-diagonal elements

• Sign problem (unless we severely truncate the interaction tensor)
• We can just throw away all off-diagonals or…

• Symmetry operations can rotate basis to minimize number of off-diagonals

• Then we still throw the remaining off-diagonals away
• This brings crystal field into the interaction tensor, reducing its symmetries!

• Much harder problem, but tractable with GPU acceleration

Symmetry
adapted basis



6. Crystal field effects: Fermi surface
• Even on the scale of the FS, the crystal field has little affect on delta-Pu

• (Color represents quasiparticle weight)

DFT+DMFT 
(200K)

DFT+G w/o crystal fields DFT+G w/ full crystal fields



6. Crystal field splitting dominated by spin-orbit splitting
• Why is the crystal field unimportant in δ-Pu?

• Crystal field splitting ≪ Spin-orbit splitting
• (right: delta-Pu DFT+G with full crystal fields)

• What about the less symmetric phases?
• Lower symmetry = stronger crystal field effects

• Much more mixing between 5/2 and 7/2 states
• Less preference for the fully-filled j=5/2 shell
• A fluctuating magnetism!

• DFT+G oscillates between a magnetic and 
non-magnetic state in gamma-Pu 

• (It agrees with DMFT that delta-Pu is non-
magnetic)
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6. Symmetry adapted bases: a primer
• Generate the local symmetry group: 𝐺 = 𝑔

• An analysis of the local environment surrounding an atom (or molecule for cluster-X) 
• Group theory

• From any basis, 𝐿, we gen generate representations (reps) of that group, 
• E.g., 𝐿 = 𝜓 𝑟 is the basis of cubic spherical harmonics, or 𝐿 = ℝ=
• T𝐷(𝑔) describes the transformation of 𝜓 𝑟 or [x,y,z] by g

• Representations can be decomposed into 
• irreducible reps (irreps), 𝐷0

(1), with invariant subspaces, 𝐿0
(1)

• T𝐷 𝑔 = ∑0𝐷0
1 𝑔 ,  𝐿 = ∑0 𝐿0

(1) , 𝐿0
(1) = 𝐷0

1 "𝐿0
(1)𝐷0

1

• Symmetry adapted basis has irreps which (block)-diagonalize Hamiltonians! 
• Wigner’s theorem: 

• 𝐻1@6A
8, = ∫ 𝑑𝑟 𝜙1@8 𝑟

∗
T𝐻𝜙6A

, 𝑟 = 𝐻18@6,A𝛿16𝛿8,



6. Generating different representations
1. Get local symmetry group, G

• Assume quantization axis is along z: the l,Lz or j,Jz basis
• Get “Wigner D Matrices”

• Describe the transformation of spherical harmonics under the symmetry operations 
• Only include transformations that commute with magnetization axis (if there is one)
• This is our rep, 𝐷;BC1DE(𝐺)

• (This is the most common basis choice – tends to work quite well in
2. Generate possible quantization axes for the symmetry group

• Possible axes come from [x,y,z], [crystal axes], [local symmetry group rotations]
• Associated transformation of our rep is some unitary matrix 𝑈

3. Characterize associated reps & check that they’re symmetry adapted
• 𝐷BFBGC 𝐺 = 𝑈"𝐷;BC1DE 𝐺 𝑈
• Use group theory to decide if it is symmetry adapted



• DFT+DMFT w/ CTQMC as “exact”:
• CTQMC has strong “feelings” about the impurity problem generated by DMFT

• If it doesn’t “like” the problem (and basis): Time-to-solution becomes near infinite
• Otherwise, it happily converges to the exact solution

• Tends to like bases that capture the most important quantum numbers
• E.g.: Magnetized along x ? Mx should be a diagonal operator

• How do we gain confidence in our predictions after truncating the Hamiltonian?
• Experiment (not a predictive approach)
• DFT+G? 

• No truncation
• Find best bases quickly
• Create benchmarks for DFT+DMFT without truncation of the basis
• (It also lets us investigate T=0 behavior without a sign problem)

7. Towards Predictive DFT+ DMFT



• On the COMSCOPE roadmap is the ability to seamlessly 
and easily simulate materials within DFT+G and DFT+DMFT
• Seamless:

• Same user-friendly interface

• Same analysis tools

• Same software platform
• Abstracted implementation of framework

• Projection / Embedding as the cornerstone 

• Ultimate goal: Framework for general quantum embedding 
problems and seamless simulation / analysis 

7. Supplementing with DFT+G (& more?)
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R. Adler, C. Melnick, G. Kotliar in preparation



7. Comparing DFT+G and DFT+DMFT: Ferromagnetic Fe

• Ferromagnetic Fe
• no spin-orbit coupling
• DMFT requires no 

truncation – but we use 
ising interaction for 
convenience

• U=5, J=0.7, N0=5.1

• (right) Quasiparticle band 
structures with spin character

• Similar
• Magnetization

• 2.6 vs 2.2
• Bands / spectral-functions
• Spin character

DFT+G (10 K) DFT+DMFT (100 K)



• DFT+G provides a look at the T=0 phase diagram
• Extremely accurate AFM prediction compared against DFT+DMFT

• DFT+DMFT provide a look at the temperature driven transitions, mott physics

7. Comparing DFT+G and DFT+DMFT: AFM & PM NiO
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• Jz basis vs. Mx basis (DFT+DMFT) as compared to the “full” solution (DFT+G)

7. UGe2: Finding bases for DMFT in high crystal fields



• Example one: symmetry adapted bases
• Simultaneously implemented for all methods!

