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Introduction to DFT and Density 
Functionals



Introduction:

carbazole molecule inside diamond

… a lot more than pretty pictures…



Hamiltonian in condensed matter

H =
Nel

∑
i

−
ℏ2 ∇2

ri

2m
+

Nion

∑
l

−
ℏ2 ∇2

Rl

2Ml
+ Vel + Vion + Vion−el

Here’s the complete hamiltonian in condensed matter including electrons and ions :

Vel = ∑
i,j,j≠i

e2

|ri − rj |
Vion = ∑

l,k,l≠k

ZlZke2

|Rl − Rk |

Vion−el =
Nel

∑
i

Nion

∑
l

Vl(ri − Rl)
We assign the interaction between electrons and ions to a potential  
and not simply as the ion potential could be “pseudo 
potential” that accounts for the interaction of the atomic nucleus and 
the core electrons contributions. In that case, the  are pseudo 
charges, meaning only the charge of the valence electrons of that 
atoms. We can always revert back to the coulomb form of the 
potential if need be. 

Vl
Zle2/ |ri − Rl |

Zl

Interaction terms:



After Born-Oppenheimer approximation:
The electronic hamiltonian

H =
N

∑
i=1 [ −ℏ2

2m
∇2

i + Vext(ri)] +
N

∑
i<j

e2

|ri − rj |

 is the external potential, most often produced by the ions. 

It will be represented by pseudopotentials in DFT.
Vext(ri)

HΨn = EnΨn

We are looking for the solutions of the time-independent Schrödinger equation:  

The wave function is a multi-variable function:
Ψ(r1, r2, . . . , rN)



An impractical problem:

Ψ(r1, r2, . . . , rN)
Storage required:

  

10 electrons →  100010  data →  1030 ×16 bytes

=16 ×1021 Gb

Impracticable!!!

Let us assume that each coordinate is discretized on a 10x10x10 real 
space grid, which means that there are 1000 data per coordinate.



Dirac’s quote of 1929

« The underlying physical laws necessary for the 
mathematical theory of a large part of physics and 
the whole of chemistry are thus completely known, 
and the difficulty is only that the exact application 
of these laws leads to equations much too 
complicated to be soluble. » 
Réf: Quantum mechanics of many-electron systems, Proceedings of the Royal Society of London, pp.714. (1929)



Dirac’s quote of 1929 (suite)

« It, therefore, becomes desirable that approximate 
practical methods of applying quantum mechanics 
should be developed, which can lead to an 
explanation of the main features of complex atomic 
systems without too much computation. » 
Réf: Quantum mechanics of many-electron systems, Proceedings of the Royal Society of London, pp.714. (1929)

This is the subject of this school!



Wavefunction approaches: Hartree method
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Lagrange multipliers 
to assure that the φl 
remain orthogonal.

Same equation 
for all φl.



Hartree-Fock method
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Slater 
determinant

Particles are not independent, change the position of one and all the others 
are affected.

Pauli’s exclusion principle is respected.

“Correlation” is purely statistics, and not due to interaction.



Hartree-Fock method
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Exchange potential

Because of the exchange term, the problem is much harder to resolve. 


Results are better than those of the Hartree method but still not very satisfying.



Configuration Interaction method
),,,(),,,( 2121 Ni

i
iN xxxCxxx …… Φ=Ψ ∑

Sum of Slater determinants (configurations)

Must find the coefficients Ci

CI = configuration interaction


CIS = CI with single excitations only


CISD = CI with single and double excitations only

Correlation energy (chemistry): contribution over that of Hartree-Fock



Wavefunction methods
Advantages:


○ Control approximations


○ Systematic approach (H, HF, CIS, …)


○ Upper bound (variational principle)


Disadvantages:


○ Very costly numerically 


(up to 20-30 electrons, forget solids!)



Progress in theoretical methods
Nobel Prize 1998 in Chemistry

Walter Kohn

John A. Pople

• efficient


• flexible


• precise


• parameter free

"for his development of 
computational methods in quantum 
chemistry”

"for his development of the density-functional 
theory”



Walter Kohn and Canada/Sherbrooke

Walter Kohn

• efficient
• flexible
• precise
• parameters free

Austria

England
Sherbrooke

Toronto

Harvard

Walter Kohn died April 16, 2016.