• Example two: Wanted to implement DFT+CDMFT
1. Implementation all in the projectors! 
2. This means implemented DFT+Cluster-X

a) DFT+Cluster-DMFT
b) DFT+Cluster-Gutzwiller

• Right: (folded) Quasiparticle weight on Fermi surface in cuprate                
superconductor within DFT+CGutz

• Example 3: qpGW+Gutz
• Sangkook Choi will be talking about (qp)GW+DMFT
• When we bring that into our framework, we will also get qpGW+G, nearly for  free

7. Simultaneous Extension of Methods



• Equations
• ARPES intensity

• Matrix elements

• ARPES (spectral functions with with polarized light-electron interaction)

7. Simultaneous Extension of Analyses

• delta-Pu

• DFT+DMFT

• DFT+G
• (w/ full

crystal
fields)

• x-polarization • y-polarization



• High-throughput & material design require thousands of possible combinations are 
tested
• Fast method like DFT+G must be used to refine structures & select promising 

candidates
• More accurate methods must be used to validate or test at finite temperatures those 

candidates, narrowing them down
• The most accurate methods may be used on a final, select few

• Each method or level of approximation as a filter!

7. Usability in Material Design

Number of candidates

Cost & Accuracy of filter



8. Thanks for you time! Questions?



1. One Markov chain does not fully utilize GPU
• Matrices are not large enough 
Ø Handle multiple Markov chains simultaneously 

2. Memory limitations on GPU
• Multiple CPU’s using the same GPU cannot 

share GPU memory
Ø One CPU simulates multiple Markov chains
Ø CUDA Streams instead of MPS

3. Memory allocation is synchronizing
• Cannot allocate memory for new products and 

sub-products on GPU during computation
Ø Allocate whole device on startup
Ø Parcel out memory ourselves

3. Accelerating ComCTQMC: Challenges & Solutions
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4. Memory restrictions
Ø Avoid multiple CPU’s using the same GPU
Ø Use mixed-precision 

• Single (half) precision take ½  (¼) the memory

Mixed Precision
• GPU has dedicated cores for different levels of precision 

• Double, single, and half precision
• 8 → 16 → 32 or 100+ TFLOP/s per GPU

• Accumulate results with double precision but multiply single 
or half-precision matrices!
• (Half-precision does not have the dynamic range to 

handle real materials, sadly – perhaps when NVIDIA 
implements a different half-precision float)

3. Accelerating ComCTQMC: Challenges & solutions



• A lot of CPU’s
• Summit: (2 physical, 42 cores)

• A few GPU’s
• Summit: 6

• Accelerate one cpu / gpu
• Remaining cpu’s work as usual, 

unaccelerated 

3. Utilizing HPC

un-accelerated CPU
accelerated CPU

Initialization Thermalization Measurement Finalization

Read & broadcast H Reduce & broadcast ηχ Reduce & write O



3. Accelerating ComCTQMC: 
• GPUs are designed to handle large matrix multiplication 

problems

• In CTQMC
• Less time is wasted communicating results between 

CPU and GPU as 𝑟 → 𝑂(1,000)
• Saturating the GPU becomes easier as 𝑟 → 𝑂(1,000)
• GPU becomes more efficient as 𝑟 → 𝑂(1,000)

• The larger the subspaces (and the fewer the quantum 
numbers), the more the GPU accelerates the CTQMC

• BUT! Large subspaces DO NOT HELP CTQMC. 
• CTQMC slows to a crawl with rmax > 300
• GPUs help alleviate some of the associated burden
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6. The Best Symmetry Adaptation
1. Apply Wigner’s theorem
2. Count off-diagonals elements in 𝐻@A8 blocks
3. Choose rep with fewest off-diagonals

• Must discard off-diagonals to solve impurity problem with CTQMC
• More elements in off-diagonal → harder Gutzwiller
• (Diagonal of rep always filled with irreps)

4. Choose a rep which (co-)diagonalizes observables of choice
• We may have physical intuition about the best quantum numbers

• E.g. 
• Mx in a magnetic material magnetized along x
• Mz, Lz, Sz in a d-shell material with spin-orbit coupling

• (In my experience CTQMC hates the Jm basis in d-shell problems!)