André-Marie initiated the Walter Kohn public lecture at UdeS.


Walter Kohn himself was the first speaker.



Milestones in DFT
Precursor: Thomas-Fermi approximation (1927) 


Inhomogeneous electron gas

P. Hohenberg and W. Kohn, Phys. Rev.  136, B864 (1964)

Self-consistent equations including exchange and correlation effects 

W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965)


Ceperley, Alder (1980); Perdew, Zunger (1981) : computation and

	 parametrization of the exchange and correlation energy 

	 needed in the local density approximation



Most cited papers
Papers published in APS journals (PRL, PRA, PRB, .. 
RMP), most cited by papers published in APS journals


S. Redner, Citation Statistics from 110 Years of Physical Review, Physics Today, June 2005. 


Today, according to Google Scholar: K&S, 66k; H&K, 58k; PBE functional, 150k ! 



THE reference in DFT for solids



What is a functional?
A function takes a number as argument and returns a number.


A functional takes a function as argument and returns a number.
f(x) = Ax2

f[n(x)] = ∫ v(x)n(x)dx

Example of a function:

Example of a functional:

Function derivative:
df
dx

= lim
α→0

f(x + α) − f(x)
α

Functional derivative:
∂f

∂n(x′ )
= lim

α→0

f[n(x) + αδ(x − x′ )] − f[n(x′ )]
α

A functional is like a multi-variable function but with 
continuous argument instead of being discrete.



DFT: first theorem
Hohenberg et Kohn, Physical Review, vol 136, B864, (1964)

Proof by contradiction

v(r) → Ψo(r1, . . . , rn) → no(r)
v′ (r) → Ψ′ o(r1, . . . , rn) → no(r)

Different potentials same density

Using variational principle:

Eo = ⟨Ψ |H |Ψ⟩ < ⟨Ψ′ |H |Ψ′ ⟩ = < ⟨Ψ′ |H′ − v′ (r) + v(r) |Ψ′ ⟩ = E′ o + ∫ n(r)(−v′ (r) + v(r))

But also:
E′ o = ⟨Ψ′ |H′ |Ψ′ ⟩ < ⟨Ψ |H′ |Ψ⟩ = < ⟨Ψ |H − v(r) + v′ (r) |Ψ⟩ = Eo + ∫ n(r)(−v(r) + v′ (r))

Adding the last two expressions, we get:
Eo + E′ o < E′ o + Eo

an obvious contradiction.



DFT: first theorem
The ground state density  of a many-electron system determines 
uniquely the external potential , modulo one global constant. 

no(r)
v(r)

Consequence : formally, the density can be considered as the 
fundamental variable of the formalism, instead of the potential.

No need for wavefunctions or 
Schrödinger equation !

The second theorem is actually simply the demonstration that the variation 
principle still holds.



The constrained-search approach to DFT 
M. Levy, Proc. Nat. Acad. Sci. USA, 76, 6062 (1979) 

Use the extremal principle of QM. 
Eo = min

Ψ
⟨Ψ |H |Ψ⟩ = min

n(r) { min
Ψ→n(r)

⟨Ψ |H |Ψ⟩},

Eo = min
n(r) { min

Ψ→n(r)
⟨Ψ |T + vint + vext |Ψ⟩},

Eo = min
n(r) { min

Ψ→n(r)
⟨Ψ |T + vint |Ψ⟩ + ∫ n(r)vext(r)dr},

Eo = min
n(r)

{F[n] + Eext[n(r)]}
 is a universal functional of the density. 


The problem is that we do not know it explicitly.
F[n]



Thomas-Fermi method
A pure density approach

Although introduced before DFT, it can be considered as a pure DFT 
approach that relies only on the density.  

In DFT, the  needs to be approximated. In the TF method, it is 
approximated as the kinetic energy of the non-interacting homogeneous 
electron gas at each point in space.

F[n]

For a non-interacting homogeneous electron gas of density , we can define 
its density kinetic energy by the function: . In the TF method, the 
kinetic energy contribution to the total energy is computed be:

n
Ekin(n)

F[n] = ETF
kin[n] = ∫ Ekin(n(r))dr

We then proceed with a minimization that involves only the density.



The Kohn-Sham approach
A way to get a better value for the kinetic energy

: large part of the total energy, hard to approximateF[n]

Kohn & Sham (Phys. Rev. 140, A1133 (1965)) :


A mapping of the interacting system on a non-interacting system in order to 
get a better approximation for the kinetic energy.


For a non-interacting system, the ground state is a single Slater determinant 
which kinetic energy is easy to evaluate.

Ψ(r1, . . . , rN) = Slater determinant of ϕi(r)

TS[n] =
N

∑
i

∫ ϕ*i (r)( −ℏ2

2m
∇2) ϕi(r)dr



Definition of exchange-correlation energy à la DFT
not quite the same as for the wave function methods

K&S assumed that there exists a non-interacting system with the same 
density as the studied interacting system which they can use to approximate 
the kinetic energy contribution.

F[n] = T[n] + Eint[n] + Eext[n],
F[n] = TS[n] + EH[n] + Eext[n] + (Eint[n] − EH[n] + T[n] − TS[n]),
F[n] = TS[n] + EH[n] + Exc[n]

Exc[n] = F[n] − EH[n] − TS[n]
This definition of  differs from the definition of the usual definition as it also 
includes the difference between the true kinetic energy and the real system 
and the one obtained from the non-interacting system.

Exc



The K-S non-interacting system

The question is now: How to obtain  ?vKS(r)



The K-S potential
We have to minimize (under the constraint of the number of particles):

EKS[n] = TS[n] + EH[n] + Eext[n] + Exc[n],

EKS[n] = TS[n] +
1
2 ∫

n(r)n(r′ )
|r − r′ |

drdr′ + ∫ vext(r)n(r)dr + Exc[n]

Introducing Lagrange multipliers for the constraint:

0 = δ (EKS[n] − λ {∫ n(r)dr − N}) = ∫ { ∂TS

∂n(r)
+ ∫

n(r′ )
|r − r′ |

dr′ + vext(r) +
∂Exc

∂n(r)
− λ} δn(r)dr

If one considers the minimization for non-interacting electrons in 
potential , with the same density , one gets:vKS(r) n(r)

0 = ∫ { ∂TS

∂n(r)
+ vKS(r) − λ} δn(r)dr Hence: vKS(r) = vext(r) + ∫

n(r′ )
|r − r′ |

dr′ +
∂Exc

∂n(r)



K-S orbitals and eigenvalues
Non-interacting electrons in the Kohn-Sham potential : 

Hartree 
potential

Density 

To be solved self-consistently ! 

Note : by construction, at self-consistency, and assuming the exchange-correlation functional to be 
exact, the density will be the exact density, the total energy will be the exact one, but Kohn-Sham 
wavefunctions and eigenenergies correspond to a fictitious set of independent electrons, so they do 
not correspond to any exact physical quantities.

( −ℏ2

2m
∇2 + vKS(r)) ϕi(r) = ϵiϕi(r)

n(r) =
N

∑
i

ϕ*i (r)ϕi(r)

vKS(r) = vext(r) + ∫
n(r′ )

|r − r′ |
dr′ +

∂Exc

∂n(r)
Exchange-correlation 
potential



Constructing Functionals
Doing clever approximations
The hope is that it is easier to find good approximations for  than for . Exc[n] F[n]



Local-density approximation (I)



Local-density approximation (II)



Local-density approximation (III)



Beyond the local-density approximation



Jacob’s ladder of functional



SCAN, r2SCAN
an accurate meta-GGA functional

• SCAN satisfies all 17 known constraints of meta-GGA.


• r2SCAN let go of a few constraints, but it is smoother 
and therefore more suitable for plane-wave basis.

[1]

J. W. Furness, Y. Zhang, C. Lane, I. G. Buda, B. Barbiellini, R. S. Markiewicz, A. Bansil, and J. Sun, An Accurate First-Principles Treatment of Doping-
Dependent Electronic Structure of High-Temperature Cuprate Superconductors, Communications Physics 1, 1 (2018).

La2CuO4



What to remember

• DFT is excellent to predict ground state properties (bond length, etc.), at a 
reasonable computation cost.


• Using Kohn-Sham eigenvalues as band structure is certainly abusing the 
method, but it is a good first approximation.


• Treatment of Kohn-Sham eigenvalues can give them physical meaning.


• The accuracy of DFT functionals relies on exact physical constraints.


